四川省2007——2011数学文科高考大题汇编05.12(答案与试题)

合集下载

2007年普通高等学校招生全国统一考试(四川

2007年普通高等学校招生全国统一考试(四川

2007年普通高等学校招生全国统一考试(四川卷)数学(文科)试卷一、选择题(1)设集合M=|4,5,6,8|,集合N=|3,5,7,8|,那么M ∪N=(A )|3,4,5,6,7,8|(B )|5,8|(C )|3,5,7,8|(D )|4,5,6,8|(2)函数f (x )=1+log 2x 与g (x )=2-x+1在同一直角坐标系下的图象大致是(3)某商场买来一车苹果,从中随机抽取了10个苹果,其重量(单位:克)分别为:150,152,153,149,148,146,151,150,152,147,由此估计这车苹果单个重量的期望值是(A )150.2克 (B )149.8克(C )149.4克(D )147.8克(4)如图,ABCD-A 1B 1C 1D 1为正方体,下面结论错误..的是 (A )BD ∥平面CB 1D 1 (B )AC1⊥BD (C )AC 1⊥平面CB 1D 1(D )异面直线AD 与CB 所成的角为60°(5)如果双曲线12422=-y x 上一点P 到双曲线右焦点的距离是2,那么点P 到y 轴的距离是 (A )364 (B )362(C )62(D )32(6)设球O 的半径是1,A 、B 、C 是球面上三点,已知A 到B 、C 两点的球面距离都是2π,且二面角B-OA-C 的大小是3π,则从A 点沿球面经B 、C 两点再回到A 点的最短距离是 (A )67π(B )45π(C )34π (D )23π (7)等差数列{a n }中,a 1=1,a 3+a 5=14,其降n 项和S n =100,则n=(A )9(B )10(C )11(D )12(8)设A (a ,1),B (2,b ),C (4,5)为坐标平面上三点,O 为坐标原点,若OA 与OB 在OC 方向上的投影相同,则a 与b 满足的关系式为(A )4a-5b=3 (B )5a-4b=3 (C )4a+5b=14 (D )5a+4b=12(9)用数字1,2,3,4,5可以组成没有重复数字,并且比20 000大的五位偶数共有(A )48个 (B )36个 (C )24个 (D )18个 (10)已知抛物线y-x 2+3上存在关于直线x+y=0对称的相异两点A 、B ,则|AB|等于(A )3 (B )4 (C )32 (D )42(11)某公司有60万元资金,计划投资甲、乙两个项目,按要求对项目甲的投资不小于对项目乙投资的32倍,且对每个项目的投资不能低于5万元,对项目甲每投资1万元可获得0.4万元的利润,对项目乙每投资1万元可获得0.6万元的利润,该公司正确提财投资后,在两个项目上共可获得的最大利润为(A )36万元 (B )31.2万元 (C )30.4万元 (D )24万元 (12)如图,l 1、l 2、l 3是同一平面内的三条平行直线,l 1与l 2与l 3同的距离是2,正三角形ABC的三顶点分别在l 1、l 2、l 3上,则△ABC 的边长是(A )23 (B )364 (C ) 473- (D )3212-二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题横线上。

年高考四川卷数学文科试卷含答案

年高考四川卷数学文科试卷含答案
(Ⅱ)若厂家发给商家 20 件产品,其中有 3 件不合格,按合同规定该商家从中任取 2 件,来进行检验,只有 2 件产品合格时才接收这些产品,否则拒收,分别求出该商家计算 出不合格产品为 1 件和 2 件的概率,并求该商家拒收这些产品的概率。
(18)(本小题满分 12 分)
已知 cosα= 1 ,cos(α-β)= 13 ,且 0<β<α< π ,
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡
皮擦干净后,再选涂其它答案标号。不能答在试题卷上。
3.本卷共 12 小题,每小题 5 分,共 60 分。在每小题给出的四个选项中,只有一项是
符合题目要求的。
参考公式:
如果事件 A、B 互斥,那么
球是表面积公式
P( A B) P( A) P(B)
5a 4b 14
解析:选 A.由 OA 与 OB 在 OC 方向上的投影相同,可得: OA OC OB OC 即
4a 5 8 5b , 4a 5b 3.
9、 用 数 字 1, 2, 3, 4, 5 可 以 组 成 没 有 重 复 数 字 , 并 且 比 20000 大 的 五 位 偶 数 共 有
xn xn
2 2
,证明数列{a1}成等比数列,并求数列{xn}的通项
公式;
(Ⅲ)若 x1=4,bn=xn-2,Tn 是数列{bn}的前 n 项和,证明 Tn<3.
16
学而思教育·学习改变命运 思考成就未来!
高考网
2007 年普通高等学校招生全国统一考试(四川卷)
文科数学参考答案(含详细解析)
A.48 个
B.36 个
C.24 个
D.18 个
(10)已知抛物线 y-x2+3 上存在关于直线 x+y=0 对称的相异两点 A、B,则|AB|等于

2011年四川高考文科数学真题及答案

2011年四川高考文科数学真题及答案

2011年四川高考文科数学真题及答案一、选择题(共12小题,每小题5分,满分60分)1.(5分)若全集M={1,2,3,4,5},N={2,4},则∁M N=( )A.∅B.{1,3,5} C.{2,4} D.{1,2,3,4,5}【解答】解:∵全集M={1,2,3,4,5},N={2,4},∴C U N={1,3,5}故选B2.(5分)有一个容量为66的样本,数据的分组及各组的频数如下:[11.5,15.5)2[15.5,19.5)4[19.5,23.5)9[23.5,27.5)18[27.5,31.5)11[31.5,35.5)12[35.5,39.5)7[39.5,43.5)3根据样本的频率分布估计,大于或等于31.5的数据约占( )A.B.C.D.【解答】解:根据所给的数据的分组和各组的频数知道,大于或等于31.5的数据有[31.5,35.5)12;[35.5,39.5)7;[39.5,43.5)3,可以得到共有12+7+3=22,∵本组数据共有66个,∴大于或等于31.5的数据约占,故选B3.(5分)圆x2+y2﹣4x+6y=0的圆心坐标是( )A.(﹣2,3)B.(﹣2,3)C.(﹣2,﹣3)D.(2,﹣3)【解答】解:把圆的方程化为标准方程得:(x﹣2)2+(y+3)2=13,所以此圆的圆心坐标为(2,﹣3).故选D4.(5分)函数y=()x+1的图象关于直线y=x对称的图象大致是( )A.B.C.D.【解答】解:∵函数y=()x+1反函数为其图象过(2,0)点,且在定义域(1,+∞)为减函数分析四个答案发现只能A满足要求故选A5.(5分)“x=3”是“x2=9”的( )A.充分而不必要的条件B.必要而不充分的条件C.充要条件 D.既不充分也不必要的条件【解答】解:∵x2=9⇔x=±3∴x=3⇒x2=9反之,推不出;故“x=3”是“x2=9”的充分不必要条件.6.(5分)l1,l2,l3是空间三条不同的直线,则下列命题正确的是( )A.l1⊥l2,l2⊥l3⇒l1∥l3B.l1⊥l2,l2∥l3⇒l1⊥l3C.l1∥l2∥l3⇒l1,l2,l3共面D.l1,l2,l3共点⇒l1,l2,l3共面【解答】解:对于A,通过常见的图形正方体,从同一个顶点出发的三条棱两两垂直,A错;对于B,∵l1⊥l2,∴l1,l2所成的角是90°,又∵l2∥l3∴l1,l3所成的角是90°∴l1⊥l3,B对;对于C,例如三棱柱中的三侧棱平行,但不共面,故C错;对于D,例如三棱锥的三侧棱共点,但不共面,故D错.故选B.7.(5分)如图,正六边形ABCDEF中,=( )A.B.C.D.【解答】解:根据正六边形的性质,我们易得==故选D8.(5分)在△ABC中,sin2A≤sin2B+sin2C﹣sinBsinC,则A的取值范围是( )A.(0,] B.[,π)C.(0,] D.[,π)【解答】解:由正弦定理可知a=2RsinA,b=2RsinB,c=2RsinC,∵sin2A≤sin2B+sin2C﹣sinBsinC,∴a2≤b2+c2﹣bc,∴bc≤b2+c2﹣a2∴cosA=≥∴A≤∵A>0∴A的取值范围是(0,]故选C9.(5分)数列{a n}的前n项和为S n,若a1=1,a n+1=3S n(n≥1),则a6=( )A.3×44B.3×44+1 C.44D.44+1【解答】解:由a n+1=3S n,得到a n=3S n﹣1(n≥2),两式相减得:a n+1﹣a n=3(S n﹣S n﹣1)=3a n,则a n+1=4a n(n≥2),又a1=1,a2=3S1=3a1=3,得到此数列除去第一项后,为首项是3,公比为4的等比数列,所以a n=a2q n﹣2=3×4n﹣2(n≥2)则a6=3×44.故选A10.(5分)某运输公司有12名驾驶员和19名工人,有8辆载重量为10吨的甲型卡车和7辆载重量为6吨的乙型卡车,某天需送往A地至少72吨的货物,派用的每辆车需载满且只能送一次,派用的每辆甲型卡车需配2名工人,运送一次可得利润450元;派用的每辆乙型卡需配1名工人;每送一次可得利润350元,该公司合理计划当天派用甲乙卡车的车辆数,可得最大利润z=( )A.4650元B.4700元C.4900元D.5000元【解答】解:设派x辆甲卡车,y辆乙卡车,利润为z,由题意得:z=450x+350y由题意得x,y满足下列条件:上述条件作出可行域,如图所示:由图可知,当x=7,y=5时,450x+350y有最大值4900故选C11.(5分)在抛物线y=x2+ax﹣5(a≠0)上取横坐标为x1=﹣4,x2=2的两点,经过两点引一条割线,有平行于该割线的一条直线同时与抛物线和圆5x2+5y2=36相切,则抛物线顶点的坐标为( )A.(﹣2,﹣9)B.(0,﹣5)C.(2,﹣9)D.(1,6)【解答】解:两点坐标为(﹣4,11﹣4a);(2,2a﹣1),两点连线的斜率k=,对于y=x2+ax﹣5,y′=2x+a,∴2x+a=a﹣2解得x=﹣1,在抛物线上的切点为(﹣1,﹣a﹣4),切线方程为(a﹣2)x﹣y﹣6=0,该切线与圆相切,圆心(0,0)到直线的距离=圆半径,解得a=4或0(0舍去),抛物线方程为y=x2+4x﹣5顶点坐标为(﹣2,﹣9).故选A.12.(5分)在集合{1,2,3,4,5}中任取一个偶数a和一个奇数b构成以原点为起点的向量=(a,b)从所有得到的以原点为起点的向量中任取两个向量为邻边作平行四边形,记所有作成平行四边形的个数为n,其中面积等于2的平行四边形的个数为m,则=( )A.B.C.D.【解答】解:由题意知本题是一个古典概型,试验发生包含的事件是取出数字,构成向量,a的取法有2种,b的取法有3种,故向量有6个,从中任取两个向量共C62=15种取法,即n=15;由满足条件的事件列举法求出面积等于4的平行四边形的个数有2个,∴根据古典概型概率公式得到P=,故选A.二、填空题(共4小题,每小题4分,满分16分)13.(4分)(x+1)n的展开式中x3的系数是 C n3 (用数字作答)【解答】解:展开式的通项为T r+1=C n r x r令r=3得到展开式中x3的系数是C n3故答案为:C n314.(4分)双曲线﹣=1上一点P到双曲线右焦点的距离是4,那么点P到左准线的距离是 16 .【解答】解:由双曲线的方程知a=8,b=6所以c=10准线方程为x=;离心率e=设点P到右准线的距离为d则由双曲线定义得即d=设P(x,y)则d=|=所以x=所以点P到左准线的距离是故答案为1615.(4分)如图,半径为4的球O中有一内接圆柱.当圆柱的侧面积最大时,球的表面积与该圆柱的侧面积之差是 32π .【解答】解:设圆柱的上底面半径为r,球的半径与上底面夹角为α,则r=4cosα,圆柱的高为8sinα,圆柱的侧面积为:32πsin2α,当且仅当α=时,sin2α=1,圆柱的侧面积最大,圆柱的侧面积为:32π,球的表面积为:64π,球的表面积与该圆柱的侧面积之差是:32π.故答案为:32π16.(4分)函数f(x)的定义域为A,若x1,x2∈A,且f(x1)=f(x2)时总有x1=x2,则称f(x)为单函数.例如f(x)=2x+1(x∈R)是单函数,下列命题:①函数f(x)=x2(x∈R)是单函数;②函数f(x)=2x(x∈R)是单函数,③若f(x)为单函数,x1,x2∈A且x1≠x2,则f(x1)≠f(x2);④在定义域上具有单调性的函数一定是单函数其中的真命题是 ②③④ (写出所有真命题的编号)【解答】解:∵若x1,x2∈A,且f(x1)=f(x2)时总有x1=x2,则称f(x)为单函数∴①函数f(x)=x2不是单函数,∵f(﹣1)=f(1),显然﹣1≠1,∴函数f(x)=x2(x∈R)不是单函数;②∵函数f(x)=2x(x∈R)是增函数,∴f(x1)=f(x2)时总有x1=x2,即②正确;③∵f(x)为单函数,且x1≠x2,若f(x1)=f(x2),则x1=x2,与x1≠x2矛盾∴③正确;④同②;故答案为:②③④.三、解答题(共6小题,满分74分)17.(12分)本着健康、低碳的生活理念,租自行车骑游的人越来越多.某自行车租车点的收费标准是每车每次租不超过两小时免费,超过两小时的收费标准为2元每小时(不足1小时的部分按1小时计算).有人独立来该租车点租车骑游.各租一车一次.设甲、乙不超过两小时还车的概率分别为,;两小时以上且不超过三小时还车的概率分别为;两人租车时间都不会超过四小时.(Ⅰ)分别求出甲、乙在三小时以上且不超过四小时还车的概率;(Ⅱ)求甲、乙两人所付的租车费用之和小于6元的概率.【考点】几何概型.【专题】计算题.【分析】(Ⅰ)根据题意,由全部基本事件的概率之和为1求解即可.(Ⅱ)先列出甲、乙两人所付的租车费用之和小于6元的所有情况,可按照甲的付费分类,因为各类为互斥事件,分别求概率再取和即可.【解答】解:(Ⅰ)甲在三小时以上且不超过四小时还车的概率为1﹣乙在三小时以上且不超过四小时还车的概率为(Ⅱ)甲、乙两人所付的租车费用之和小于6元的情况有:甲不超过两小时、甲两小时以上且不超过三小时乙不超过三小时、甲在三小时以上且不超过四小时乙不超过两小时三种.故概率为:++=【点评】本题考查独立事件和互斥事件的概率,考查利用所学知识解决问题的能力.18.(12分)已知函数f(x)=sin(x+)+cos(x﹣),x∈R(Ⅰ)求f(x)的最小正周期和最小值;(Ⅱ)已知cos(β﹣α)=,cos(β+α)=﹣.0<α<β,求证:[f(β)]2﹣2=0.【考点】两角和与差的正弦函数;运用诱导公式化简求值;三角函数的周期性及其求法.【专题】计算题;综合题.【分析】(Ⅰ)利用诱导公式对函数解析式化简整理,进而根据三角函数的周期性和值域求解.(Ⅱ)利用两角和公式把已知条件展开后相加,求得β的值,代入函数解析式中求得答案.【解答】解:(Ⅰ)f(x)=sin(x+)+cos(x﹣)=sin(x﹣)+sin(x﹣)=2sin(x﹣)∴T=2π,最小值为﹣2(Ⅱ)∵cos(β﹣α)=cosβcosα+sinβsinα=,cos(β+α)=cosβcosα﹣sinβsinα=﹣,两式相加得2cosβcosα=0,∵0<α<β,∴β=∴[f(β)]2﹣2=4sin2﹣2=0【点评】本题主要考查了两角和公式和诱导公式的化简求值.考查了考生基础知识的综合运用.19.(12分)如图,在直三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=AA1=1,延长A1C1至点P,使C1P=A1C1,连接AP交棱CC1于点D.(Ⅰ)求证:PB1∥平面BDA1;(Ⅱ)求二面角A﹣A1D﹣B的平面角的余弦值.【考点】直线与平面平行的判定;直线与平面平行的性质.【专题】计算题;证明题.【分析】以A1为原点,A1B,A1C,A1A分别为x轴,y轴,z轴正方向,建立坐标系,则我们易求出各个点的坐标,进而求出各线的方向向量及各面的法向量.(I)要证明PB1∥平面BDA1,我们可以先求出直线PB1的向量,及平面BDA1的法向量,然后判断证明这两个向量互相垂直(II)由图象可得二面角A﹣A1D﹣B是一个锐二面角,我们求出平面AA1D与平面A1DB的法向量,然后求出两个法向量夹角的余弦值,得到结论.【解答】解:以A1为原点,A1B,A1C,A1A分别为x轴,y轴,z轴正方向,建立坐标系,则A1(0,0,0),B1(1,0,0),C1(0,1,0),B(1,0,1),P(0,2,0)(1)在△PAA1中,C1D=AA1,则D(0,1,)∴=(1,0,1),=(0,1,),=(﹣1,2,0)设平面BDA1的一个法向量为=(a,b,c)则令c=﹣1,则=(1,,﹣1)∵•=1×(﹣1)+×2+(﹣1)×0=0∴PB1∥平面BDA1(II)由(I)知平面BDA1的一个法向量=(1,,﹣1)又=(1,0,0)为平面AA1D的一个法向量∴cos<,>===故二面角A﹣A1D﹣B的平面角的余弦值为【点评】利用向量法求空间夹角问题,包括以下几种情况:空间两条直线夹角的余弦值等于他们方向向量夹角余弦值的绝对值;空间直线与平面夹角的余弦值等于直线的方向向量与平面的法向量夹角的正弦值;空间锐二面角的余弦值等于他的两个半平面方向向量夹角余弦值的绝对值;20.(12分)已知﹛a n﹜是以a为首项,q为公比的等比数列,S n为它的前n项和.(Ⅰ)当S1,S3,S4成等差数列时,求q的值;(Ⅱ)当S m,S n,S l成等差数列时,求证:对任意自然数k,a m+k ,a n+k,a l+k也成等差数列.【考点】等差关系的确定;等差数列的性质.【专题】计算题;证明题.【分析】(Ⅰ)根据题意,写出等比数列﹛a n﹜的前n项和是解决本题的关键,利用S1,S3,S4成等差数列寻找关于q的方程,通过解方程求出字母q的值;(Ⅱ)根据S m,S n,S1成等差数列,利用等比数列的求和公式得出关于q的方程式是解决本题的关键,注意分类讨论思想和整体思想的运用.【解答】解:(Ⅰ)由已知得出a n=a1q n﹣1,S3=a1+a2+a3=a1(1+q+q2),S4=a1+a2+a3+a4=a1(1+q+q2+q3),根据S1,S3,S4成等差数列得出2S3=S1+S4,代入整理并化简,约去q和a1,得q2﹣q﹣1=0,解得q=;(Ⅱ)当q=1时,该数列为常数列,若S m,S n,S l成等差数列,则也有a m+k,a n+k,a1+k成等差数列;若q≠1,由S m,S n,S1成等差数列,则有2S n=S1+S m,即有,整理化简得2q n﹣1=q m﹣1+q l﹣1,两边同乘以a1,得2a1q n﹣1=a1q m﹣1+a1q l﹣1,即2a n=a m+a l,两边同乘以q k即可得到2a n+k=a m+k+a l+k,即a m+k ,a n+k,a l+k成等差数列.【点评】本题考查等比数列的通项公式和求和公式的运用,考查学生判断等差数列的方法,考查学生的方程思想和分类讨论思想,转化与化归思想,考查学生的运算能力.21.(12分)过点C(0,1)的椭圆+=1(a>b>0)的离心率为,椭圆与x轴交于两点A(a,0)、B(﹣a,0),过点C的直线l与椭圆交于另一点D,并与x轴交于点P,直线AC与直线BD交于点Q.(I)当直线l过椭圆右焦点时,求线段CD的长;(Ⅱ)当点P异于点B时,求证:为定值.【考点】直线与圆锥曲线的综合问题;椭圆的应用.【专题】计算题;证明题;综合题;压轴题;数形结合.【分析】(I)当直线l过椭圆右焦点时,写出直线l的方程,并和椭圆联立方程,求得点D 的坐标,根据两点间距离公式即可求得线段CD的长;(Ⅱ)设出直线l的方程,并和椭圆联立方程,求得点D的坐标,并求出点P的坐标,写出直线AC与直线BD的方程,并解此方程组,求得Q点的坐标,代入即可证明结论.【解答】解:(I)由已知得b=1,,解得a=2,所以椭圆的方程为.椭圆的右焦点为(,0),此时直线l的方程为y=﹣x+1,代入椭圆方程化简得7x2﹣8x=0.解得x1=0,x2=,代入直线l的方程得y1=1,y2=﹣,所以D点坐标为(,﹣)故|CD|=;(Ⅱ)当直线l与x轴垂直时与题意不符,设直线l的方程为y=kx+1(k≠0,k≠)代入椭圆方程化简得(4k2+1)x2+8kx=0,解得x1=0,x2=,代入直线l的方程得y1=1,y2=,所以D点坐标为(,),又直线AC的方程为,直线BD的方程为y=,联立解得,因此Q点坐标为(﹣4k,2k+1),又P点坐标为(﹣,0),∴=(﹣,0)•(﹣4k,2k+1)=4,故为定值.【点评】此题是个难题.本题考查了、直线与椭圆的位置关系及弦长公式,和有关定值定点问题,是一道综合性的试题,考查了学生综合运用知识解决问题的能力.其中问题(II)考查了同学们观察、推理以及创造性地分析问题、解决问题的能力,22.(14分)已知函数f(x)=x+,h(x)=.(Ⅰ)设函数F(x)=18f(x)﹣x2[h(x)]2,求F(x)的单调区间与极值;(Ⅱ)设a∈R,解关于x的方程lg[f(x﹣1)﹣]=2lgh(a﹣x)﹣2lgh(4﹣x);(Ⅲ)设n∈N n,证明:f(n)h(n)﹣[h(1)+h(2)+…+h(n)]≥.【考点】利用导数研究函数的极值;利用导数研究函数的单调性;其他不等式的解法.【专题】计算题;证明题;压轴题;分类讨论.【分析】(Ⅰ)首先求出F(x)的解析式,求导,令导数大于0和小于0,分别求出单调增区间和减区间,从而可求极值.(Ⅱ)将方程转化为lg(x﹣1)+2lg=2lg,利用对数的运算法则,注意到真数大于0,转化为等价的不等式,分离参数a,求解即可.(Ⅲ)由已知得h(1)+h(2)+…+h(n)=故原不等式转化为f(n)h(n)﹣=≥注意到等式右侧为数列{b n}:b n=和的形式,将等式的左侧也看作一个数列的前n项和的形式,求出通项.问题转化为证明项>项的问题.可用做差法直接求解.【解答】解:(Ⅰ)F(x)=18f(x)﹣x2[h(x)]2=﹣x3+12x+9(x≥0)所以F′(x)=﹣3x2+12=0,x=±2且x∈(0,2)时,F′(x)>0,当x∈(2,+∞)时,F′(x)<0所以F(x)在(0,2)上单调递增,在(2,+∞)上单调递减.故x=2时,F(x)有极大值,且F(2)=﹣8+24+9=25.(Ⅱ)原方程变形为lg(x﹣1)+2lg=2lg,⇔⇔,①当1<a<4时,原方程有一解x=3﹣,②当4<a<5时,原方程有两解x=3±,③当a=5时,原方程有一解x=3,④当a≤1或a>5时,原方程无解.(Ⅲ)由已知得h(1)+h(2)+…+h(n)=,f(n)h(n)﹣=,从而a1=s1=1,当k≥2时,a n=s n﹣s n﹣1=,又===>0即对任意的k≥2,有,又因为a1=1=,所以a1+a2+…+a n≥,则s n≥h(1)+h(2)+…+h(n),故原不等式成立.【点评】本题考查求函数的单调区间、极值、方程解的个数问题、不等式证明问题,综合性强,难度较大.。

2007年高考文科数学试题及参考答案(四川卷)

2007年高考文科数学试题及参考答案(四川卷)

章贡区水西镇第一保育院2011—2012学年
第二学期小二班庆“三八”活动家长感言
3月8日下午,在小二班的教室里小朋友齐声唱起“世上只有妈妈好”,唱完后小朋友在老师的带领下用他们粉嫩的小手给妈妈捶捶背,做了手工项链作为礼物送给妈妈们,让我沉醉其中,想一想幼儿园里孩子们在老师的教育下从呀呀学语到如今这么乖巧懂事,真是辛苦这些勤劳的园丁了。

非常感谢小二班的老师们为我们家长提供了“三八节”与自己的孩子在幼儿园里亲密接触的机会,让我们家长能够通过这次有意义的活动进一步了解孩子的园内生活,并且对培养孩子与家长之间的亲子关系起到了很积极的作用,这些都让我深深体会到幼儿园对孩子成长和教育的高度重视以及为此做出的各种努力,我对此深为感动和感激。

我们都知道,幼儿园的教育对孩子的成长影响深远,是良好性格的形成和培育的关键时期。

现在看到孩子在幼儿园期间变得越来越懂事了,这种体贴人、关心人的品格其实比学到的书本知识更有意义。

真的希望这样的活动能举办的更多一些。

真的希望对孩子的感恩教育能一如继往的坚持下去。

先学做人,再学知识。

小二班:钟自清妈妈。

2011年普通高等学校招生全国统一考试数学-文-(四川卷)(解析版)

2011年普通高等学校招生全国统一考试数学-文-(四川卷)(解析版)

2011年普通高等学校招生全国统一考试数学-文-(四川卷)(解析版)一、试卷结构此次考试数学文科试题共14道题,分为两个部分:基础题和提高题。

其中,基础题有7道,每题5分,共35分;提高题有7 道,每题10分,共70分。

此外,试卷中还有两道非选择题,分别为填空和解答题,每题各30分。

试卷总分为165分。

二、试题解析基础题1.选择题第一道选择题是一道数列题,考察了数列的首项、公差、通项公式和求和公式。

第二道选择题是一道函数题,考察了函数的定义域、值域、图像和性质。

第三道选择题是一道三角函数题,考察了三角函数的基本关系、变化规律和绝对值的性质。

第四道选择题是一道几何题,考察了三角形内角和公式和垂线中线定理。

第五道选择题是一道椭圆题,考察了椭圆的中心、长短轴、离心率和方程的特点。

第六道选择题是一道高等数学题,考察了极限的概念、性质和计算方法。

第七道选择题是一道微积分题,考察了函数的导数、二次导数和极值点。

2.非选择题第一道填空题考察了向量的概念、坐标表示和加减乘除的运算法则。

第二道解答题考察了两点间的距离公式、平面直角坐标系和圆的解析式。

提高题1.选择题第一道选择题是一道数列和级数综合题,考察了数列的通项公式、等差数列求和公式和等比数列求和公式。

第二道选择题是一道三角函数综合题,考察了三角函数的基本关系、变化规律和解析式。

第三道选择题是一道数学思维题,考察了二项式展开和组合恒等式的运用。

第四道选择题是一道立体几何题,考察了正四面体的性质和体积计算公式。

第五道选择题是一道函数综合题,考察了函数的定义域、值域、图像和性质。

第六道选择题是一道高等数学题,考察了极限的概念、性质和计算方法。

第七道选择题是一道微积分题,考察了函数的导数、二次导数和极值点。

2.非选择题第一道填空题考察了向量的概念、线性运算和平面向量的坐标定理。

第二道解答题考察了解析几何的基本思想和方程组的解法。

三、试卷难度评价此次考试的数学文科试题整体难度适中,基础题对基础知识的考查比较全面,题型比较集中,容易掌握。

《2011年高考真题解析版—数学文(四川卷)word解析版》

《2011年高考真题解析版—数学文(四川卷)word解析版》

绝密★启用前2011年普通高等学校招生全国统一考试(四川卷)数 学(文史类)本试题卷分第一部分(选择题)和第二部分(非选择题)两部分.第1部分1至2页,第二部分3至4页,共4页.考生作答时,须将答案打在答题卡上,在本试题卷、草稿纸上答题无效,满分150分,考试时间120分钟.考试结束后,将本试题卷和答题卡一并交回.参考公式:如果事件A 、B 互斥,那么 球是表面积公式()()()P A B P A P B +=+ 24S R π= 如果事件A 、B 相互独立,那么 其中R 表示球的半径()()()P A B P A P B ⋅=⋅ 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 343V R π=n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径()(1)k kn kn n P k C P P -=-第一部分(选择题 共60分)1.选择题必须使用2B 铅笔将答案标号填涂在答题卡上对应题目标号的位置上.2.本大题共12小题,每小题5分,共60分.一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目的要求的. 1.若全集{1,2,3,4,5}M =,{2,4}N =,则M N =ð(A )∅ (B ){1,3,5} (C ){2,4} (D ){1,2,3,4,5}答案:B解析:∵{1,2,3,4,5}M =,则M N =ð{1,3,5},选B .2.有一个容量为66的样本,数据的分组及各组的频数如下: [11.5,15.5) 2 [15.5,19.5) 4 [19.5,23.5) 9 [23.5,27.5) 18[27.5,31.5) 1l [31.5,35.5) 12 [35.5,39.5) 7 [39.5,43.5) 3根据样本的频率分布估计,大于或等于31.5的数据约占 (A )211(B ) 13 (C )12(D )23答案:B解析:大于或等于31.5的数据共有12+7+3=22个,约占221663=,选B .3.圆22460x y x y +-+=的圆心坐标是(A )(2,3) (B )(-2,3) (C )(-2,-3) (D )(2,-3)答案:D解析:圆方程化为22(2)(3)13x y -++=,圆心(2,-3),选D . 4.函数1()12x y =+的图象关于直线y=x 对称的图象像大致是答案:A解析:1()12x y =+图象过点(0,2),且单调递减,故它关于直线y=x 对称的图象过点(2,0)且单调递减,选A . 5.“x =3”是“x2=9”的(A )充分而不必要的条件 (B )必要而不充分的条件(C )充要条件 (D )既不充分也不必要的条件答案:A解析:若x =3,则x 2=9,反之,若x 2=9,则3x =±,选A . 6.1l ,2l ,3l 是空间三条不同的直线,则下列命题正确的是(A )12l l ⊥,23l l ⊥13//l l ⇒ (B )12l l ⊥,23//l l ⇒13l l ⊥ (C )233////l l l ⇒1l ,2l ,3l 共面 (D )1l ,2l ,3l 共点⇒1l ,2l ,3l 共面答案:B解析:由12l l ⊥,23//l l ,根据异面直线所成角知1l 与3l 所成角为90°,选B .7.如图,正六边形ABCDEF 中,BA CD EF ++=(A )0 (B )BE (C )AD (D )CF答案:D解析:BA CD EF CD DE EF CF ++=++=,选D .8.在△ABC 中,222sin sin sin sin sin A B C B C ≤+-,则A 的取值范围是(A )(0,]6π (B )[,)6ππ (C )(0,]3π (D )[,)3ππ 答案:C解析:由222sin sin sin sin sin A B C B C ≤+-得222a b c bc ≤+-,即222122b c a bc +-≥,∴1cos 2A ≥,∵0A π<<,故03A π<≤,选C .9.数列{an}的前n 项和为Sn ,若a1=1,an+1 =3Sn (n ≥1),则a6=(A )3 × 44 (B )3 × 44+1 (C )44 (D )44+1答案:A解析:由an+1 =3Sn ,得an =3Sn -1(n ≥ 2),相减得an+1-an =3(Sn -Sn -1)= 3an ,则an+1=4an (n ≥ 2),a1=1,a2=3,则a6= a2·44=3×44,选A .10.某运输公司有12名驾驶员和19名工人,有8辆载重量为10吨的甲型卡车和7辆载重量为6吨的乙型卡车.某天需运往A 地至少72吨的货物,派用的每辆车需满载且只运送一次.派用的每辆甲型卡车需配2名工人,运送一次可得利润450元;派用的每辆乙型卡车需配1名工人,运送一次可得利润350元,该公司合理计划当天派用两类卡车的车辆数,可得最大利润为 (A )4650元 (B )4700元 (C )4900元 (D )5000元答案:C解析:设派用甲型卡车x (辆),乙型卡车y (辆),获得的利润为u(元),450350u x y =+,由题意,x 、y 满足关系式12,219,10672,08,07,x y x y x y x y +≤⎧⎪+≤⎪⎪+≥⎨⎪≤≤⎪≤≤⎪⎩作出相应的平面区域,45035050(97)u x y x y =+=+在由12,219x y x y +≤⎧⎨+≤⎩确定的交点(7,5)处取得最大值4900元,选C .11.在抛物线25(0)y x ax a =+-≠上取横坐标为14x =-,22x =的两点,过这两点引一条割线,有平行于该割线的一条直线同时与抛物线和圆225536x y +=相切,则抛物线顶点的坐标为(A )(2,9)-- (B )(0,5)- (C )(2,9)- (D )(1,6)-答案:A 解析:令抛物线上横坐标为14x =-、22x =的点为(4,114)A a --、(2,21)B a -,则2AB k a =-,由22y x a a '=+=-,故切点为(1,4)a ---,切线方程为(2)60a x y ---=,该直线又和圆相切,则d ==,解得4a =或0a =(舍去),则抛物线为2245(2)9y x x x =+-=+-,定点坐标为(2,9)--,选A .12.在集合{1,2,3,4,5}中任取一个偶数a 和一个奇数b 构成以原点为起点的向量(,)a b =α,从所有得到的以原点为起点的向量中任取两个向量为邻边作平行四边形,记所有作成的平行四边形的个数为n ,其中面积等于2的平行四边形的个数为m ,则m n=(A )215(B )15 (C )415(D )13答案:B解析:∵以原点为起点的向量(,)a b =α有(2,1)、(2,3)、(2,5)、(4,1)、(4,3)、(4,5)共6个,可作平行四边形的个数2615n C ==个,结合图形进行计算,其中由(2,1)(4,1)、(2,1)(4,3)、(2,3)(4,5)确定的平行四边形面积为2,共有3个,则31155m n==,选B .第二部分(非选择题 共90分)注意事项:1.必须使用0.5毫米黑色墨迹签字笔在答题卡上题目所指示的答题区域内作答,作图题可先用铅笔绘出,确认后再用0.5毫米黑色墨迹签字笔描清楚,答在试题卷上无效.2.本部分共10小题,共90分.二、填空题:本大题共4小题,每小题4分,共16分.13.9(1)x +的展开式中3x 的系数是_________.(用数字作答)答案:84解析:∵9(1)x +的展开式中3x 的系数是639984C C ==.14.双曲线2216436x y -=上一点P 到双曲线右焦点的距离是4,那么P 到左准线的距离是____.答案:16 答案:16解析:离心率54e =,设P 到右准线的距离是d ,则454d=,则165d =,则P 到左准线的距离等于2641616105⨯+=.15.如图,半径为4的球O 中有一内接圆柱.当圆柱的侧面积最大时,球的表面积与该圆柱的侧面积之差是_________. 答案:32π解析:如图,设球一条半径与圆柱相应的母线夹角为α,圆柱侧面积24sin 24cos S παα=⨯⨯⨯=32sin2πα,当4πα=时,S 取最大值32π,此时球的表面积与该圆柱的侧面积之差为32π. 16.函数()f x 的定义域为A ,若12,x x A ∈且12()()f x f x =时总有12x x =,则称()f x 为单函数.例如,函数()f x =2x+1(x ∈R )是单函数.下列命题: ①函数2()f x x =(x ∈R )是单函数; ②指数函数()2x f x =(x ∈R )是单函数;③若()f x 为单函数,12,x x A ∈且12x x ≠,则12()()f x f x ≠; ④在定义域上具有单调性的函数一定是单函数.其中的真命题是_________.(写出所有真命题的编号) 答案:②③④解析:对于①,若12()()f x f x =,则12x x =±,不满足;②是单函数;命题③实际上是单函数命题的逆否命题,故为真命题;根据定义,命题④满足条件.三、解答题:本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤.17.(本小题共l2分)本着健康、低碳的生活理念,租自行车骑游的人越来越多.某自行车租车点的收费标准是每车每次租车不超过两小时免费,超过两小时的部分每小时收费标准为2元(不足1小时的部分按1小时计算).有甲、乙人互相独立来该租车点租车骑游(各租一车一次).设甲、乙不超过两小时还车的概率分别为14、12;两小时以上且不超过三小时还车的概率分别为12、14;两人租车时间都不会超过四小时.(Ⅰ)分别求出甲、乙在三小时以上且不超过四小时还车的概率; (Ⅱ)求甲、乙两人所付的租车费用之和小于6元的概率. 本小题主要考查相互独立事件、互斥事件等概念及相关概率计算,考查运用所学知识和方法解决实际问题的能力.解:(Ⅰ)分别记甲、乙在三小时以上且不超过四小时还车为事件A 、B ,则111()1424P A =--=,111()1244P A =--=.答:甲、乙在三小时以上且不超过四小时还车的概率分别为14、14.(Ⅱ)记甲、乙两人所付的租车费用之和小于6元为事件C ,则1111111111113()()()()4244222442444P C =⨯+⨯+⨯+⨯+⨯+⨯=.答:甲、乙两人所付的租车费用之和小于6元的概率为3418.(本小题共l2分)已知函数73()sin()cos()44f x x x ππ=++-,x ∈R .(Ⅰ)求()f x 的最小正周期和最小值;(Ⅱ)已知4cos()5βα-=,4cos()5βα+=-,02παβ<<≤.求证:2[()]20f β-=. 本小题考查三角函数的性质,同角三角函数的关系,两角和的正、余弦公式、诱导公式等基础知识和基本运算能力,函数与方程、化归与转化等数学思想.(Ⅰ)解析:7733()sin cos cos sin cos cos sin sin 4444f x x x x x ππππ=+++x x =2sin()4x π=-,∴()f x 的最小正周期2T π=,最小值m i n ()2f x =-.(Ⅱ)证明:由已知得4cos cos sin sin 5αβαβ+=,4cos cos sin sin 5αβαβ-=-两式相加得2cos cos 0αβ=,∵02παβ<<≤,∴cos 0β=,则2πβ=.∴22[()]24sin 204f πβ-=-=.19.(本小题共l2分)如图,在直三棱柱ABC -A1B1C1中,∠BAC=90°,AB=AC=AA1=1,延长A1C1至点P ,使C1P =A1C1,连接AP 交棱CC1于D .(Ⅰ)求证:PB1∥平面BDA1; (Ⅱ)求二面角A -A1D -B 的平面角的余弦值; 本小题主要考查直三棱柱的性质、线面关系、二面角等基本知识,并考查空间想象能力和逻辑推理能力,考查应用向量知识解决问题的能力. 解法一:(Ⅰ)连结AB1与BA1交于点O ,连结OD , ∵C1D ∥平面AA1,A1C1∥AP ,∴AD=PD ,又AO=B1O , ∴OD ∥PB1,又OD ⊂面BDA1,PB1⊄面BDA1, ∴PB1∥平面BDA1.(Ⅱ)过A 作AE ⊥DA1于点E ,连结BE .∵BA ⊥CA ,BA ⊥AA1,且AA1∩AC=A ,∴BA ⊥平面AA1C1C .由三垂线定理可知BE ⊥DA1.∴∠BEA 为二面角A -A1D -B 的平面角. 在Rt △A1C1D中,1A D =,又1111122AA D S AE ∆=⨯⨯=,∴AE =在Rt △BAE中,BE ==,∴2cos 3AH AHB BH∠==.故二面角A -A1D -B 的平面角的余弦值为23. 解法二:如图,以A1为原点,A1B1,A1C1,A1A 所在直线分别为x 轴,y轴,z 轴建立空间直角坐标系A1-B1C1A ,则1(0,0,0)A ,1(1,0,0)B ,1(0,1,0)C ,(1,0,1)B ,(0,2,0)P .(Ⅰ)在△PAA1中有1112C D AA =,即1(0,1,)2D .∴1(1,0,1)A B =,1(0,1,)A D x =,1(1,2,0)B P =-. 设平面BA1D 的一个法向量为1(,,)a b c =n ,则11110,10.2A B a c A D b c ⎧⋅=+=⎪⎨⋅=+=⎪⎩n n 令1c =-,则11(1,,1)2=-n . ∵1111(1)2(1)002B P ⋅=⨯-+⨯+-⨯=n ,∴PB1∥平面BA1D ,(Ⅱ)由(Ⅰ)知,平面BA1D 的一个法向量11(1,,1)2=-n .又2(1,0,0)=n 为平面AA1D 的一个法向量.∴12121212cos ,3||||312⋅<>===⋅⨯n n n n n n . 故二面角A -A1D -B 的平面角的余弦值为23.20.(本小题共12分)已知{}n a 是以a 为首项,q 为公比的等比数列,n S 为它的前n 项和.(Ⅰ)当1S 、3S 、4S 成等差数列时,求q 的值;(Ⅱ)当m S 、n S 、l S 成等差数列时,求证:对任意自然数k ,m k a +、n k a +、l k a +也成等差数列.本小题考查等比数列和等差数列的基础知识以及基本运算能力和分析问题、解决问题的能力.解:(Ⅰ)由已知,1n n a aq -=,因此1S a =,23(1)S a q q =++,234(1)S a q q q =+++.当1S 、3S 、4S 成等差数列时,1432S S S +=,可得32aq aq aq =+.化简得210q q --=.解得q .(Ⅱ)若1q =,则{}n a 的每项n a a =,此时m k a +、n k a +、l k a +显然成等差数列.若1q ≠,由m S 、n S 、l S 成等差数列可得2m l n S S S +=,即(1)(1)2(1)111m l n a q a q a q q q q ---+=---. 整理得2m l n q q q +=.因此,11()22k m l n k m k l k n k a a aq q q aq a -+-++++=+==. 所以,m k a +、n k a +、l k a +也成等差数列. 21.(本小题共l2分)过点C(0,1)的椭圆22221(0)x y a b a b+=>>,椭圆与x 轴交于两点(,0)A a 、(,0)A a -,过点C 的直线l 与椭圆交于另一点D ,并与x 轴交于点P ,直线AC 与直线BD 交于点Q .(I )当直线l 过椭圆右焦点时,求线段CD 的长; (Ⅱ)当点P 异于点B 时,求证:OP OQ ⋅为定值.本小题主要考查直线、椭圆的标准方程及基本性质等基本知识,考查平面解析几何的思想方法及推理运算能力.解:(Ⅰ)由已知得1,c b a ==,解得2a =,所以椭圆方程为2214x y +=.椭圆的右焦点为,此时直线l 的方程为 1y x =+,代入椭圆方程得270x -=,解得120,x x ==,代入直线l 的方程得 1211,7y y ==-,所以1)7D -,故16||7CD =.(Ⅱ)当直线l 与x 轴垂直时与题意不符. 设直线l的方程为11(0)2y kx k k =+≠≠且.代入椭圆方程得22(41)80k x kx ++=.解得12280,41kx x k -==+,代入直线l 的方程得2122141,41k y y k -==+,所以D 点的坐标为222814(,)4141k k k k --++.又直线AC 的方程为12x y +=,又直线BD 的方程为12(2)24k y x k+=+-,联立得4,2 1.x k y k =-⎧⎨=+⎩因此(4,21)Q k k -+,又1(,0)P k-.所以1(,0)(4,21)4OP OQ k k k⋅=--+=.故OP OQ ⋅为定值. 22.(本小题共l4分)已知函数21()32f x x =+,()h x =(Ⅰ)设函数F(x)=18f(x)-x2[h(x)]2,求F(x)的单调区间与极值;(Ⅱ)设a ∈R ,解关于x 的方程33lg[(1)]2lg ()2lg (4)24f x h a x h x --=---;(Ⅲ)设*n ∈N ,证明:1()()[(1)(2)()]6f n h n h h h n -+++≥. 本小题主要考查函数导数的应用、不等式的证明、解方程等基础知识,考查数形结合、函数与方程、分类与整合等数学思想方法及推理运算、分析问题、解决问题的能力.解:(Ⅰ)223()18()[()]129(0)F x f x x h x x x x =-=-++≥, 2()312F x x '∴=-+.令()0F x '∴=,得2x =(2x =-舍去).当(0,2)x ∈时.()0F x '>;当(2,)x ∈+∞时,()0F x '<,故当[0,2)x ∈时,()F x 为增函数;当[2,)x ∈+∞时,()F x 为减函数. 2x =为()F x 的极大值点,且(2)824925F =-++=.(Ⅱ)方法一:原方程可化为42233log [(1)]log ()log (4)24f x h a x h x --=---,即为4222log (1)log log log x -=,且,14,x a x <⎧⎨<<⎩①当14a <≤时,1x a <<,则14a x x x--=-,即2640x x a -++=,364(4)2040a a ∆=-+=->,此时3x ==1x a <<,此时方程仅有一解3x = ②当4a >时,14x <<,由14a x x x--=-,得264x x a -++=,364(4)204a a ∆=-+=-,若45a <<,则0∆>,方程有两解3x = 若5a =时,则0∆=,方程有一解3x =; 若1a ≤或5a >,原方程无解.方法二:原方程可化为422log (1)log (4)log ()x h x h a x -+-=-,即2221log (1)log log 2x -+=10,40,0,(1)(4).x x a x x x a x ->⎧⎪->⎪⇔⎨->⎪⎪--=-⎩214,(3) 5.x x a a x ⎧<<⎪⇔<⎨⎪=--+⎩ ①当14a <≤时,原方程有一解3x = ②当45a <<时,原方程有二解3x =±③当5a =时,原方程有一解3x =; ④当1a ≤或5a >时,原方程无解. (Ⅲ)由已知得(1)(2)()]12h h h n n +++=+++,11()()66f n h n -=.设数列{}n a 的前n 项和为n S ,且1()()6n S f n h n =-(*n ∈N )从而有111aS ==,当2100k ≤≤时,1k k k a S S -=-=又1[(4(46k a k k =+-2216=106=>.即对任意2k ≥时,有k a >,又因为11a ==,所以1212n a a a n +++≥+++.则(1)(2)()n S h h h n ≥+++,故原不等式成立.。

2011高考:高考数学文科试卷(四川卷)

1949年之前中国各所大学招生考试的时间由学校决定并不是同时举行学生可以根据自己的实力和时间安排去不同的大学进行多次高考
2011高 考 : 高 考 数 学 文 科 试 卷 ( 四 川 卷 )
《11高考:2011高考数学文科试卷(四川卷)》由店铺编辑在高考期间特别更新,文章更新时间为:2011年06月08日 09时57 分.
知识点:1949年之前,中国各所大学招生考试的时间由学校决定,并不是同时举行,学生可以根据自己的实力和时间安排去 不同的大学进行多次高考。现在,在中国大部分地区,高考每年只举行一次,2003年以前在7月举行,2003年开始改为每年6 月举行。

2007年高考四川卷(文科数学)

2007年普通高等学校招生全国统一考试文科数学(四川卷)一、选择题本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{4,5,6,8}M =,集合{3,5,7,8}N =,那么MN =A .{3,4,5,6,7,8}B .{5,8}C .{3,5,7,8}D .{4,5,6,8}M = 2.函数2()1log f x x =+与1()2x g x -+=在同一直角坐标系下的图象大致是3.某商场买来一车苹果,从中随机抽取了10个苹果,其重量(单位:克)分别为:150,152,153,149,148,146,151,150,152,147,由此估计这车苹果单个重量的期望值是A .150.2B .149.8C .149.4D .147.8 4.如图,1111ABCD A B C D -为正方体,下面结论错误..的是 A.//BD 平面11CB D B.1AC BD ⊥C.1AC ⊥平面11CB DD.异面直线AD 与1CB 所成的角为60ABCDA 1B 1C 1D 15.如果双曲线22142x y -=上一点P 到双曲线右焦点的距离是2,那么点P 到y 轴的距离是 A.3 B.3C. D.6.设球O 的半径是1,A 、B 、C 是球面上三点,已知A 到B 、C 两点的球面距离都是2π,且二面角B OA C --的大小是3π,则从A 点沿球面经B 、C 两点再回到A 点的最短距离是 A .76π B .54π C .43π D .32π7.等差数列{}n a 中,11a =,3514a a +=,其前n 项和100n S =,则n = A .9 B .10 C .11 D .12 7.设(,1)A a ,(2,)B b ,(4,5)C 为坐标平面上三点,O 为坐标原点,若OA 与OB 在OC 方向上的投影相同,则a 与b 满足的关系式为A .453a b -=B .543a b -=C .4514a b +=D .5414a b += 10.用数字1,2,3,4,5可以组成没有重复数字,并且比20000大的五位偶数共有A .48个B .36个C .24个D .18个 8.已知抛物线23y x =-+上存在关于直线0x y +=对称的相异两点A 、B ,则AB 等于A .3B .4 C..11.某公司有60万元资金,计划投资甲、乙两个项目,按要求对项目甲的投资不小于对项目乙投资的23倍,且对每个项目的投资不能低于5万元,对项目甲每投资1万元可获得0.4万元的利润,对项目乙每投资1万元可获得0.6万元的利润,该公司正确规划投资后,在这两个项目上共可获得的最大利润为ABC OA .36万元B .31.2万元C .30.4万元D .24万元 12.如图,1l 、2l 、3l 是同一平面内的三条平行直线,1l 与2l 间的距离是1,2l 与3l 间的距离是2,正三角形ABC 的三顶点分别在1l 、2l 、3l 上,则ABC ∆的边长是 A..364 C.3二、填空题:本大题共4小题,每小题4分,共16分.13.1()n x x -的展开式中的第5项为常数项,那么正整数n 的值是 .14.在正三棱柱111ABC A B C -,底面三角形的边长为1,则1BC 15.已知O 的方程是2220x y +-=,'O 的方程是228100x y x +-+=,由动点P 向O 和'O 所引的切线长相等,则动点P 的轨迹方程是 . 16、下面有5个命题:①函数44sin cos y x x =-的最小正周期是π; ②终边在y 轴上的角的集合是{|,}2k k Z παα=∈; ③在同一坐标系中,函数sin y x =的图象和函数y x =的图象有3个公共点;④把函数3sin(2)3y x π=+的图象向右平移6π得到3sin 2y x =的图象;⑤角θ为第一象限角的充要条件是sin 0θ>其中,真命题的编号是 .(写出所有真命题的编号)三、解答题:本大题共6小题,共74分;解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)厂家在产品出厂前,需对产品做检验,厂家将一批产品发给商家时,商家按合同规定也需随机抽取一定数量的产品做检验,以决定是否接收这批产品.ABC1l 2l3l(Ⅰ)若厂家库房中的每件产品合格的概率为0.8,从中任意取出4件进行检验.求至少有1件是合格品的概率;(Ⅱ)若厂家发给商家20件产品,其中有3件不合格,按合同规定该商家从中任取2件,都进行检验,只有2件都合格时才接收这批产品,否则拒收. 分别求出该商家计算出不合格产品为1件和2件的概率,并求该商家拒收这些产品的概率. 18.(本小题满分12分) 已知1cos 7α=,13cos()14αβ-=,且02πβα<<<.(Ⅰ)求tan 2α的值. (Ⅱ)求β.19.(本小题满分12分)如图,PCBM ⊥平面ABC ,90PCB ∠=,PM ∥BC ,直线AM 与直线PC 所成的角为60,又1AC =,22BC PM ==,90ACB ∠=,AB ⊥PC , (Ⅰ)求证:平面AC BM ⊥; (Ⅱ)求二面角M AB C --的大小; (Ⅲ)求多面体PMABC 的体积.20、(本小题满分12分)设函数3()f x ax bx c =++(0)a ≠为奇函数,其图象在点(1,(1))f 处的切线与直线670x y --=垂直,导函数'()f x 的最小值为12-.(Ⅰ)求a ,b ,c 的值;(Ⅱ)求函数()f x 的单调递增区间,并求函数()f x 在[1,3]-上的最大值和最小值.21.(本小题满分12分)ABCMP设1F 、2F 分别是椭圆1422=+y x 的左、右焦点. (Ⅰ)若P 是该椭圆上的一个动点,求1PF ·2PF 的最大值和最小值;(Ⅱ)设过定点(0,2)M 的直线l 与椭圆交于不同的两点A 、B ,且AOB ∠为锐角(其中O 为坐标原点),求直线l 的斜率k 的取值范围. 22.(本小题满分14分)已知函数2()4f x x =-,设曲线()y f x =在点(,())n n x f x 处的切线与x 轴的交点为1(,0)n x +()n N *∈,其中1x 为正实数.(Ⅰ)用n x 表示1n x +; (Ⅱ)若14x =,记2lg 2n n n x a x +=-,证明数列{}n a 成等比数列,并求数列{}n x 的通项公式;(Ⅲ)若14x =,2n n b x =-,n T 是数列{}n b 的前n 项和,证明3n T <.。

2007年高考数学卷(四川.文)含详解

2007年普通高等学校招生全国统一考试(四川卷)文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页。

第Ⅱ卷3到10页。

考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上。

2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

不能答在试题卷上。

3.本卷共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

参考公式:如果事件A 、B 互斥,那么 球是表面积公式)()()(B P A P B A P +=+ 24R S π=如果事件A 、B 相互独立,那么 其中R 表示球的半径)()()(B P A P B A P ⋅=⋅ 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么334R V π=n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径k n k kn n P P C k P --=)1()(一、选择题(1)设集合M ={4,5,6,8},集合N ={3,5,7,8}那么M ∪N = (A){3,4,5,6,7,8} (B){5,8} (C){3,5,7,8}(D){4,5,6,8}(2)函数f (x )=1+log 2x 与g (x )=2-x+1在同一直角坐标系下的图象大致是(3)某商场买来一车苹果,从中随机抽取了10个苹果,其重量(单位:克)分别为:150,152,153,149,148,146,151,150,152,147,由此估计这车苹果单个重量的期望值是 (A)150.2克 (B)149.8克 (C)149.4克 (D)147.8克 (4)如图,ABCD -A 1B 1C 1D 1为正方体,下面结论错误..的是 (A )BD ∥平面CB 1D 1 (B)AC 1⊥BD(C)AC 1⊥平面CB 1D 1 (D)异面直线AD 与CB 所成的角为60°(5)如果双曲线2422y x -=1上一点P 到双曲线右焦点的距离是2,那么点P 到y 轴的距离是(A)364 (B)362 (C)62 (D)32 (6)设球O 的半径是1,A 、B 、C 是球面上三点,已知A 到B 、C 两点的球面距离都是2π,且二面角B-OA-C 的大小是3π,则从A 点沿球面经B 、C 两点再回到A 点的最短距离是(A)67π (B)45π (C)34π (D)23π(7)等差数列{a n }中,a 1=1,a 3+a 5=14,其降n 项和S n =100,则n = (A)9 (B)10 (C)11 (D)12(8)设A (a,1),B(2,b),C(4,5)为坐标平面上三点,O 为坐标原点,若OA 与OB 在OC 方向上的投影相同,则a 与b 满足的关系式为A.4a-5b=3B.5a-4b=3C.4a+5b=14D.5a+4b=12 (9)用数字1,2,3,4,5可以组成没有重复数字,并且比20 000大的五位偶数共有 A.48个 B.36个 C.24个 D.18个(10)已知抛物线y-x 2+3上存在关于直线x+y=0对称的相异两点A 、B ,则|AB|等于A.3B.4C.32D.42(11)某公司有60万元资金,计划投资甲、乙两个项目,按要求对项目甲的投资不小于对项目乙投资的32倍,且对每个项目的投资不能低于5万元,对项目甲每投资1万元可获得0.4万元的利润,对项目乙每投资1万元可获得0.6万元的利润,该公司正确提财投资后,在两个项目上共可获得的最大利润为A.36万元B.31.2万元C.30.4万元D.24万元(12)如图,l 1、l 2、l 3是同一平面内的三条平行直线,l 1与l 2与l 3同的距离是2, 正三角形ABC 的三顶点分别在l 1、l 2、l 3上,则△ABC 的边长是 A.23 B.364 C. 473- D.3212- 二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题横线上.(13).1nx x ⎛⎫- ⎪⎝⎭的展开式中的第5项为常数项,那么正整数n 的值是 .三、解答题:本大题共6小题。

2007年高考.四川卷.文科数学试题及解答

2007年普通高等学校招生全国统一考试数学(四川文科)一、选择题(1)设集合M =|4,5,6,8|,集合N =|3,5,7,8|,那么M ∪N =(A)|3,4,5,6,7,8| (B)|5,8| (C)|3,5,7,8| (D)|4,5,6,8|(2)函数f (x )=1+log 2x 与g (x )=2-x+1在同一直角坐标系下的图象大致是(3)某商场买来一车苹果,从中随机抽取了10个苹果,其重量(单位:克)分别为:150,152,153,149,148,146,151,150,152,147,由此估计这车苹果单个重量的期望值是 (A)150.2克 (B)149.8克 (C)149.4克 (D)147.8克(4)如图,ABCD -A 1B 1C 1D 1为正方体,下面结论错误..的是 (A )BD ∥平面CB 1D 1 (B)AC 1⊥BD(C)AC 1⊥平面CB 1D 1(D)异面直线AD 与CB 所成的角为60°(5)如果双曲线2422y x -=1上一点P 到双曲线右焦点的距离是2,那么点P 到y 轴的距离是 (A)364 (B)362 (C)62 (D)32(6)设球O 的半径是1,A 、B 、C 是球面上三点,已知A 到B 、C 两点的球面距离都是2π,且二面角B-OA-C 的大小是3π,则从A 点沿球面经B 、C 两点再回到A 点的最短距离是(A)67π (B)45π (C)34π (D)23π(7)等差数列{a n }中,a 1=1,a 3+a 5=14,其降n 项和S n =100,则n =(A)9 (B)10 (C)11 (D)12(8)设A (a,1),B(2,b),C(4,5)为坐标平面上三点,O 为坐标原点,若OA 与OB 在OC 方向上的投影相同,则a 与b 满足的关系式为A.4a-5b=3B.5a-4b=3C.4a+5b=14D.5a+4b=12(9)用数字1,2,3,4,5可以组成没有重复数字,并且比20 000大的五位偶数共有A.48个B.36个C.24个D.18个(10)已知抛物线y-x 2+3上存在关于直线x+y=0对称的相异两点A 、B ,则|AB|等于A.3B.4C.32D.42(11)某公司有60万元资金,计划投资甲、乙两个项目,按要求对项目甲的投资不小于对项目乙投资的32倍,且对每个项目的投资不能低于5万元,对项目甲每投资1万元可获得0.4万元的利润,对项目乙每投资1万元可获得0.6万元的利润,该公司正确提财投资后,在两个项目上共可获得的最大利润为A.36万元B.31.2万元C.30.4万元D.24万元(12)如图,l 1、l 2、l 3是同一平面内的三条平行直线,l 1与l 2与l 3同的距离是2,正三角形ABC 的三顶点分别在l1、l2、l 3上,则△ABC 的边长是A.23B.364 C. 473- D.3212-二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题横线上. (13).(x -x1)2的展开式中的第5项为常数项,那么正整数a 的值是 .(14).如图,在正三棱柱ABC -A 1B 1C 1中,侧棱长为2,底面三角形的边长为1,则BC 1与侧面ACC 1A 2所成的角是 .(15).已知⊙O 的方程是z 2+y 2-2=0, ⊙O ′的方程是x 2+y 2=8x+10=0. 由动点P 内⊙O 和⊙O ′所引的切线长相等,则动点P 的轨迹方程是 .(16).下面有五个命题:①函数y=sin 2x-cos 2x,的最小正周期是π. ②终边在y 轴上的角的集合是|a|α=2k π,k ∈Z|. ③在同一坐标系中,函数y=sinx 的图象和函数y=x 的图象有三个公共点. ④把函数y =3sin(2x +3π)的图象向右平移6π得到y =3 sin2x 的图象. ⑤角θ为第一象限角的充要条件是sin θ>0.其中,真命题的编号是 (写出所有真命题的编号).6小题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2011年普通高等学校招生全国统一考试(四川卷)数 学(文史类)三、解答题:本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤. 17.(本小题共l2分)本着健康、低碳的生活理念,租自行车骑游的人越来越多.某自行车租车点的收费标准是每车每次租车不超过两小时免费,超过两小时的部分每小时收费标准为2元(不足1小时的部分按1小时计算).有甲、乙人互相独立来该租车点租车骑游(各租一车一次).设甲、乙不超过两小时还车的概率分别为14、12;两小时以上且不超过三小时还车的概率分别为12、14;两人租车时间都不会超过四小时. (Ⅰ)分别求出甲、乙在三小时以上且不超过四小时还车的概率; (Ⅱ)求甲、乙两人所付的租车费用之和小于6元的概率.本小题主要考查相互独立事件、互斥事件等概念及相关概率计算,考查运用所学知识和方法解决实际问题的能力. 解:(Ⅰ)分别记甲、乙在三小时以上且不超过四小时还车为事件A 、B ,则111()1424P A =--=,111()1244P A =--=.答:甲、乙在三小时以上且不超过四小时还车的概率分别为14、14.(Ⅱ)记甲、乙两人所付的租车费用之和小于6元为事件C ,则1111111111113()()()()4244222442444P C =⨯+⨯+⨯+⨯+⨯+⨯=.答:甲、乙两人所付的租车费用之和小于6元的概率为3418.(本小题共l2分)已知函数73()sin()cos()44f x x x ππ=++-,x ∈R .(Ⅰ)求()f x 的最小正周期和最小值;(Ⅱ)已知4cos()5βα-=,4cos()5βα+=-,02παβ<<≤.求证:2[()]20f β-=.本小题考查三角函数的性质,同角三角函数的关系,两角和的正、余弦公式、诱导公式等基础知识和基本运算能力,函数与方程、化归与转化等数学思想.(Ⅰ)解析:7733()sin cos cos sin cos cos sin sin4444f x x x x x ππππ=+++x x 2sin()4x π=-,∴()f x 的最小正周期2T π=,最小值min ()2f x =-. (Ⅱ)证明:由已知得4cos cos sin sin 5αβαβ+=,4cos cos sin sin 5αβαβ-=-两式相加得2cos cos 0αβ=,∵02παβ<<≤,∴cos 0β=,则2πβ=.∴22[()]24sin 204f πβ-=-=.19.(本小题共l2分)如图,在直三棱柱ABC -A 1B 1C 1中,∠BAC =90°,AB =AC =AA 1=1,延长A 1C 1至点P ,使C 1P =A 1C 1,连接AP 交棱CC 1于D .(Ⅰ)求证:PB 1∥平面BDA 1; (Ⅱ)求二面角A -A 1D -B 的平面角的余弦值;本小题主要考查直三棱柱的性质、线面关系、二面角等基本知识,并考查空间想象能力和逻辑推理能力,考查应用向量知识解决问题的能力. 解法一: (Ⅰ)连结AB 1与BA 1交于点O ,连结OD , ∵C 1D ∥平面AA 1,A 1C 1∥AP ,∴AD =PD ,又AO =B 1O , ∴OD ∥PB 1,又OD ⊂面BDA 1,PB 1⊄面BDA 1, ∴PB 1∥平面BDA 1. (Ⅱ)过A 作AE ⊥DA 1于点E ,连结BE .∵BA ⊥CA ,BA ⊥AA 1,且AA 1∩AC =A , ∴BA ⊥平面AA 1C 1C .由三垂线定理可知BE ⊥DA 1. ∴∠BEA 为二面角A -A 1D -B 的平面角. 在Rt △A 1C 1D中,1A D ==,又1111122AA D S AE ∆=⨯⨯=,∴AE =. 在Rt △BAE中,BE =,∴2cos 3AH AHB BH ∠==.故二面角A -A 1D -B 的平面角的余弦值为23. 解法二: 如图,以A 1为原点,A 1B 1,A 1C 1,A 1A 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系A 1-B 1C 1A ,则1(0,0,0)A ,1(1,0,0)B ,1(0,1,0)C ,(1,0,1)B ,(0,2,0)P .(Ⅰ)在△P AA 1中有1112C D AA =,即1(0,1,)2D .∴1(1,0,1)A B = ,1(0,1,)A D x =,1(1,2,0)B P =- .设平面BA 1D 的一个法向量为1(,,)a b c =n ,则11110,10.2A B a c A D b c ⎧⋅=+=⎪⎨⋅=+=⎪⎩n n 令1c =-,则11(1,,1)2=-n . ∵1111(1)2(1)002B P ⋅=⨯-+⨯+-⨯= n ,∴PB 1∥平面BA 1D ,(Ⅱ)由(Ⅰ)知,平面BA 1D 的一个法向量11(1,,1)2=-n .又2(1,0,0)=n 为平面AA 1D 的一个法向量.∴12121212cos ,3||||312⋅<>===⋅⨯n n n n n n .故二面角A -A 1D -B 的平面角的余弦值为23. 20.(本小题共12分)已知{}n a 是以a 为首项,q 为公比的等比数列,n S 为它的前n 项和.(Ⅰ)当1S 、3S 、4S 成等差数列时,求q 的值;(Ⅱ)当m S 、n S 、l S 成等差数列时,求证:对任意自然数k ,m k a +、n k a +、l k a +也成等差数列. 本小题考查等比数列和等差数列的基础知识以及基本运算能力和分析问题、解决问题的能力. 解:(Ⅰ)由已知,1n n a aq -=,因此1S a =,23(1)S a q q =++,234(1)S a q q q =+++. 当1S 、3S 、4S 成等差数列时,1432S S S +=,可得32aq aq aq =+. 化简得210q q --=.解得q =.(Ⅱ)若1q =,则{}n a 的每项n a a =,此时m k a +、n k a +、l k a +显然成等差数列.若1q ≠,由m S 、n S 、l S 成等差数列可得2m l n S S S +=,即(1)(1)2(1)111m l n a q a q a q q q q ---+=---. 整理得2m l n q q q +=.因此,11()22k m l n k m k l k n k a a aq q q aq a -+-++++=+==.所以,m k a +、n k a +、l k a +也成等差数列.21.(本小题共l2分)过点C (0,1)的椭圆22221(0)x y a b a b+=>>,椭圆与x 轴交于两点(,0)A a 、(,0)A a -,过点C 的直线l 与椭圆交于另一点D ,并与x 轴交于点P ,直线AC 与直线BD 交于点Q .(I )当直线l 过椭圆右焦点时,求线段CD 的长;(Ⅱ)当点P 异于点B 时,求证:OP OQ ⋅为定值.本小题主要考查直线、椭圆的标准方程及基本性质等基本知识,考查平面解析几何的思想方法及推理运算能力.解:(Ⅰ)由已知得1,c b a ==2a =,所以椭圆方程为2214x y +=.椭圆的右焦点为,此时直线l 的方程为 1y =+,代入椭圆方程得270x -=,解得120,x x ==l 的方程得 1211,7y y ==-,所以1)7D -,故16||7CD =. (Ⅱ)当直线l 与x 轴垂直时与题意不符.设直线l 的方程为11(0)2y kx k k =+≠≠且.代入椭圆方程得22(41)80k x kx ++=.解得12280,41kx x k -==+,代入直线l 的方程得2122141,41k y y k -==+,所以D 点的坐标为222814(,)4141k k k k --++.又直线AC 的方程为12x y +=,又直线BD 的方程为12(2)24ky x k +=+-,联立得4,2 1.x k y k =-⎧⎨=+⎩因此(4,21)Q k k -+,又1(,0)P k-.所以1(,0)(4,21)4OP OQ k k k⋅=--+= .故OP OQ ⋅为定值. 22.(本小题共l4分)已知函数21()32f x x =+,()h x =(Ⅰ)设函数F (x )=18f (x )-x 2[h (x )]2,求F (x )的单调区间与极值;(Ⅱ)设a ∈R ,解关于x 的方程33lg[(1)]2lg ()2lg (4)24f x h a x h x --=---;(Ⅲ)设*n ∈N ,证明:1()()[(1)(2)()]6f n h n h h h n -+++≥ .本小题主要考查函数导数的应用、不等式的证明、解方程等基础知识,考查数形结合、函数与方程、分类与整合等数学思想方法及推理运算、分析问题、解决问题的能力.解:(Ⅰ)223()18()[()]129(0)F x f x x h x x x x =-=-++≥,2()312F x x '∴=-+.令()0F x '∴=,得2x =(2x =-舍去).当(0,2)x ∈时.()0F x '>;当(2,)x ∈+∞时,()0F x '<,故当[0,2)x ∈时,()F x 为增函数;当[2,)x ∈+∞时,()F x 为减函数. 2x =为()F x 的极大值点,且(2)824925F =-++=.(Ⅱ)方法一:原方程可化为42233log [(1)]log ()log (4)2f x h a x h x --=---,即为4222log (1)log log log x -==,14,x a x <⎧⎨<<⎩①当14a <≤时,1x a <<,则14a xx--=,即2640x x a -++=, 364(4)2040a a ∆=-+=->,此时3x ==±1x a <<, 此时方程仅有一解3x =-②当4a >时,14x <<,由14a xx x--=-,得2640x x a -++=,364(4)204a a ∆=-+=-,若45a <<,则0∆>,方程有两解3x =± 若5a =时,则0∆=,方程有一解3x =; 若1a≤或5a>,原方程无解.方法二:原方程可化为422log (1)log (4)log ()x h x h a x -+-=-,即2221log (1)log log 2x -+10,40,0,(1)(4).x x a x x x a x ->⎧⎪->⎪⇔⎨->⎪⎪--=-⎩214,(3) 5.x x a a x ⎧<<⎪⇔<⎨⎪=--+⎩ ①当14a <≤时,原方程有一解3x =- ②当45a <<时,原方程有二解3x= ③当5a =时,原方程有一解3x =;④当1a ≤或5a >时,原方程无解.(Ⅲ)由已知得(1)(2)()]h h h n +++11()()66f n h n -.设数列{}n a 的前n 项和为n S ,且1()()6nS f n h n =-(*n ∈N )从而有111a S ==,当2100k ≤≤时,1k k k a S S -=-=又1[(4(46k a k k +-2216=106=>.即对任意2k ≥时,有k a ,又因为11a =,所以12n a a a +++≥ 则(1)(2)()n S h h h n ≥+++ ,故原不等式成立.2010年四川省高考数学(文史类)试题三、解答题:本大题共6个小题,共74分,解答应写出文字说明,证明过程或演算步骤。

相关文档
最新文档