奥数多次相遇问题
小学奥数——多次相遇问题专项练习一【含解析】

小学奥数——多次相遇问题专项练习一【含解析】1.甲、乙两人在相距90米的直路上来回跑步,甲的速度是每秒3米,乙的速度是每秒跑2米.如果他们同时从他们两端出发,跑了10分钟.那么,在这段时间内,甲、乙两人共迎面相遇了多少次?1.解:10分钟=600秒;两人第一次相遇用时:90÷(2+3)=90÷5,=18(秒);第一次相遇后又相遇:(600﹣18)÷[90×2÷(2+3)]=582÷[180÷5],=582÷36,=16(次)…6秒.共相遇:16+1=17(次).答:甲、乙两人共迎面相遇了17次2.甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走67.5米,丙每分钟走75米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东西两镇间的路程有多少米?2.解:设东西两镇间的路程有x米,由题意列方程得=2,=2,x=2,x=2×285×9,x=5130;答:东西两镇间的路程有5130千米3.兄、弟两人往返于A、B两市之间,兄和弟的速度比为4:3,两人同时由A市出发30分钟后,弟以原速的2倍开始跑,兄正好由B 市返回.这两人由A地出发后,经过多少分钟又相遇?3.解:设兄的速度为4,弟的速度为3.(30×4﹣30×3)÷(3×2+4)+30=(120﹣90)÷(6+4)+30,=30÷3+30,=3+30,=33(分钟).答:两人由A地出发后,经过33分钟又相遇4.甲从A地往B地,乙、丙两人从B地往A地,三人同时出发,甲首先在途中与乙相遇,之后15分钟又与丙相遇,甲每分钟走70米,乙每分钟走60米,丙每分钟走50米,问:A、B两地相距多少米?4.解:(70+50)×15÷(60﹣50)×(70+60)=1800÷10×130,=23400(米).答:A、B两地相距23400米5.两地相距1800米,甲乙两人同时从两地相向而行,12分钟相遇(甲速>乙速),如果每人每分钟多走25米,此次相遇地点与上次相遇点相距33米,甲乙两人的速度各是多少?5.解:甲、乙增速后相遇时间为:1800÷(1800÷12+25×2),=1800÷200,=9(分钟);设甲速度为每分钟x米,据题得:12x﹣9(x+25)=33,12x﹣9x﹣225=33,3x﹣225+225=33+2253x=258;x=86,则乙的速度为:1800÷12﹣86=64(米);答:甲的速度是每分钟86米,乙的速度是每分钟64米6.甲、乙两地相距120千米,客车和货车同时从甲地出发驶向乙地,客车到达乙地后立即沿原路返回,在途中的丙地与货车相遇.之后,客车和货车继续前进,各自到达甲地和乙地后又马上折回,结果两车又恰好在丙地相遇.已知两车在出发后的2小时首次相遇,那么客车的速度是每小时多少千米?6.解:120÷3=40(千米),(120+40)÷2,=160÷2,=80(千米);答:客车的速度是每小时80千米7.甲、乙两人分别从A、B两地相向而行,相遇时离A地350米,两人又继续前进,到达B、A两地后立即返回,第二次相遇离A地150米,求AB两地距离是多少米?7.解:根据题意可得:甲从开始到第二次相遇走的路程是:350×3=1050(米);AB两地飞距离:(1050+150)÷2=600(米).答:AB两地距离是600米8.甲、乙两人同时从A地出发,在直道A、B两地往返跑步,甲每分钟72米,乙每分钟48米,甲乙第二次迎面相遇与甲第二次从后面追上乙的两地相距80米,求A、B两地相距多少米?8.解:80÷2=40(米),40×5=200(米);答:A、B两地相距200米9.甲、乙两车从A、B两地相向而行,将在距A地270千米的C地相遇,如果乙车速度提高20%,则两车在距C地30千米的D地相遇.实际甲车在行驶一段后因事返回,两车仍在D点相遇,问AB两地全程是多少?9.解:270:(270﹣30)=9:8,9﹣8=1,1÷20%=5,8﹣5=3,270÷(),=270,=720(千米);答:A、B两地全程的距离是720千米10.甲、乙两人沿铁路边相对而行,速度一样.一列火车开来,整个列车从甲身边驶过用8秒钟.再过5分钟后又用7钞钟从乙身边驶过.问还要经过多少时间,甲、乙两人才相遇?10.(1)解法一:设车速为每秒x米,人速为每秒y米,车长a米,则有:a=8(x﹣y)=7(x+y),故x=15y.火车5分钟(300秒)的路程为300x,故甲乙相遇时间为:300x÷(y+y)=300×15y÷2y=2250(秒).(2)解法二:设火车速度为a,人的速度为b.。
奥数多次相遇问题

学员编号:年级:课时数:学员姓名:辅导科目:学科教师:授课类型授课日期及时段教学内容本讲中的行程问题是特殊场地行程问题之一。
是多人(一般至少两人)多次相遇或追及的过程解决多人多次相遇与追击问题的关键是看我们是否能够准确的对题目中所描述的每一个行程状态作出正确合理的线段图进行分析。
一、在做出线段图后,反复的在每一段路程上利用:路程和=相遇时间×速度和路程差=追及时间×速度差二、解环形跑道问题的一般方法:环形跑道问题,从同一地点出发,如果是相向而行,则每合走一圈相遇一次;如果是同向而行,则每追上一圈相遇一次.这个等量关系往往成为我们解决问题的关键。
环线型同一出发点直径两端同向:路程差nS nS+0.5S 相对(反向):路程和nS nS-0.5S知识框架【例 1】两辆电动小汽车在周长为360米的圆形道上不断行驶,甲车每分行驶20米.甲、乙两车同时分别从相距90米的A,B两点相背而行,相遇后乙车立即返回,甲车不改变方向,当乙车到达B点时,甲车过B点后恰好又回到A点.此时甲车立即返回(乙车过B点继续行驶),再过多少分与乙车相遇?【巩固】周长为400米的圆形跑道上,有相距100米的A,B两点.甲、乙两人分别从A,B两点同时相背而跑,两人相遇后,乙即转身与甲同向而跑,当甲跑到A时,乙恰好跑到B.如果以后甲、乙跑的速度和方向都不变,那么甲追上乙时,甲从出发开始,共跑了多少米?例题精讲【巩固】如图,一个长方形的房屋长13米,宽8米.甲、乙两人分别从房屋的两个墙角出发,甲每秒钟行3米,乙每秒钟行2米.问:经过多长时间甲第一次看见乙?【例 4】如图,长方形ABCD中AB∶BC=5∶4。
位于A点的第一只蚂蚁按A→B→C→D→A的方向,位于C点的第二只蚂蚁按C→B→A→D→C的方向同时出发,分别沿着长方形的边爬行。
如果两只蚂蚁第一次在B点相遇,则两只蚂蚁第二次相遇在( )边上。
【巩固】甲、乙两人从周长为1600米的正方形水池ABCD相对的两个顶点A,C同时出发绕池边沿A→B→C→D→A 的方向行走。
五年级奥数思维多人多次的相遇与追及

多人多次的相遇与追及【知识导学】本讲我们要学习多个对象之间的行程问题.在本讲的学习中,大家一定要重视线段图的作用.本讲行程问题最大的特点就是“繁”——人多、车多、过程多.怎么解决这样复杂的问题呢?首先,必须有勇气,只要有勇气,你就敢面对这样的问题,积极开动脑筋去想;其次,必须有耐心,只要有耐心,你就能动手去画图,细致地分析每一组数量关系,再花上些时间,题目自然能够搞定.一、从不同的角度想问题,同一段路程通过不同的角度去分析,会有不同的发现.二、两人的运动时间相同时,他们的路程倍数关系就等于速度倍数关系.【例题精讲】【例1】叮叮、咚咚两人从A地,铛铛从B地同时出发,相向而行.叮叮的速度为每小时7千米,铛铛的速度为每小时5千米.出发3小时后,叮叮与铛铛相遇.又过了1小时,咚咚也与铛铛相遇.请问:咚咚的速度是多少?【及时巩固】叮叮、咚咚两人从A地,铛铛从B地同时出发,相向而行.叮叮的速度为每小时6千米,铛铛的速度为每小时4千米.出发3小时后,叮叮与铛铛相遇.又过了1小时,咚咚也与铛铛相遇.请问:咚咚的速度是多少?【例2】甲、乙两辆汽车的速度分别为每小时52千米和每小时40千米,两车同时从A地出发到B地去.出发6小时后,甲车遇到一辆迎面开来的卡车.又过了1小时,乙车也遇到了这辆卡车.请问:这辆卡车的速度是多少?【及时巩固】叮叮、咚咚两人从A地,铛铛从B地同时出发,相向而行.铛铛出发5小时后遇到叮叮,6小时后遇到咚咚.已知叮叮每小时行2千米,咚咚每小时行1.6千米,请问:铛铛每小时能行多少千米?【例3】A、B两城相距48千米,甲、乙两人从A城,丙从B城同时出发,相向而行.甲、乙、丙三人的速度分别是每小时4千米、2千米、2千米.请问:出发多长时间后,甲正好在乙和丙的中点?【及时巩固】老贺、老刘和老郭同时出发,其中老刘从A出发往B走,另外两人从B出发往A走.已知A、B两地相距28千米,老贺、老刘和老郭分别以每小时1千米、2千米、3千米的速度前进.那么在出发后多久,老郭正好在老贺与老刘的中点?【例4】A、B 两城相距 48 千米,甲、乙两人从A 城,丙从B 城同时出发,相向而行.甲、乙、丙三人的速度分别是每小时 4 千米、2 千米、 2 千米.请问:出发多长时间后,丙正好在甲和乙的中点?【及时巩固】老贺、老刘和老郭同时出发,其中老刘从A 出发往B 走,另外两人从B 出发往A 走.已知A、B 两地相距 28 千米,老贺、老刘和老郭分别以每小时 1 千米、2 千米、3 千米的速度前进.那么在出发后多久,老刘正好在老郭与老贺的中点?【例5】甲、乙、丙三人步行的速度相同,骑车的速度也相同,骑车的速度是步行速度的 3 倍.现在甲从A 地向B 地行进,乙、丙两人从B 地向A 地前行.三人同时出发,出发时,甲、乙步行,丙骑车.甲走了 6 千米时遇到丙,丙将车给甲骑,自己改为步行,三人仍按原来的方向继续前进.试问:甲骑车行多少千米后遇到乙?甲、乙相遇时,甲将车给乙骑,两人仍按原来的方向继续前进.试问:乙骑车到达A地时,甲离B地有多远?【及时巩固】甲、乙、丙三人步行的速度相同,骑车的速度也相同,骑车的速度是步行速度的 2 倍.现在甲从A 地向B 地行进,乙、丙两人从B 地向A 地前行.三人同时出发,出发时甲、乙步行,丙骑车.甲走了 6 千米时遇到丙,丙将车给甲骑,自己改为步行,三人仍按原来的方向继续前进.试问:甲骑车行多少千米后遇到乙?甲、乙相遇时,甲将车给乙骑,两人仍按原来的方向继续前进.试问:乙骑车到达A 地时,甲离B 地有多远?【课后作业】1. 北京和唐山之间的铁路长 210 千米,甲、乙两辆列车分别从北京和唐山同时出发,甲车的速度是每小时 57 千米,乙车的速度是每小时 90 千米.在甲车出发时,同时有一辆列车丙也从北京开出,车速为每小时 120 千米,那么当乙、丙相遇时,列车甲距离唐山多少千米?2. 甲、乙两人同时从A 骑车出发前往B 地,其中甲的速度为 12 米/ 秒,乙的速度为8 米/ 秒.出发后 10 分钟,甲遇到了迎面走来的丙,又过了 2 分 40 秒,乙也遇到了丙.那么丙的速度等于多少?3. 老贺、老郭和老刘同时出发,分别以每小时 1 千米、3 千米、1 千米的速度前进.其中老贺从A 出发往B 走,另外两人则从B 出发往A 走.已知A、B 两地相距 36 千米,那么在出发后多久,老郭正好在老贺与老刘的中点?4. 老贺、老郭和老刘同时出发,分别以每小时 1 千米、3 千米、1 千米的速度前进.其中老贺从A 出发往B 走,另外两人则从B 出发往A 走.已知A、B 两地相距 36 千米,那么在出发后多久,老贺正好在老郭与老刘的中点?5. 甲、乙两人从A 出发,丙从B 出发,三人出发时间相同,且相向而行.在出发时,甲和丙的速度相同,而乙是他们的 4 倍.当甲前进了 5 千米时,乙、丙两人相遇,而且两人相遇之后速度大小相互交换但方向保持不变.当甲、丙相遇时,两人也相互交换速度,但方向保持不变,那么当乙到达B 点时,甲在距离B 点多少千米的地方?。
小学奥数--多次相遇专项练习60题(有答案)

小学奥数--多次相遇专项练习60题(有答案)1.甲和乙在直路上来回跑步,他们的速度分别是每秒3米和每秒2米。
如果他们同时从两端出发,在10分钟内共迎面相遇了多少次?他们相距90米。
2.甲、乙、丙三人从东镇到西镇走路。
甲每分钟走60米,乙每分钟走67.5米,丙每分钟走75米。
甲和乙从东镇出发,丙从西镇出发。
当丙与乙相遇后,再经过2分钟,他与甲相遇。
求东西两镇间的路程长度。
3.兄弟两人在A、B两市之间往返。
兄和弟的速度比为4:3.两人同时从A市出发30分钟后,弟以原速的2倍开始跑,兄正好从B市返回。
这两人从A市出发后,多久会再次相遇?4.甲从A地往B地,乙和丙从B地往A地。
三人同时出发,甲首先在途中与乙相遇,之后15分钟又与丙相遇。
甲每分钟走70米,乙每分钟走60米,丙每分钟走50米。
问A、B 两地相距多少米?5.两地相距1800米,甲和乙同时从两地相向而行,12分钟后相遇(甲速度大于乙)。
如果每人每分钟多走25米,此次相遇地点与上次相遇点相距33米。
甲和乙的速度各是多少?6.甲和乙两地相距120千米。
客车和货车同时从甲地出发驶向乙地。
客车到达乙地后立即沿原路返回,在途中的丙地与货车相遇。
之后,客车和货车继续前进,各自到达甲地和乙地后又马上折回,结果两车又恰好在丙地相遇。
已知两车在出发后的2小时首次相遇,那么客车的速度是每小时多少千米?7.甲和乙分别从A、B两地相向而行,相遇时离A地350米。
两人又继续前进,到达B、A两地后立即返回。
第二次相遇离A地150米。
求AB两地距离是多少米?8.甲和乙同时从A地出发,在直道A、B两地往返跑步。
甲每分钟跑72米,乙每分钟跑48米。
甲和乙第二次迎面相遇时,甲从后面追上乙的距离是80米。
求A、B两地相距多少米?9.甲和乙两车从A、B两地相向而行,在距A地270千米的C地相遇。
如果乙的速度提高了20%,则两车在距C地30千米的D地相遇。
实际上,甲在行驶一段时间后因事返回,但两车仍在D点相遇。
高斯小学奥数四年级下册含答案第03讲_多人多次相遇与追及

第三讲多人多次相遇与追及在之前的课程中,我们已经学过了如何处理两个对象之间的相遇追及问题.本讲我们进一步学习过程更为复杂的三个对象之间的行程问题.本讲中画线段图非常重要,你还记得画行程图要注意什么吗?例题1有甲、乙、丙三个人,甲每分钟走40米,乙每分钟走60米,丙每分钟走50米.A 、B 两地相距2700米.甲从A 地,乙、丙从B 地同时出发相向而行.请问,甲在与乙相遇之后多少分钟又与丙相遇?「分析」全程已知,三个人的速度也都已知,那么甲乙的相遇时间、甲丙的相遇时间都是可以计算出来的. 练习1有冰冰、雪雪、霜霜三个人,冰冰每秒钟走4米,雪雪每秒钟走5米,霜霜每秒钟走6米.A 、B 两地相距990米.雪雪从A 地,霜霜、冰冰从B 地同时出发相向而行.请问,雪雪与霜霜相遇之后多少秒又与冰冰相遇?例题2叮叮、咚咚两人开车从A 地,铛铛则从B 地同时出发,相向而行.叮叮的速度为每小时70千米,铛铛的速度为每小时50千米.出发3小时后,叮叮与铛铛相遇.又过了1小时,咚咚也与铛铛相遇.请问:咚咚的车速是多少?「分析」请在图中把过程补全,并标出相应的数据,例如速度、时间、路程等.然后注意分析,看看哪个过程是可以计算的? 练习2小春、小秋两人从A 地,小夏则从B 地同时出发,相向而行.小春的速度为每小时60千米,小夏的速度为每小时40千米.出发3小时后,小春与小夏相遇.又过了1小时,小秋也与小夏相遇.请问:小秋的速度是多少?A 地B 地叮叮咚咚铛铛例题3甲、乙两辆汽车的速度分别为每小时52千米和每小时40千米,两车同时从A 地出发到B 地去,出发6小时后,甲车遇到一辆迎面开来的卡车.又过了1小时,乙车也遇到了这辆卡车.请问:这辆卡车的速度是多少?「分析」本题的运动过程和上题类似吗?请先把图补充完整,仍然是标出数据进行分析,看看哪个过程是可以计算的? 练习3甲、乙两辆汽车的速度分别为每小时60千米和每小时45千米,两车同时从A 地出发到B 地去,出发7小时后,甲车遇到一辆迎面开来的卡车.又过了1小时,乙车也遇到了这辆卡车.请问:这辆卡车的速度是多少?通过前面几道例题,同学们会发现解决多人多次的相遇与追及等更为复杂的行程问题,画线段图是相当重要的.然而我们不但要学会画图,还要学会看图.“横看成岭侧成峰”,同一个对象从不同的角度去观察往往会有不同的认识.就像例题4中红色的那条线段,既可以看成甲、乙两车的路程差,也可以看成乙车与卡车的路程和.当运动过程趋于复杂时,尤其需要这种从不同角度看待问题的思维习惯,这样才能充分利用好题目中的条件.A 地B 地甲车卡车乙车例题4甲、乙、丙三人走路,甲每分钟走60米,乙每分钟走50米,丙每分钟走40米.如果甲从A 地,乙和丙从B 地同时出发相向而行,甲和乙相遇后,过了15分钟又与丙相遇,求A 、B 两地间的距离为多少米?「分析」请自己画出详细的线段图,好好分析一下,还能像前面两个例题那样一段一段计算吗?如果不能,该怎么办呢? 练习4刘备、关羽、张飞三人,刘备每分钟走40米,关羽每分钟走60米,张飞每分钟走50米.如果刘备从A 地,关羽和张飞从B 地同时出发相向而行,刘备和关羽相遇后,过了10分钟又与张飞相遇,求A 、B 两地间的距离为多少米?上面几道例题的运动过程是一样的,在这样的运动过程里面,会有两次相遇运动和一次追及运动.在这个运动过程中有一段路程既是路程和又是路程差,需要同学们格外注意.接下来我们来看一下和速度倍数相关的行程问题.大家想象一下,如果甲、乙两人同时出发同向前进,甲的速度是乙的3倍,那么5分钟后,甲的路程是乙的几倍?30分钟后,甲的路程又是乙的几倍?2个小时后,甲的路程又是乙的几倍?其实上述问题的答案都是3倍.不管时间过了多久,只要甲、乙两人的时间相同,他们路程的倍数关系就等于速度的倍数关系. 例题5A 、B 两城相距48千米,甲、乙、丙三人分别以每小时4千米、2千米、2千米的速度行走.甲、乙两人从A 城,丙从B 城同时出发,相向而行.请问:出发多长时间后,甲正好在乙和丙的中点?「分析」速度分别是4、2、2,那么我们可以把三人的路程分别设为几份呢?请试着画出线段图,标份数进行分析.A B甲乙 丙例题6A 、B 两城相距50千米,甲、乙、丙三人分别以每小时4千米、2千米、2千米的速度前进.甲、乙两人从A 城,丙从B 城同时出发,相向而行.请问:出发多长时间后,丙正好在甲和乙的中点?「分析」同上题,还是需要把路程设份数,画出线段图进行分析.但要注意,丙在甲、乙的中点,应该是在甲、丙相遇错开后发生的.形象的来说,本讲行程问题最大的特点就是“繁”——人多、车多、过程多.怎么解决这样复杂的问题呢?首先,必须有勇气,只要有勇气,你就敢面对这样的问题,积极开动脑筋去想. 其次,必须有耐心,只要有耐心,你就能动手去画图,细致的分析每一组数量关系,再花上些时间,题目自然能够搞定.或许有人会说,这根本不是什么解题技巧,画线段图、分析倍数关系才是解题.其实,这些只是技巧中的皮毛,真正的技巧是一种智慧,而勇气和耐心就是这种智慧的内涵. 课堂内外换个角度看问题有这样一个故事:有个年轻人为贫所困,便向一位老者请教.老者问:“你为什么失意呢?”年轻人说:“我总是这样穷.”“你怎么能说自己穷呢?你还这么年轻.”“年轻又不能当饭吃.”年轻人说.老者一笑:“那么,给你一万元,让你瘫痪在床,你干吗?”“不干.”“把全世界的财富都给你,但你必须现在死去,你愿意吗?”“我都死了,要全世界的财富干什么?”老者说:“这就对了,你现在这么年轻,生命力旺盛,就等于拥有全世界最宝贵的财富,又怎能说自己穷呢?”年轻人一听,又找回了对生活的信心.美国心理学家艾里斯曾提出一个叫“情绪困扰”的理论.他认为,引起人们情绪结果的因素不是事件本身,而是个人的信念.所以,许多在现实中遭遇挫折的人,往往认为“自己倒霉”,“想不通”,这些其实都是本人的片面认识和解释,正是这种认识才产生了情绪的困扰.实际情况是,人们的烦恼和不快,常常与自己的情绪有关,同自己看问题的角度有关.能否战胜挫折,关键在于自己要有主心骨,任何情况下都不被一时的失意和不快左右,永远怀AB甲乙丙着希望和信心,就能从逆境和灾难中解脱出来.再拿前面提到的那个自认为很穷的年轻人来说吧,其实,穷与富只是相对而言,并没有一个客观标准.一个人即使没有多少物质财富,但他有青春和生命,有奋发进取的精神状态,就不能说他穷.如果一个人热爱生命,就会感到充实和富有.概而言之,任何事情都不是绝对的,就看你怎么去对待它.作业1.小竹、小松两人从A地,小梅则从B地同时出发,相向而行.小竹的速度为每小时55千米,小梅的速度为每小时45千米.出发4小时后,小竹与小梅相遇.又过了1小时,小松也与小梅相遇.A、B两地相距多少千米?小松每小时走多少千米?2.甲、乙两辆汽车的速度分别为每小时80千米和每小时65千米,两车同时从A地出发到B地去,出发8小时后,甲车遇到一辆迎面开来的卡车,这时乙车与卡车相距多少千米?又过了1小时,乙车也遇到这辆卡车.这辆卡车每小时行多少千米?3.哈利、罗恩、赫敏三人,哈利每分钟走60米,罗恩每分钟走50米,赫敏每分钟走45米.如果哈利从A地,罗恩和赫敏从B地同时出发,相向而行.哈利和罗恩相遇2分钟后,又与赫敏相遇.当哈利和罗恩相遇时,赫敏和罗恩相距多少米?A、B两地间的距离为多少米?4.东、西两城相距60千米.小明从东向西跑,每小时跑8千米;小光从西向东走,每小时走4千米;小亮骑自行车从东向西,每小时骑行11千米.3人同时动身,途中小亮遇见小光即折回向东骑,遇见了小明又折回向西骑,再遇见小光又折回向东骑,如此不断往返,直到三人在途中相遇为止.则小亮共行了多少千米?5.老贺、老郭和老刘同时出发,分别以每小时1千米、3千米、1千米的速度前进.其中老贺从A出发往B走,另外两人则从B出发往A走.已知A、B两地相距36千米,在出发后多少小时,老郭正好在老贺与老刘的中点?第三讲 多人多次相遇与追及1. 例题1答案:3分钟详解:甲和乙相遇时的路程和是2700千米,速度和是100米/分,所以相遇时间是270010027÷=分钟.甲和丙相遇时的路程和也是2700千米,速度和是90千米/时,所以相遇时间是27009030÷=分钟,又过了3分钟甲和丙才相遇.2. 例题2答案:40千米/时详解:首先画出线段图(如下图),有两次相遇,其中还隐藏了一次追及问题. AB 全程:()70503360+⨯=千米咚咚和铛铛相遇时间是4小时,他们速度和是:360490÷=千米/时, 那么咚咚的速度是905040-=千米/时.3. 例题3答案:32千米/时详解:首先画出线段图,包括两次相遇和一次追及.在这类型的题目中,有一段非常重要的路程(即红色部分标出的).这段是甲车、乙车6个小时行驶的路程差,也是乙车和卡车1个小时的路程和.如果能够求出这段路程是多少,就可以将两个运动过程联系起来.甲车和乙车的速度差是12千米/时,6个小时行驶的路程差是72千米.所以乙车和卡车1个小时行驶的路程和是72千米.乙车和卡车的速度和是72172÷=千米/时.所以卡车的速度是724032-=千米/时.4. 例题4答案:16500米详解:画出线段图如下,从出发到①时刻,有甲和乙的相遇、乙和丙的同向行驶,由甲、乙相遇求AB 距离、即路程和,速度和已知,需要求时间.乙、丙同向行驶,A 地B 地咚 铛50km/h70km /h 叮A 地 B 地甲车乙车52千米40千米速度差已知,如果知道路程差就可以求时间.①→②时间内,是甲、丙的相遇过程,时间为15分钟,知道速度和,可得①→②甲、丙路程和为()4060151500+⨯=米.接下来的关键和例4是一样的,路程和同时也是路程差,即乙、丙路程差为1500米,追及时间为()150********÷-=分钟,即从出发到①时刻共150分钟,全程为()506015016500+⨯=米.5. 例题5答案:6小时详解:先将行程图补充完整(见下图).设甲走了“4”,乙和丙都走了“2”.此时甲在乙、丙中点,所以图中红色线段表示的路程是相等的,都是“2”.所以全程是“8”,即48千米,所以“1”是6千米,甲走了“4”是24千米,速度是4千米/时,所以行走时间是6小时.另外一个方法是,乙、丙的速度是一样的,其实,乙、丙中点始终就是全程的中点.所以甲行驶到乙、丙中点时,甲一定也在全程的中点,所以甲走了24千米,速度是4千米/时,行走时间仍然是6小时.6. 例题6答案:10小时详解:先将行程图补充完整(见下图).设甲走了“4”,乙和丙都走了“2”.此时丙在甲、乙中点,所以图中红色线段表示的路程是相等的,都是“1”.所以全程是“5”,即50千米,所以“1”是10千米.甲走了“4”是40千米,速度是4千米/时,所以行走时间是10小时.B乙 丙 50米/40米/60米/分千米/时 A B 甲乙 4千米/2千米/A B2千米/4千米/7. 练习1答案:20分钟详解:雪雪和霜霜相遇时的路程和是990千米,速度和是11米/分,所以相遇时间是9901190÷=分钟.雪雪和冰冰相遇时的路程和也是990千米,速度和是9千米/时,所以相遇时间是9909110÷=分钟,又过了20分钟雪雪和冰冰才相遇.8. 练习2答案:35千米/时详解:有两次相遇,其中还隐藏了一次追及问题. AB 全程:()60403300+⨯=千米小秋和小夏相遇时间是4小时,他们速度和是:300475÷=千米/时, 那么小秋的速度是754035-=千米/时.9. 练习3答案:60千米/时简答:首先画出线段图,包括两次相遇和一次追及.在这类型的题目中,有一段非常重要的路程(即红色部分标出的).这段是甲车、乙车7个小时行驶的路程差,也是乙车和卡车1个小时的路程和.如果能够求出这段路程是多少,就可以将两个运动过程联系起来.甲车和乙车的速度差是15千米/时,7个小时行驶的路程差是105千米.所以乙车和卡车1个小时行驶的路程和是105千米.乙车和卡车的速度和是1051105÷=千米/时.所以卡车的速度是1054560-=千米/时.10. 练习4答案:9000米简答:画出线段图如下,从出发到①时刻,有刘和关的相遇、关和张的同向行驶,由刘、关相遇求AB 距离、即路程和,速度和已知,需要求时间.关、张同向行驶,速度差已知,如果知道路程差就可以求时间.①→②时间内,是刘、关的相遇过程,时间为10分钟,知道速度和,可得①→②;刘、张路程和为()405010900+⨯=米.接下来的关键和例4是一样的,路程和同时也是路程差,即关、张路程差为900米,追及时间为()900605090÷-=分钟,即从出发到①时刻共90分钟,全程为A 地B 地 甲车乙车 60千米45千米()4060909000+⨯=米.11. 作业1答案:400;35简答:全程长:()55454400+⨯=千米,小松与小梅用了5小时相遇,所以小松的速度为:40054535÷-=千米∕时.12. 作业2答案:120;55简答:8小时内甲、乙两车的路程差为()80658120-⨯=千米.甲、乙两辆车的路程差就是后面1小时内乙车与卡车的路程和,所以卡车的速度为:12016555÷-=千米∕时.13. 作业3答案:210;4620简答:哈利和赫敏2分钟内的路程和也是罗恩和赫敏的路程差,根据这个关系可知当哈利和罗恩相遇时,赫敏和罗恩相距()26045210⨯+=米.可求出哈利与罗恩相遇所用的时间是()210504542÷-=分,全程为()4260504620⨯+=米.14. 作业4答案:55简答:小亮行驶的总时间就是小明、小光的相遇时间:()60845÷+=小时,所以路程为55千米.15. 作业5答案:6简答:当老郭在老贺与老刘的中点时,老郭的路程是“3”份,老贺和老刘的路程都是“1”份.这时老郭和老刘相距“2”份,老郭和老贺也相距“2”份,全程36千米相当于是“6”份,“1”份是6米,也即老贺走了616÷=小时,老郭正好在老贺与老刘的中点.B关 张 60米/50米/40米/分。
行程问题之多次相遇问题奥数较难

“多次相遇问题”剖析一、直线型直线型多次相遇问题宏观上分“两岸型”和“单岸型”两种。
“两岸型”是指甲、乙两人从路的两端同时出发相向而行;“单岸型”是指甲、乙两人从路的一端同时出发同向而行。
现在分开向大家一一介绍:(一)两岸型两岸型甲、乙两人相遇分两种情况,可以是迎面碰头相遇,也可以是背面追及相遇。
题干如果没有明确说明是哪种相遇,考生对两种情况均应做出思考。
1、迎面碰头相遇:如下图,甲、乙两人从A、B两地同时相向而行,第一次迎面相遇在a处,(为清楚表示两人走的路程,将两人的路线分开画出)则共走了1个全程,到达对岸b后两人转向第二次迎面相遇在c处,共走了3个全程,则从第一次相遇到第二次相遇走过的路程是第一次相遇的2倍。
之后的每次相遇都多走了2个全程。
所以第三次相遇共走了5个全程,依次类推得出:第n次相遇两人走的路程和为(2n-1)S,S为全程。
而第二次相遇多走的路程是第一次相遇的2倍,分开看每个人都是2倍关系,经常可以用这个2倍关系解题。
即对于甲和乙而言从a到c走过的路程是从起点到a的2倍。
相遇次数全程个数再走全程数1 1 12 3 23 5 24 7 2………n 2n-1 22、背面追及相遇与迎面相遇类似,背面相遇同样是甲、乙两人从A、B两地同时出发,如下图,此时可假设全程为4份,甲1分钟走1份,乙1分钟走5份。
则第一次背面追及相遇在a 处,再经过1分钟,两人在b处迎面相遇,到第3分钟,甲走3份,乙走15份,两人在c处相遇。
我们可以观察,第一次背面相遇时,两人的路程差是1个全程,第二次背面相遇时,两人的路程差为3个全程。
同样第二次相遇多走的路程是第一次相遇的2倍,单看每个人多走的路程也是第一次的2倍。
依次类推,得:第n次背面追及相遇两人的路程差为(2n-1)S。
(二)单岸型单岸型是两人同时从一端出发,与两岸型相似,单岸型也有迎面碰头相遇和背面追及相遇两种情况。
1、迎面碰头相遇:如下图,假设甲、乙两人同时从A端出发,假设全程为3份,甲每分钟走2份,乙每分钟走4份,则甲乙第一次迎面相遇在a处,此时甲走了2份,乙走了4份,再过1分钟,甲共走了4份,乙共走了8份,在b处迎面相遇,则第二次相遇多走的跟第一次相遇相同,依次类推,可得出:当第n次碰头相遇时,两人的路程和为2ns。
奥数 行程 多次相遇和追及问题

一、由简单行程问题拓展出的多次相遇问题所有行程问题都是围绕“=⨯路程速度时间”这一条基本关系式展开的,多人相遇与追及问题虽然较复杂,但只要抓住这个公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.二、多次相遇与全程的关系1. 两地相向出发:第1次相遇,共走1个全程;第2次相遇,共走3个全程;第3次相遇,共走5个全程;…………, ………………;第N 次相遇,共走2N-1个全程;注意:除了第1次,剩下的次与次之间都是2个全程;即甲第1次如果走了N 米,以后每次都走2N 米;2. 同地同向出发:第1次相遇,共走2个全程;第2次相遇,共走4个全程;第3次相遇,共走6个全程;…………, ………………;第N 次相遇,共走2N 个全程;知识框架多次相遇与追及问题3、多人多次相遇追及的解题关键多次相遇追及的解题关键几个全程多人相遇追及的解题关键路程差三、解多次相遇问题的工具——柳卡柳卡图,不用基本公式解决,快速的解法是直接画时间-距离图,再画上密密麻麻的交叉线,按要求数交点个数即可完成;折线示意图往往能够清晰的体现运动过程中“相遇的次数”,“相遇的地点”,以及“由相遇的地点求出全程”,使用折线示意图法一般需要我们知道每个物体走完一个全程时所用的时间是多少;如果不画图,单凭想象似乎对于像我这样的一般人儿来说不容易;例题精讲【例 1】甲、乙两名同学在周长为300米圆形跑道上从同一地点同时背向练习跑步,甲每秒钟跑3.5米,乙每秒钟跑4米,问:他们第十次相遇时,甲还需跑多少米才能回到出发点【巩固】甲乙两人在相距90米的直路上来回跑步,甲的速度是每秒3米,乙的速度是每秒2米.如果他们同时分别从直路两端出发,10分钟内共相遇几次【例 2】甲、乙两车同时从A地出发,不停的往返行驶于A,B两地之间;已知甲车的速度比乙车快,并且两车出发后第一次和第二次相遇都在途中C地;问:甲车的速度是乙车的多少倍【巩固】甲、乙二人从相距 60千米的两地同时相向而行,6时后相遇;如果二人的速度各增加1千米/时,那么相遇地点距前一次相遇地点1千米;问:甲、乙二人的速度各是多少【例 3】如图,甲和乙两人分别从一圆形场地的直径两端点同时开始以匀速按相反的方向绕此圆形路线运动,当乙走了100米以后,他们第一次相遇,在甲走完一周前60米处又第二次相遇.求此圆形场地的周长.【巩固】A、B是圆的直径的两端,甲在A点,乙在B点同时出发反向而行,两人在C 点第一次相遇,在D点第二次相遇.已知C离A有75米,D离B有55米,求这个圆的周长是多少米【例 4】甲、乙两车分别同时从A、B两地相对开出,第一次在离A地95千米处相遇.相遇后继续前进到达目的地后又立刻返回,第二次在离B地25千米处相遇.求A、B两地间的距离是多少千米【巩固】甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求两次相遇地点之间的距离.【例 5】甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地18千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地13千米处第二次相遇,求AB两地之间的距离.【巩固】甲、乙两车同时从A,B两地相向而行,在距B地54千米处相遇;他们各自到达对方车站后立即返回原地,途中又在距A地42千米处相遇;求两次相遇地点的距离;【例 6】甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地3千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地2千米处第二次相遇,求第2000次相遇地点与第2001次相遇地点之间的距离.【巩固】甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地7千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求第三次相遇时共走了多少千米.【例 7】A、B两地相距2400米,甲从A地、乙从B地同时出发,在A、B间往返长跑;甲每分钟跑300米,乙每分钟跑240米,在30分钟后停止运动;甲、乙两人在第几次相遇时A地最近最近距离是多少米【巩固】A、B两地相距950米;甲、乙两人同时由A地出发往返锻炼半小时;甲步行,每分钟走40米;乙跑步,每分钟行150米;则甲、乙二人第___ __次迎面相遇时距B地最近;【例 8】甲、乙两车分别从A,B两地出发,并在A,B两地间不断往返行驶;已知甲车的速度是 15千米/时,乙车的速度是25千米/时,甲、乙两车第三次相遇地点与第四次相遇地点相差100千米;求A,B两地的距离;【巩固】欢欢和乐乐在操场上的A、B两点之间练习往返跑,欢欢的速度是每秒8米,乐乐的速度是每秒5米;两人同时从A点出发,到达B点后返回,已知他们第二次迎面相遇的地点距离AB的中点5米,AB之间的距离是________; 【例 9】甲、乙二人进行游泳追逐赛,规定两人分别从游泳池50米泳道的两端同时开始游,直到一方追上另一方为止,追上者为胜;已知甲、乙的速度分别为米/秒和米/秒;问:1比赛开始后多长时间甲追上乙2甲追上乙时两人共迎面相遇了几次【巩固】小明和小红两人在长100米的直线跑道上来回跑步,做体能训练,小明的速度为6米/秒,小红的速度为4米/秒.他们同时从跑道两端出发,连续跑了12分钟.在这段时间内,他们迎面相遇了多少次【例 10】每天中午有一条轮船从哈佛开往纽约,且每天同一时刻也有一艘轮船从纽约开往哈佛.轮船在途中均要航行七天七夜.试问:某条从哈佛开出的轮船在到达纽约前途中能遇上几艘从纽约开来的轮船【巩固】一条电车线路的起点站和终点站分别是甲站和乙站,每隔5分钟有一辆电车从甲站发出开往乙站,全程要走15分钟.有一个人从乙站出发沿电车线路骑车前往甲站.他出发的时候,恰好有一辆电车到达乙站.在路上他又遇到了10辆迎面开来的电车.到达甲站时,恰好又有一辆电车从甲站开出.问他从乙站到甲站用了多少分钟课堂检测【随练1】如右图,A,B是圆的直径的两端,甲在A点,乙在B点同时出发反向而行,两人在C点第一次相遇,在D点第二次相遇;已知C离A有80米,D离B有60米,求这个圆的周长;【随练2】甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地7千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地5千米处第二次相遇,求两次相遇地点之间的距离.【随练3】A、B两地间有条公路,甲从A地出发,步行到B地,乙骑摩托车从B地出发,不停地往返于A、B两地之间,他们同时出发,80分钟后两人第一次相遇,100分钟后乙第一次追上甲,问:当甲到达B地时,乙追上甲几次【随练4】甲、乙两人在一条长为30米的直路上来回跑步,甲的速度是每秒1米,乙的速度是每秒0.6米.如果他们同时分别从直路的两端出发,当他们跑了10分钟后,共相遇几次家庭作业【作业1】甲、乙两人从400米的环形跑道上一点A背向同时出发,8分钟后两人第五次相遇,已知每秒钟甲比乙多走米,那么两人第五次相遇的地点与点A沿跑道上的最短路程是多少米【作业2】上午8点8分,小明骑自行车从家里出发,8分钟后,爸爸骑摩托车去追他,在离家4千米的地方追上了他.然后爸爸立即回家,到家后又立刻回头去追小明,再追上小明的时候,离家恰好是8千米,这时是几点几分【作业3】甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地6千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地4千米处第二次相遇,求两人第5次相遇地点距B 多远. 【作业4】湖中有A,B两岛,甲、乙二人都要在两岛间游一个来回;两人分别从A,B两岛同时出发,他们第一次相遇时距A岛700米,第二次相遇时距B岛400米;问:两岛相距多远【作业5】在一圆形跑道上,甲从A点、乙从B点同时出发反向而行,6分后两人相遇,再过4分甲到达B点,又过8分两人再次相遇;甲、乙环行一周各需要多少分【作业6】A、B两地位于同一条河上,B地在A地下游100千米处.甲船从A地、乙船从B地同时出发,相向而行,甲船到达B地、乙船到达A地后,都立即按原来路线返航.水速为2米/秒,且两船在静水中的速度相同.如果两船两次相遇的地点相距20千米,那么两船在静水中的速度是米/秒.教学反馈学生对本次课的评价○特别满意○满意○一般家长意见及建议家长签字:。
苏科版四(下)奥数教案第3讲~多人多次相遇与追及

四(下)奥数第3讲~多人多次相遇与追及【知识精讲】在之前的课程中,我们已经学过了如何处理两个对象之间的相遇与追及问题,本讲我们进一步学习过程更为复杂的三个对象之间的行程问题。
本讲中画线段图非常重要。
第一部分:复习基本相遇问题:速度和×相遇时间=路程和路程和÷速度和=相遇时间路程和÷相遇时间=速度和1:甲、乙两车从相距1500千米的两地同时出发,相向而行。
甲车每小时行40千米,乙车每小时行60千米,请问:出发多少小时后两车相遇?2:一辆巴士和一辆小轿车同时从A、B两地出发,相向而行。
巴士每小时行50千米,小轿车每小时行60千米,3小时后两车相遇,请问:A、B两地相距多少千米?3:A、B两艘船同时从相距150千米的两个码头出发,相向而行,3小时相遇,A船每小时航行25千米,请问:B船每小时航行多少千米?基本追及问题:速度差×追及时间=路程差路程差÷速度差=追及时间路程差÷追及时间=速度差1:圆圆、乐乐两人分别从相距30千米的两地同时向南行驶,圆圆骑自行车每小时行14千米,乐乐步行每小时走4千米,请问:多少小时后圆圆可以追上乐乐?2:蚂蚁在蜘蛛前面几百米处,同时出发同向而行,蜘蛛每分钟跑55米,蚂蚁每分钟爬1米,10分钟后蜘蛛追上了蚂蚁,请问:开始时蚂蚁距蜘蛛多少米?第二部分:多人相遇例1: 有A、B、C三个人,A每分钟走20米,B每分钟走40米,C每分钟走30米。
甲、乙两地相距3000米。
A从甲地,B、C从乙地同时出发相向而行。
请问:A在与B相遇之后多少分钟又与C相遇?练1:有圆圆、乐乐、静静三人,圆圆每秒钟走2米,乐乐每秒钟走4米,静静每秒钟走6米。
A、B 两地相距4800米。
圆圆从A地,乐乐、静静从B地同时出发相向而行,请问:圆圆与静静相遇后多少秒又与乐乐相遇?例2:有A、B、C三人,A每分钟走30米,B每分钟走70米,C每分钟走20米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学员编号:年级:课时数:
学员姓名:辅导科目:学科教师:
授课类型
授课日期及时段
教学内容
知识框架
本讲中的行程问题是特殊场地行程问题之一。
是多人(一般至少两人)多次相遇或追及的过程解决多人多次相遇与追击问题的关键是看我们是否能够准确的对题目中所描述的每一个行程状态作出正确合理的线段图进行分析。
一、在做出线段图后,反复的在每一段路程上利用:
路程和=相遇时间×速度和
路程差=追及时间×速度差
二、解环形跑道问题的一般方法:
环形跑道问题,从同一地点出发,如果是相向而行,则每合走一圈相遇一次;如果是同向而行,则每追上一圈相遇一次.这个等量关系往往成为我们解决问题的关键。
环线型
同一出发点直径两端
同向:路程差nS nS+0.5S 相对(反向):路程和nS nS-0.5S
例题精讲
【例 1】两辆电动小汽车在周长为360米的圆形道上不断行驶,甲车每分行驶20米.甲、乙两车同时分别从相距90米的A,B两点相背而行,相遇后乙车立即返回,甲车不改变方向,当乙车到达B点时,甲车过B点后恰好又回到A点.此时甲车立即返回(乙车过B点继续行驶),再过多少分与乙车相遇?
【巩固】周长为400米的圆形跑道上,有相距100米的A,B两点.甲、乙两人分别从A,B两点同时相背而跑,两人相遇后,乙即转身与甲同向而跑,当甲跑到A时,乙恰好跑到B.如果以后甲、乙跑的速度和方向都不变,那么甲追上乙时,甲从出发开始,共跑了多少米?
【例 2】甲、乙两车同时从同一点A出发,沿周长6千米的圆形跑道以相反的方向行驶.甲车每小时行驶65千米,乙车每小时行驶55千米.一旦两车迎面相遇,则乙车立刻调头;一旦甲车从后面追上一车,则甲车立刻调头,那么两车出发后第11次相遇的地点距离有多少米?
【巩固】二人沿一周长400米的环形跑道均速前进,甲行一圈4分钟,乙行一圈7分钟,他们同时同地同向出发,甲走10圈,改反向出发,每次甲追上乙或迎面相遇时二人都要击掌。
问第十五次击掌时,甲走多长时间乙走多少路程?
【例 3】下如右图所示,某单位沿着围墙外面的小路形成一个边长300米的正方形.甲、乙两人分别从两个对角处沿逆时针方向同时出发.如果甲每分走90米,乙每分走70米,那么经过多少时间甲才能看到乙?
【巩固】如图,一个长方形的房屋长13米,宽8米.甲、乙两人分别从房屋的两个墙角出发,甲每秒钟行3米,乙每秒钟行2米.问:经过多长时间甲第一次看见乙?
【例 4】如图,长方形ABCD中AB∶BC=5∶4。
位于A点的第一只蚂蚁按A→B→C→D→A的方向,位于C点的第二只蚂蚁按C→B→A→D→C的方向同时出发,分别沿着长方形的边爬行。
如果两只蚂蚁第一次在B点相遇,则两只蚂蚁第二次相遇在( )边上。
【巩固】甲、乙两人从周长为1600米的正方形水池ABCD相对的两个顶点A,C同时出发绕池边沿A→B→C→D→A 的方向行走。
甲每分行50米,乙每分行46米,甲、乙第一次在同一边上行走,是发生在出发后的第多少分?第一次在同一边上行走了多少分?
【例 5】在一个周长90厘米的圆上,有三个点将圆周三等分。
A,B,C三个爬虫分别在这三点上,它们每秒依次爬行10厘米、5厘米、3厘米。
如果它们同时出发按顺时针方向沿圆周爬行,那么它们第一次到达同一
位置需多长时间?
【巩固】如图2,一个边长为50米的正方形围墙,甲、乙两人分别从A、C两点同时出发,沿闹墙按顺时针方向运动,已知甲每秒走5米,乙每秒走3米,则至少经过秒甲、乙走到正方形的同一条边上。
【例 6】如图所示,大圈是400米跑道,由A到B的跑道长是200米,直线距离是50米。
父子俩同时从A点出发逆时针方向沿跑道进行长跑锻炼,儿子跑大圈,父亲每跑到B点便沿直线跑。
父亲每100米用20秒,儿子每100米用19秒。
如果他们按这样的速度跑,儿子在跑第几圈时,第一次与父亲相遇?
A
B
【巩固】如图,学校操场的400米跑道中套着300米小跑道,大跑道与小跑道有200米路程相重.甲以每秒6米的
出发,按顺时针方向沿着圆周爬行. A 的速度是10厘米/秒,B 的速度是5厘米/秒,C 的速度是3厘米/秒,3只爬虫出发后多少时间第一次到达同一位置?
【例 8】下图中有两个圆只有一个公共点A ,大圆直径48厘米,小圆直径30厘米。
两只甲虫同时从A 点出发,按
箭头所指的方向以相同速度分别沿两个圆爬行。
问:当小圆上甲虫爬了几圈时,两只甲虫首次相距最远?
【巩固】 如图,两个圆环形跑道,大圆环的周长为600米,小圆环的周长为400米。
甲的速度为每秒6米,乙的
速度为每秒4米。
甲、乙二人同时由A 点起跑,方向如图所示,甲沿大圆环跑一圈,就跑上小圆环,方向不变,沿小圆环跑一圈,又跑上大圆环,方向也不变;而乙只沿小圆环跑。
问:甲、乙可能相遇的位置距离A 点的路程是多少?(路程按甲跑的计算)
【例 9】甲、乙两人沿 400 米环形跑道练习跑步,两人同时从跑道的同一地点向相反方向跑去。
相遇后甲比原来
乙的方向
甲
的方向甲的方向
遇点的最短路程是190米,那么这条椭圆形跑道长多少米?
【例 11】如图3-5,正方形ABCD是一条环形公路.已知汽车在AB上时速是90千米,在BC上的时速是120千米,在CD上的时速是60千米,在DA上的时速是80千米.从CD上一点P,同时反向各发出一辆汽车,它们将在AB中点相遇.如果从PC的中点M,同时反向各发出一辆汽车,它们将在AB上一点N相遇.问A至N的距离除以N至B的距离所得到的商是多少?
【巩固】一条环形道路,周长为2千米.甲、乙、丙3人从同一点同时出发,每人环行2周.现有自行车2辆,乙和丙骑自行车出发,甲步行出发,中途乙和丙下车步行,把自行车留给其他人骑.已知甲步行的速度是每小时5千米,乙和丙步行的速度是每小时4千米,3人骑车的速度都是每小时20千米.请你设计一种走法,使3个人2辆车同时到达终点.那么环行2周最少要用多少分钟?
课后作业
与乙在E点相遇;丁由D向C走去,8时30分在F点被乙追上.问三角形BEF的面积为多少平方米?
【随练4】在一圆形跑道上,甲从 A 点、乙从 B 点同时出发反向而行,6 分后两人相遇,再过4 分甲到达 B 点,又过 8 分两人再次相遇.甲、乙环行一周各需要多少分?
【随练5】甲、乙、丙在湖边散步,三人同时从同一点出发,绕湖行走,甲速度是每小时5.4千米,乙速度是每小时4.2千米,她们二人同方向行走,丙与她们反方向行走,半个小时后甲和丙相遇,在过5分钟,乙与丙相遇。
那么绕湖一周的行程是多少?
【随练6】下图是一个边长90米的正方形,甲、乙两人同时从A点出发,甲逆时针每分行75米,乙顺时针每分行45米.两人第一次在CD边(不包括C,D两点)上相遇,是出发以后的第几次相遇?
【随练7】如图是一个跑道的示意图,沿ACBEA 走一圈是400米,沿ACBDA 走一圈是275米,其中A 到B 的直线距离是75米.甲、乙二人同时从A 点出发练习长跑,甲沿ACBDA 的小圈跑,每100米用24秒,乙沿ACBEA 的大圈跑,每100米用21秒,问:
⑴ 乙跑第几圈时第一次与甲相遇?
⑵ 发多长时间甲、乙再次在A 相遇?
【随练8】有一种机器人玩具装置,配备长、短不同的两条跑道,其中长跑道长400厘米,短跑道长300厘米,且有200厘米的公用跑道(如下图)。
机器人甲按逆时针方向以每秒6厘米的速度在长跑道上跑动,机器人乙按顺时针方向以每秒4厘米的速度在短跑道上跑动。
如果甲、乙两个机器人同时从A 点出发,那么当两个机器人在跑道上第3次迎面相遇时,机器人甲距离出发点A 点多少厘米?
E
C D B A。