数学建模第四章概率统计方法建模--4.3随机性人口模型
数学建模-概率模型

如对均值为mu、标准差为sigma的正态分布,举例如下:
1.密度函数:p=normpdf(x,mu,sigma) (当mu=0,sigma=1时可缺省)
例 1 画出正态分布 N (0,1) 和 N (0,22 ) 的概率密度函数图形.
在MATLAB中输入以下命令: x=-6:0.01:6; y=normpdf(x); z=normpdf(x,0,2); plot(x,y,x,z)
9.1 传送系统的效率
背
传送带
景 挂钩
产品
工作台
工人将生产出的产品挂在经过他上方的空钩上运走,若 工作台数固定,挂钩数量越多,传送带运走的产品越多。
在生产进入稳态后,给出衡量传送带效 率的指标,研究提高传送带效率的途径
模型分析
• 进入稳态后为保证生产系统的周期性运转,应 假定工人们的生产周期相同,即每人作完一件产 品后,要么恰有空钩经过他的工作台,使他可将 产品挂上运走,要么没有空钩经过,迫使他放下 这件产品并立即投入下件产品的生产。 • 工人们生产周期虽然相同,但稳态下每人生产 完一件产品的时刻不会一致,可以认为是随机的, 并且在一个周期内任一时刻的可能性相同。
例:现有100个零件,其中95个长度合格,94个直径和格, 92个两个尺寸都合格。任取一个,发现长度合格,问直径 合格的概率。
设A=‘长度合格’,B=‘直径合
格’
P( A) 95 , P( AB) 92
100
100
P(B | A) P( AB) 92 P( A) 95
全概率公式和贝叶斯公式
u0 u0
L(
x)
c 2
x
0
(
x
r
)
p(r
)dr
概率统计数学模型

概率统计数学模型在数学领域,概率统计是一个非常重要的分支,它涉及到各种随机现象的数学描述和统计分析。
概率统计数学模型则是这些分析的基础,它能够准确地描述和预测各种随机现象的结果。
一、概率统计数学模型的基本概念概率统计数学模型是建立在随机试验基础上的数据分析方法。
在概率论中,随机试验的结果通常被视为不可预测的,但可以通过概率分布来描述它们。
而统计方法则是对数据进行收集、整理、分析和推断的方法,它依赖于概率论的知识。
二、概率统计数学模型的应用概率统计数学模型在各个领域都有广泛的应用,例如在金融领域中,它可以帮助我们预测股票价格的波动;在医学领域中,它可以帮助我们理解疾病的传播方式;在工程领域中,它可以帮助我们优化设计方案。
三、概率统计数学模型的建立过程建立概率统计数学模型通常包括以下几个步骤:1、确定研究问题:首先需要明确研究的问题是什么,以及我们想要从中获得什么样的信息。
2、设计随机试验:针对研究问题,设计合适的随机试验,以便收集数据。
3、收集数据:通过试验或调查等方式收集数据,并确保数据的准确性和可靠性。
4、分析数据:利用统计分析方法对收集到的数据进行处理和分析,提取有用的信息。
5、建立模型:根据分析结果,建立合适的概率统计模型,以描述数据的分布规律和预测未来的趋势。
6、验证模型:对建立的模型进行验证,确保其准确性和适用性。
7、应用模型:将建立的模型应用于实际问题的解决和预测中。
概率统计数学模型是处理和分析随机现象的重要工具,它在各个领域都有广泛的应用前景。
通过建立合适的概率统计模型,我们可以更好地理解和预测各种随机现象的结果,从而为实际问题的解决提供有力的支持。
概率统计数学模型在投资决策中的应用在投资决策的制定过程中,准确理解和应用概率统计数学模型是至关重要的。
概率统计数学模型为投资者提供了定量分析工具,帮助他们更准确地预测投资结果,从而做出更合理的决策。
一、概率模型的应用概率模型在投资决策中的应用广泛。
数学建模 之 人口模型

数学建模———关于人口增长的模型摘要:本文讨论了人口的增长问题,并预测出了2010、2020年的美国人口。
首先,我们给出了两种预测方法:第一,在假定人口增长率不变的情况下,建立指数增长模型;第二,假定人口增长率呈线性下降的情况下,建立阻滞增长模型。
对两种模型的求解,我们引入了微分方程。
其次,为了选择一种较好的预测方法,我们分别对两种模型进行了检验和讨论。
先列图表对预测值与真实值进行比较,然后定性的对模型进行讨论,最后一个阶段选择绝对误差、均方差和相关系数对两个模型的优劣进行定量的评价,选出最好的预测方法。
一、 问题的提出:人口问题是当前世界上人们最关心的问题之一,认识人口数量的变化规律,做出较为准确的预报,是有效控制人口增长前提,现根据下表给出的近两百模型一(指数增长模型)1、模型的提出背景:我们对所给的数据进行了认真仔细的分析之后,对其进行处理:将年份进行编号(i X ),人口数量计为(i Y ),以i X 为横坐标,以i Y 为纵坐标,建立直角坐标系。
然后将表格中所给的数据绘在直角坐标系中附表A ,我们发现这些点大体呈指数增长趋势固提出此模型。
附图A2、基本假设:人口的增长率是常数增长率——单位时间内人口增长率与当时人口之比。
故假设等价于:单位时间人口增长量与当时人口成正比。
设人口增长率为常数r 。
时刻t 的人口为X(t),并设X(t)可微,X(0)=X O由假设,对任意△t>0 ,有)()()(t rx tt x t t x =∆-∆+即:单位时间人口增长量=r ×当时人口数当△t 趋向于0时,上式两边取极限,即:o t →∆lim)()()(t rx tt x t t x =∆-∆+ 引入微分方程:)1( )0()(0⎪⎩⎪⎨⎧==x x t rx dtdx3、模型求解: 从(1)得rdt xdx= 两边求不定积分:c rt x +=ln∵t=0时0x x =,∴C x =0lnrt e x rt x x 00ln ln ln =+=∴rte x t x 0)(= (2) 当r>0时.表明人口按指数变化规律增长.备注; r 的确定方法:要用(4.2)式来预测人口,必须对其中的参数r 进行估计: 十年的增长率307.0ln 9.33.5==r,359.1307.0=e,则(2)式现为: t t x )359.1(9.3)(⨯=4、结论:由上函数可预测得:2010的人口为x(22):x(22)=3325.772020的人口为x(23):x(23)=4519.735、检验:根据所建立的指数模型预测1790以后近两百年的美国人口数量,在此6、模型讨论:由表可见,当人口数较少时,模型的预测结果与实际情况相差不大(不超过5%)。
概率统计方法建模PPT课件

第3页/共23页
5.5 随机状态转移模型
状态与状态转移 ➢随机变量Xn:第n年的状态 状态概率 ai (n)
Xn
1, 2,
第n年健康 第n年疾病
ai (n) P(Xn i), i 1, 2, n 0,1,
➢今年处于状态i, 来年处于状态j的概率 pi:j 转移概率
存贮策略是周末库存量为零时订购3架 周末的库存量可 能是0, 1, 2, 3,周初的库存量可能是1, 2, 3。 用马氏链描述不同需求导致的周初库存状态的变化。 动态过程中每周销售量不同,失去销售机会(需求超过 库存)的概率不同。
可按稳态情况(时间充分长以后)计算失去销售机会的 概率和每周的平均销售量。
马氏链的两个重要类型
设状态i是非吸收状态,j是吸收状态,则首达概率f ij (n) 实际上是i经n次转移被j吸收的概率。而
fij = fij (1) + fij(2) + … + fij(n) + …
则是从非吸收状态i出发终将被吸收状态j吸收的概率。 记 F={f ij} 则 F=MR
例如,可以算出前面第二种情况中
第19页/共23页
5. 6 马尔可夫链的应用模型
模型求解 ➢ 估计这种策略下每周的平均销售量
第n周平均售量Rn
需求不超过存 量,销售需求
需求超过存量, 销售存量
3i
Rn [ jP(Dn j, Sn i) iP(Dn i, Sn i)] i1 j 1 3i [ jP(Dn j Sn i) iP(Dn i Sn i)]P(Sn i) i1 j 1
p23 p33
P(Dn k) e1 / k ! (k 0,1, 2 )
概率统计法建模

2
S2
1
2 i 1
2 2 ( X X ) ~ ( n 1); i
n
定理 设总体 X ~ N ( , ), X 1 , X 2 ,, X n 是取自
概率统计法
2015.5.27
概率统计法
一、方法原理 二、基础概念 三、建模过程 四、应用案例
一方法原理
实际系统中,许多系统过程或过程包含着随 机因素和随机事件,其特征可用随机变量 来描述,而概率分布是用数值表示的随机 事件或因素的函数,它反映了这些随机变 量的变化规律。利用概率统计学中的概率 分布及其数字特征建立随机系统或过程的 数学模型谓之概率统计法。这种方法的实 质就是通过理论分析和实验研究寻求适合 于系统随机特征的概率分布。在概率统计 建模中,贝叶斯定理占有相当重要的位置。
f (t ) d t ,
则称 X 为连续型随机变量 , 其中 f ( x ) 称为 X 的概率
S
x2
f ( x)d x 1
f ( x)d x
S1
1
o
x1
x1 x 2
S1
x
正态分布(或高斯分布)
定义 设连续型随机变量X 的概率密度为 1 f ( x) e , x , 2 πσ 其中 μ, σ (σ 0) 为常数, 则称 X 服从参数为 μ, σ 的正态分布或高斯分布 , 记为 X ~ N ( μ, σ 2 ).
P Ai P( Ai ). i 1 i 1
(2)条件概率的相关内容 在事件B, 已经发生条件下, 事件A发生的概率,称为 事件A在给定事件B的条件下的条件概率, 简称A对B的 条件概率, 记作P(A|B).
P(AB) P(A | B) = P(B)
概率统计建模方法

第1章概率方法建模简介第2章数据统计描述和分析第3章方差分析第4章回归分析第5章马氏链模型第6章时间序列模型第7章主成分分析及应用第8章判别分析简介及应用主讲:山东大学数学学院陈建良2第1章概率方法建模简介随机性模型,是指研究的对象包含有随机因素的规律,以概率统计为基本数学工具,其结果通常也是在概率意义下表现出来。
随机因素的影响可以用概率、平均值(即数学期望)等的作用来体现。
自然界中的现象总的来说可以概括为两大现象:确定性现象和随机现象在确定性现象中可以忽略随机因素的影响,在随机现象中必须考虑随机因素的影响。
确定性离散模型,主要使用差分方程方法、层次分析方法以及比较简单的图的方法和逻辑方法等方法建立模型;确定性连续模型,主要使用微积分、微分方程及其稳定性、变分法等方法建立模型;§2 概率方法建模实例分析实例一、报童的策略问题1.问题描述报童每天清晨从报站批发报纸零售,晚上将未卖完的报纸退回。
设每份报纸的批发价为b,零售价为a,退回价为c,且设a>b>c,因此报童每售出一份报纸赚(a-b),退回一份赔(b-c)。
若批少了不够买就会少赚,若批多了买不完就赔钱,报童如何确定每天批发报纸的数量,才能获得最大收入?92. 分析显然应根据需求量来确定批发量。
一种报纸的需求量是一随机变量。
假定报童通过自己的实践经验或其它方式掌握了需求量的随机规律,即在他的销售范围内每天报纸的需求量为X = x 份的概率为P(x),则通过P(x) 和a, b, c 就可建立关于批发量的优化模型。
3.数学模型设每天批发量为n,因需求量x 是随机的,因此x可以小于、等于或大于n,从而报童每天的收入也是随机的,作为优化模型的目标函数,应考虑他长期(半年、一年等)卖报的日平均收入。
据概率论中的大数定律,这相当于报童每天收入的期望值(以下简称平均收入)。
1011设报童每天批发进n 份报纸时的平均收入为S (n ),若某天需求量x ≤n ,则他售出x 份,退回(n -x )份;若这天需求量x >n ,则n 份报纸全部卖出。
《数学建模》教学大纲

《数学模型》课程教学大纲一、《数学模型》课程说明(一)课程编号:07251105(二)英文名称:Mathmatic Modeling(三)开课对象:数学与应用数学专业(四)课程的性质:数学建模是为数学与应用数学专业开设的一门学科基础课,其先修课程有数学分析、高等代数、概率论与数理统计、数学实验等。
它是研究如何将数学方法和计算机知识结合起来用于解决实际生活中存在问题的一门边缘交叉学科,是集经典数学、现代数学和实际问题为一体的一门新型课程,是应用数学解决实际问题的重要手段和途径。
(五)教学目的:数学建模是继本科生学习数学分析、高等代数、概率论与数理统计之后进一步提高运用数学知识解决实际问题,培育和训练综合能力所开设的一门新学科。
通过具体实例引入使学生掌握数学建模基本思想、基本方法、基本类型。
学会进行科学研究的一般过程,并能进入一个实际操作的状态.通过数学模型有关的概念、特征的学习和数学模型应用实例的介绍,培养学生数学推导计算和简化分析能力、熟练运用计算机能力;培养学生联想、洞察能力、综合分析能力;培养学生应用数学解决实际问题的能力。
(六)教学要求和方法1.教学要求本课程主要介绍在数学应用中已经比较完善的数学模型,包括初等模型、简单优化模型、线性规划模型、离散模型、离散模型、微分方程模型、差分方程、概率统计模型等内容。
要求学生了解数学建摸的基本概念及基本方法,学会将学过的数学方法和知识同周围的现实世界联系起来,甚至和真正的实际问题联系起来。
不仅应使学生知道数学有用、怎么用,更要使学生体会到在真正的应用中还需要继续学习。
2.教学方法本课程将课堂讲授与上机实习结合起来,以课堂讲授为主。
课堂讲授旨在教学生如何建立模型,讲授中穿插各类数模实例,与现实中的各类实际问题相结合,启发学生自主思考和研究问题,找寻解决问题的数学模型和实际方法。
除此外,还会讲解数学建模论文的书写方法,以论文的形式完成建模和研究工作。
上机旨在教学生如何求解模型,以学生自主学习为主,结合课堂学习内容完成课堂布置的作业,利用数学软件求解模型结果。
《概率统计模型》PPT课件

价格差 x1=0.1 yˆ x10.1 30.2267 7.7558x2 0.6712x22
价格差 x1=0.3 yˆ x10.3 32.4535 8.0513x2 0.6712x22
x2 7.5357
yˆ
yˆ yˆ x10.3
10.5
x10.1 10
价格优势会使销售量增加 9.5 9
)
E
2
(t
)
E 率E(t)+(t)
n1
D(t)
n0
e [e ( )t ( )t
1]
n0
E(t)-(t)
0
t
X(t)大致在 E(t)2(t) 范围内( (t) ~均方
差)
- = r
,
D(t)
D(t)
§3 牙膏的销售量
问 建立牙膏销售量与价格、广告投入之间的模型 题 预测在不同价格和广告费用下的牙膏销售量
y的90.54%可由模型确定 F远超过F检验的临界值
p远小于=0.05
模型从整体上看成立
2的置信区间包含零点 (右端点距零点很近)
x2对因变量y
的影响不太显
x22项显著
著可将x2保留在模型中
销售量预测 yˆ ˆ0 ˆ1x1 ˆ2x2 ˆ3x22
价格差x1=其它厂家价格x3-本公司价格x4
估计x3 调整x4 控制x1
通过x1, x2预测y
控制价格差x1=0.2元,投入广告费x2=650万元
yˆ ˆ0 ˆ1x1 ˆ2x2 ˆ3x22 8.2933 (百万支)
销售量预测区间为 [7.8230,8.7636](置信度95%)
上限用作库存管理的目标值 下限用来把握公司的现金流
若估计x3=3.9,设定x4=3.7,则可以95%的把握知
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
量很多的情况下确定性模型的特例。
2020/5/24
概率模型
对于方差Dt ,按照定义
Dt
n
2
pn t
E 2 t
n1
用类似求Et 的方法可以推出
Dt
n0
e( )t
e t
1
(7)
Dt的大小表示人口Zt在平均值 Et附近的波动
范围。(7)式说明这个范围不仅随着时间的延续和净
即
pn
t
t
t
pn
t
bn1
pn1t
d n1
pn1t
bn
dn
pn
(t)
令t 0,得关于 pn t的微分方程
dpn dt
bn1 pn1 t d n1 pn1 t bn
dn pn t
2020/5/24
概率模型
又由假设 4,方程为
dpn dt
n 1 pn1t n 1 pn1 t
出生二人及二人以上的概率为 ot ;
2、在t,t t 死亡一人的概率与 t 成正比,记作dnt ,
死亡二人及二人以上的概率为 ot ;
3、出生与死亡是相互独立的随机事件;
4、进一步设bn 和dn 均为与n成正比记bn n, dn n, 和 分别是单位时间内n 1时一个人出生和死亡的概
率。
2020/5/24
npn t
(1)
若初始时刻(t 0)人口为确定数量 n0 ,则 pn t 的初始
条件为
pn
0
1, n 0, n
n0 n0
(2)
2020/5/24
概率模型
(1)在(2) 条件下的求解非常复杂,且没有简
单的结果,不过人们感兴趣的是EZ t和DZt 。(以 下简记成 E(t)和 D(t) )
增长率r 的增加而变大,而且即使当r 不变时, 它也随着 和 的上升而增长,这就是说,当出生和死 亡频2020繁/5/24出现时,人口的波概率动模型范围变大。
n 1
k 1
代入(4)并利用(3),则有
dE dt
(
) npn t n 1
Et
(5)
2020/5/24
概率模型
由(2)得 Et 的初始条件 E0 n0,求解微分方程(5)
在初始条件下的解为
Et n0ert , r
(6)
可以看出这个结果与指数模型 xt x0ert 形式上完全
一致。随机性模型(6)中出生率 与死亡率 之差 r 即
§3 随机性人口模型
如果研究对象是一个自然村落或一个家族人口, 数量不大,需作为离散变量看待时,就利用随机性人 口模型来描述其变化过程:
记 Z t ―时刻t 的人口数(只取整数值)
pn t pZ t n―人口为n的概率。
2020/5/24
概率模型
模型假设
1、在t,t t 出生一人的概率与 t 成正比,记作 bnt ,
2020/5/24
概率模型
按定义
Et
npn
t
n1
对(3)求导并将(1)代入得
(3)
dE
dt
n1
nn 1pnቤተ መጻሕፍቲ ባይዱt
nn 1pn1t n2 pn t
n 1
n1
(4)
2020/5/24
概率模型
注意到
nn 1pn1t kk 1pk t
n 1
k 1
nn 1 pn1 t kk 1pk t
概率模型
模型建立
由假设1~ 3,可知Z t t n可分解为三个互不相
容的事件之和:
Z t n 1且t 内出生一人; Z t n 1且t 内死亡一人; Zt n且t 内无人出生或死亡。
2020/5/24
概率模型
按全概率公式有
pn t t pn1(t)bn1t pn1 t dn1t pn t1 bnt dnt