乙烯气相聚合工艺简介

乙烯气相聚合工艺简介
乙烯气相聚合工艺简介

乙烯气相聚合工艺简介

刘建松 20409186

第一章绪论

聚乙烯(PE)具有优良的综合性能,主要包括低密度聚乙烯(LDPE)、线性低密度聚乙烯(LLDPE)、高密度聚乙烯(HDPE)及一些具有特殊性能的产品,是目前世界上生产量和消费量最大的塑料品种。其特点是价格便宜,性能较好,可广泛应用于工农业、包装及日常生活中,在塑料工业中占有举足轻重的地位。

乙烯聚合工艺一般包括高压法、气相法、淤浆法和溶液法四种方式。其中,气相法工艺由于生产成本低、流程简单、操作方便、产品种类多且性能范围宽等优点而被公认为是最有发展前途的一种工艺。因此适合气相法工艺的聚乙烯催化剂的研制一直是学术界和产业界研究和开发的热点。

气相聚合过程中由于只存在气固两相,而不存在液相,传热系数比较小,聚合热不容易扩散,对聚合工艺要求高,因而对催化剂的性能要求更高。所以,催化剂的研究和开发是乙烯气相聚合工艺的关键。催化剂主要可以分为铬系催化剂,钒系催化剂,锆系催化剂和钛系催化剂等几类。

本课题的目的是在玻璃搅拌釜中用气相聚合工艺合成聚乙烯,考察各参数如温度,压力,催化剂等对聚合活性的影响。得到乙烯气相聚合的动力学曲线,并比较各个催化剂的气相动力学的差别。建立相关的聚合模型,对得到的动力学曲线进行机理方面的解释。

第二章文献综述

2.1 聚乙烯的合成方法

聚乙烯(PE)是乙烯经聚合制得的一种热塑性树脂,其产量占世界合成树脂首位。由于其具有优良的耐低温性能,化学稳定性好,能耐大多数酸碱的侵蚀,常温下不溶于一般溶剂,吸水性小,电绝缘性优良等特点,在国民经济中得到了广泛的应用。主要用来制造薄膜、容器、管道、单丝、电线电缆、日用品等,并可作为电视、雷达等的高频绝缘材料。

乙烯聚合工艺主要包括高压法、气相法、淤浆法和溶液法四种方式。

2.1.1 高压法

高压法是在100~250MPa,150~300℃温度范围内进行聚合,制取聚乙烯的方法。该方法是工业上生产聚乙烯的第一种方法,至今仍然是生产低密度聚乙烯的主要方法。其工艺特征是:反应条件苛刻,设备材质要求高,投资和运行费用高,但反应器很小,生产强度高,流程简单。高压法采用氧、有机过氧化物或偶氮化合物(工业上主要用氧)作引发剂进行乙烯的自由基聚合。

2.1.2 溶液法

溶液聚合时,单体和生成的聚合物均溶于溶剂,要求在较高的聚合温度和压力下进行,其优点是能够很容易的控制相对分子质量和相对分子质量分布,制备适于注塑用的相对分子量低、分布窄的聚乙烯。采用此种工艺的有加拿大杜邦公司(现为Nova公司),美国Dow化学公司以及荷兰DSM公司(COMTACT工艺)。

2.1.3 淤浆法

淤浆聚合是生产HDPE的主要方法之一,工业化时间较早,工艺技术成熟,产品质量较高。聚合中乙烯溶于脂肪烃稀释剂,生成的聚合物与溶剂形成淤浆,聚合温度压力适中;采用高效催化剂,不必脱灰;流程中有溶剂回收,但聚合物脱除挥发分比溶液法容易,因此流程比溶液法简单,比气相法复杂;投资、操作费用、反应停留时间和反应器生产强度在气相法和溶液法之间,因而生产灵活性也居中。此工艺可生产高相对分子量和超高相对分子量的产品。从反应器的结构可分为Philips公司的环管工艺(简称PFP)和三井油化公司的搅拌釜工艺两种。

2.1.4 气相法

气相法工艺由于不使用溶剂,完全革除了后处理工序,工艺简化,流程短,投资少,生产成本低,可在较低的温度下进行聚合反应,且共聚时不受溶剂影响,产品性能可在宽范围内调

节,因而有较强的竞争力。

气相法聚乙烯的生产能力占HDPE总能力的10%;占LLDPE总能力的70%,其中75%可生产全密度聚乙烯。气相法工艺由于生产成本低、流程简单、操作方便、产品种类多且性能范围宽等优点而被公认为是最有发展前途的一种工艺。因此适合气相法工艺的聚乙烯催化剂的研制一直是学术界和产业界研究和开发的热点。

2.2 乙烯气相聚合催化剂

1953年,Ziegler-Natta催化剂开始用于乙烯气相聚合。70年代,U.C.C公司开发了气相流化床聚乙烯工艺和相应的Cr系催化剂,但Cr系催化剂具有毒性,对于聚合过程中杂质的敏感度高,制备产品有一定局限性。这期间BP公司开发了适用于气相法流化床工艺的钛系催化剂,此催化剂不仅没有毒性.而且催化活性高.能够生产和制备多种良好性能的聚乙烯和线性低密度聚乙烯等产品。钛系催化剂正逐步取代铬系催化剂,使气相法聚乙烯生产工艺得到进一步发展。

在众多乙烯气相聚合催化剂的专利文献报道中,UCC和BP技术处于领先水平。适合于聚乙烯工业生产的催化剂可归纳为铬系催化剂、钒系催化剂、锆系催化剂和钛系催化剂4类。

2.2.1 铬系催化剂

铬系催化别最早应用于聚乙烯生产,在气相聚合工艺中亦广为采用。气相聚合铬系催化剂都以二氧化硅为载体,有时还用有机铝改性以提高催化剂的活性。这类催化剂最大特点是聚合反应相当平稳,易于工业生产控制。

2.2.2 钒系催化剂

钒系催化剂一般较铬系、钛系的活性低。但是,钒化合物在催化剂制备过程中能生成多种价态化合物,产生多种活性中心,因而能获得铬系、钛系催化剂得不到的宽分子量分布的聚乙烯。

2.2.3 锆系催化剂

催化剂的高活性和聚合产物良好的立体规整性使得金属茂催化剂成了烯烃聚合中最引入注目的催化剂。研究表明,催化剂载体对锆系催化剂的活性和活性中心的稳定性有很大影响。锆系催化剂在无定形的载体中表现出很高的活性。随着无机载体酸性增加,催化剂速率衰减会变得缓慢,产物分子量亦会随之降低。

2.2.4 钛系催化剂

钛系催化剂是乙烯气相聚合中研究得最多的一类,该催化剂催化效率高,而且价格便宜。是目前应用最广泛的一类催化剂。为了使催化剂具有一定的粒度和良好的流动性,可将钛化合物和镁化合物负载于流化性好的球形SiO2或PE和交联PS等有机载体上。

2.3 乙烯的气相聚合

2.3.1 几种典型的乙烯气相聚合工艺

(1)UCC公司的Unipol工艺

UCC的Unipol气相流化床工艺是目前使用最普遍的聚乙烯气相生产工艺,也是最重要的聚乙烯生产技术。流程示意图见图1。

图1 UCC公司的Unipol工艺流程示意图

Unipol工艺是美国联合碳化物公司(UCC)(该公司现与Exxon公司合资改名为Univation公司)采用低压气相流化床用以生产乙烯(共)聚合物的技术。20世纪60年代初,UCC开始研究Unipol 工艺;1968年,UCC使用Unipol工艺实现工业化生产高密度聚乙烯(HDPE),又于1979年实现工业化生产线型低密度聚乙烯(LLDPE)。80年代起,Unipol工艺生产乙烯(共)聚合物技术得到迅速发展,UCC出售大量专利技术。

Unipol工艺的主要特点是简单,一步工艺流程,操作条件缓和,其装置的总转化成本(从单体到聚合物)是溶液聚合工艺的80%,投资仅为50%。从最初生产HDPE发展到能够生产LLDPE 和极低密度聚乙烯(VLDPE),Unipol成为第一个能用单一气相流化床反应器生产全密度范围PE 产品的工艺,并且经过多年的开发有了更进一步的发展,从Unipol I工艺发展到Unipol II工艺。

(2)BP公司的Innovene工艺

BP公司的Innovene工艺是仅次于UCC公司Unipo1工艺的聚乙烯气相生产工艺。流程示意图见图2。

图2 BP公司的Innovene工艺流程示意图

该工艺的特点是:(1)所需基建投资和操作费用最低,新催化剂可以直接投入反应器中,不需须聚合工艺,不需溶剂,具有经济性;(2)同一反应据可生产市场需要的所有产品,催化剂彼此间相容,切换时无需清洗反应器,具有灵活性;(3)温度和压力较低,有安全性。

(3)BASF搅拌床工艺

流程示意图见图3。

图3 BASF搅拌床工艺的流程示意图

1.3.2 国内的乙烯气相聚合研究进展

我国聚乙烯(PE)装置中气相法聚合工艺占有十分重要的地位。自20世纪70年代起。我国先后引进了8套Unipol工艺气相流化床PE生产装置,现有生产能力超过0.90 Mt/a。其中茂名石化、中原石化、广州石化、吉林石化和扬子石化等企业未引进催化剂装置,每年需要花费大量外汇进口催化剂,由于催化剂质量不稳定,价格较高,导致PE生产成本增加。我国气相法聚乙烯装置较多,但普通存在着装置规模小,原料不配套,引进牌号多、生产牌号少,技术更新迟缓等问题,因此在与国外同类装置的竞争中处于明显的劣势。近几年来,国内气相法聚乙烯行业在工艺技术的改造方面虽已做了些工作,但与国外装置的差距依然较大。

1999年,中国石油化工股份有限公司北京化工研究院(简称北京化工研究院)研制成功BCG—I型气相PE催化剂,并于2000年成功地完成BCG—I型催化剂工业应用试验。2001年,该催化剂的生产装置建成,在Unipo1工艺装置上成功地替代进口催化剂,实现了Unipo1乙烯气相聚合工艺催化剂的国产化。002年,北京化工研究院成功研制开发了BCG—Ⅱ型催化剂,并在中原石油化工有限责任公司(简称中原乙烯)和中国石油化工股份有限公司广州石化分公司(简称广

州石化)进行工业应用,取得了较好的结果。

齐鲁石化研究院研制开发了1种环流流化床反器,可以用于间歇的乙烯气相聚合反应,也可以配置催化剂连续加料器和产品连续出料系统后作为连续的流化床反应器。并且研究开发了QCP -01和 QCP-02催化剂,成功应用于乙烯气相聚合工艺。

1.4 乙烯气相聚合动力学模型

1.4.1 聚合动力学模型

聚合动力学的概率统计模型是最早出现的动力学模型,在此之后,随着人们对聚合反应机理认识的不断深入与完善,出现了多种动力学处理方法,相应的动力学模型也越来越完善。从模型所用到的方法可分为以下几类:(1)概率统计模型;(2)机理模型;(3)基于Monte Carlo模拟模型。(1)与(2)是数学与实验手段在高分子科学中运用的结果,而(3)是在(1)与(2)基础上引入计算机技术而形成与发展的。

(1)概率统计模型

聚合动力学的概率统计处理方法是基于数学中的概率统计理论。由于聚合物系中所有分子和各种结构是由不同反应状态的单体(和其它)单元组合而成,官能团间通过随机反应形成聚合物,相应聚合动力学特性为最可几分布,因而在聚合动力学处理时可引入概率统计方法。由于概率统计方法属于最可几抽样方法,其统计结果的获取及其精度依赖于抽样方法及样本容量,因而聚合动力学中的概率统计模型如共聚方程、聚合度方程等的获取无需引入某些假定,这也是统计方法的最大优点。正是这个优点,促使了包括共聚在内的聚合高分子的统计模型发展。

概率统计模型基于抽样方法,关注聚合反应的始末两个状态,具有可处理复杂系统,无需动力学上的假定等优点。但是该模型仍存在以状态函数代替时间函数,不能提供时间依赖信息的缺陷;其次,概率统计模型视反应为平衡过程,因此较适合应用于逐步共聚,对不可逆动力学控制的共聚偏差较大。

(2)机理模型

概率统计模型与机理模型根本出发点不同,二者在处理理想聚合体系结果一致(如共聚过程共聚方程,逐步共聚聚合度公式),但并不等价。前者认为整个聚合过程为Markov过程,得到的分子量分布是Markov分布;机理模型以质量作用原理为依据,各基元反应步骤认为是Markov 过程,但终产物并非Markov性质,故机理模型更适合于描述聚合体系。由于机理模型理论必须考虑聚合物系中所有分子,故相应的动力学微分方程数为无穷个,这些方程常可转化为一个生成函数形式的偏微分方程。实际应用中为简化方程(如普适动力学法、拟动力学常数法)而出现并发展了各种动力学模型。

机理模型的优点在于概念清晰和数学表达式简单,且可提供主要的化学信息。但是并非能完全反应实际情况,同时动力学处理困难,难以得到解析解。实际中为了得到解析解,不得不采用了一些简化处理方法,而这大大影响了机理建模的精度。

(3)基于Monte Carlo模拟模型

Monte Carlo模拟在数学上称为随机模拟(Random Simulation)方法。其基本思想是:为了求解数学、物理及化学等问题,建立一个概率模型或随机过程,使它的参数等于问题的解;当所解的问题本身居于随机性问题时,则可采用直接模拟法,即通过对模型或过程的观察或抽样试验来计算所求参数的统计特征,最后给出所求解的近似值。

有关Monte Carlo方法的具体算法,这里不作详细的介绍。

综上所述,几种不同聚合动力学处理方法各有优缺点,相应处理方法所得到的动力学模型也各有其优缺点。采用哪一种方法要视具体的情况而定。

1.4.2 乙烯气相聚合模型

乙烯气相聚合的基元反应包括活性中心的产生,链增长,链转移,链终止,催化剂的失活等,

Choi和Ray提出了一个连续搅拌床的丙稀气相聚合模型。通过停留时间和生产能力来计算,对于气相应用理想气体定律,在气相聚合的中压条件下显然有较大的偏差,模型还假设单体和聚合物的热容为常数,事实上热容随反应器温度的变化是很敏感的。McAuley等人提出了一个乙烯气相聚合模型,对于气相应用理想气体定律,不考虑反应器条件对物质热容、密度等的影响。模型要用到物质浓度,气体流速等参数。这两个模型只单独考虑聚合动力学,而没有考虑物质的性质,相平衡以及热力学模型。

本课题的目的就是为了找到一个好的适合实际情况的乙烯气相聚合模型,从机理方面对各个催化剂的动力学曲线作出很好的解释。

第三章实验方案与设计

3.1 实验材料

包括乙烯,氢气,氮气,烷基铝,己烷,催化剂等等。

3.2 实验装置

这里所用的乙烯气相聚合装置是烟台市牟平曙光精密仪器厂生产的玻璃搅拌反应釜,体积为2L,压力可以升至20bar。反应釜的装置示意图见图4,包括乙烯,氢气,氮气,正己烷的净化装置;进样系统;螺带搅拌桨;气体分布器;取样器;产品出口;温度控制系统等。

图4 搅拌反应釜的装置示意图

实验在恒温条件下进行,聚合反应速率是通过乙烯的进样速率来计算的,调节乙烯进样保持反应器内的压力一定。

3.3 实验步骤

1.搅拌床气相聚合是在带夹套的,装有螺带式搅拌器的2L反应釜中进行的。将反应釜加热至80℃以上抽真空1h,用N2彻底置换釜内的空气。

2. 在N2气氛的微正压下加入经处理的PE基料作为分散介质、助催化剂烷基铝、催化剂,搅拌均匀,然后抽去N2,通入乙烯、氢气,升温聚合。

3.用温度控制器加热控温。搅拌速率维持恒定,压力通过调节乙烯的质量流量来维持一定。聚合时间为2h左右。

4.降温并停止反应,排去乙烯,出料称重,计算。动力学曲线通过中间多次取样计算得到。

3.4 本课题的实验计划

首先是需要解决的几个主要问题。一是传热问题,通过温度控制器和冷却水来调节温度,使温度基本保持恒定,避免产生暴聚或者催化剂的失活。二是使反应物均匀分散的问题,采取的措施是反应前先加入基料作为分散介质,搅拌均匀。而气体通过分布器来实现均匀进料。三是反应器的稳定性问题,控制恒温,恒压,并且在一定的搅拌速率下进行反应,保持各参数的稳定性。

大致的实验计划包括考察各个参数如温度,压力,催化剂等对聚合活性的影响;得到乙烯气相聚合的动力学曲线,并比较各个催化剂之间的差别;建立相关的聚合模型,对得到的动力学曲线进行机理方面的解释。

聚合工艺考试题库

聚合工艺作业-判断题 特种作业人员危险化学品安全作业聚合工艺作业1 [ 对 ] 1、干燥机发生断料后,如果是洗涤水泵跳闸所致,应立即打开洗胶罐补水阀,先恢复干燥机的正常进料。 [ 错] 2、汽提是直接通入水蒸汽,水蒸气既作为惰性气体,又作为加热介质的一种脱吸方法。 [ 对 ] 3、爆炸并不是在达到着火的临界条件时就立即发生。 [ 错 ] 4、石油化工装置检修现场,可以用汽油等易挥发性物质擦洗设备或零部件。 [ 对 ] 5、生产中在聚合压力很低情况下,提高聚合压力,聚合反应温度则会有明显增高。 [ 对 ] 6、聚合车间和岗位严禁携带移动、照相机和录像机进入。 [ 对 ] 7、油品从液体变为固体的过程为凝固。 [错 ] 8、防护罩、安全阀不属于安全防护装置。 [ 错 ] 9、仪表风就是压缩空气。 [ 对 ] 10、密封油泵不能空运转。 [ 对 ]11、在对接地连接系统的维护工作中,应重点检查螺栓紧固接点,及时更换腐蚀了的垫片。 [ 对 ] 12、用沸腾床干燥聚合物时,由于多数聚合物的热稳定性小,密度小,粒度细,因而限制了干燥气的流速和温度。 [ 对 ]13、安全阀进行校验和压力调整时,调整及校验装置用的压力表精度等级应不低于Ⅰ级。 [错 ] 14、自由基聚合反应根据引发的方式不同,可分为热引发、光引发、辐射引发、引发剂引发和链引发。 [ 对 ] 15、聚合度越大,聚合物的分子量越大。 [ 错 ] 16、往复泵也可以用安装出口阀门的方法来调节流量。 [ 对 ] 17、凝胶渗透色谱法(GPC)较为常用的各种平均分子量及分子量分布宽度的测试方法。 [ 错 ] 18、在列管换热器中腐蚀性流体应走壳程。 [ 对 ] 19、装置停工大检修就是对装置进行全面检查、检修和工艺改造等。 [ 对 ] 20、吹扫的标准:空气吹扫时,首先是保证气源的压力和吹扫时的流速,当吹扫时从排出口流体中见不到颜色、混浊固体物,或者对塔槽类来说,其部无沉淀物、异物,其吹扫即可停止。 [错] 21、生产中膨胀干燥机突然断料,极易引起聚合物塑化着火,其原因是断料后膨胀干燥机压力直线上升所致。 [ 错 ] 22、当聚合釜系统出现超压时,必须打开事故阀。 [ 错 ] 23、演练要素中宜明确应急演练的规模、方式、频次、围、容、组织、评估、总结等容。 [ 错] 24、生产经营单位应当制定本单位的应急预案演练计划,根据本单位的事故预防重点,每半年至少组织一次综合应急预案演练或者专项应急预案演练。 [ 错 ] 25、单位要根据需要,没有必要引进、采用先进适用的应急救援技术装备。 [ 对 ] 26、现场处置即根据事故情景,按照相关应急预案和现场指挥部要求对事故现场进行控制和处理。 [ 错 ] 27、对于危险性较大的重点设备、重点岗位和重点场所,生产经营单位应当制定重点工作岗位的现场处置方案。 [ 对 ] 28、二氧化硫会引起酸雨。 [ 对 ] 29、设备出厂检修,应进行充分置换,以防治污染物转移。 [ 对 ] 30、接触危险化学品的废包装物应作为危险废物处置。 [ 对 ] 31、工业废水包括生产废水和生产污水。 [ 对 ] 32、氧含量高于40%时,会造成氧中毒,长期吸入可能发生眼损害甚至失明。

乙烯装置工艺流程

福炼乙烯装置利用炼厂直馏轻石脑油和直馏重石脑油(LVN/HVN)、加氢尾油(HVGO)、加氢裂化轻石脑油(HCN)、裂解汽油加氢装置C5循环组分、来自于芳烃抽提装置的C6提余油、炼厂饱和C3/C4液化气、循环乙烷、循环丙烷等原料,通过高温裂解,深冷分离产出主产品乙烯和丙烯以及付产品C3液化气(也可以切换到循环裂解丙烷)、丁二烯、MTBE/丁烯-1、甲烷、氢气、粗裂解汽油和裂解燃料油(由裂解柴油和裂解燃料油混合而成)。装置的乙烯、丙烯产品送至下游生产聚乙烯、聚丙烯产品。 乙烯联合装置主要由裂解、压缩、分离、低温罐区、汽油加氢、混合碳四处理等装置。乙烯联合装置工艺流程简述: 1、裂解工序 接收来自界外的炼厂C3/C4、粗混合C4、C5循环物流、分离部分返回的循环乙烷/循环丙烷、芳烃提余油、轻石脑油、重石脑油、以及加氢裂化石脑油(HCN),分别送入SL-1型及SL-2型炉内,加稀释蒸汽(DS)进行裂解,得到的裂解气(即:氢气、甲烷、乙烯、乙烷、丙烯、丙烷、丁二烯、裂解汽油、裂解燃料油等组分的混合物)经废热锅炉急冷,油冷、水冷至常温,回收部分热量,并把其中大部分油类产品分离后送入后续工序。负责接收从界外来的高压锅炉给水并将其转化为压力11.7Mpa、温度500~525℃的超高压蒸汽(VHS)。接收本装置分离工序返回的甲烷氢及从界外补充的碳三/碳四等物料经混合、汽化后做为裂解炉燃料气。 2、压缩工序 将来自裂解工序的裂解气,经五段压缩后,将压力提高到4.173 MPag,为深冷分离提供条件。裂解气在压缩过程中,逐段冷却和分离,除去重烃和水,并在三段出口设有碱洗,除去裂解气中的酸性气体,为分离系统提供合格的裂解气。 制冷系统由丙烯制冷系统和乙烯、甲烷二元制冷系统构成,为深冷分离提供-40℃,-27℃,-3℃、13℃四个级别的丙烯冷剂;-40℃~-135℃的二元冷剂。丙烯、二元制冷系统为多段压缩,多级节流的封闭循环系统。 3、分离工序 将压缩工序来的裂解气,经脱水、深冷、加氢和精馏等过程,获得高纯度的乙烯、丙烯,同时得到付产品H2、CH4、C3LPG、混合碳四馏份及裂解汽油。

尼龙6聚合工艺

尼龙6聚合工艺

PA6聚合生产技术 本文叙述了国外PA6聚合生产工艺与设备,介绍了几种常用的聚合方法及特点,并进行了对比。德国Zimmer公司,Kart Fischer公司,瑞士 Inventa 公司,意大利Noy公司,德国Aqufil公司等的工艺技术设计合理,所生产的产品质量较好,分子量分布均匀。其设备特点是在聚合管内广泛采用静态混合器或整流器。萃取塔采用狭缝式结构,干燥塔采用热氮气干燥,聚合过程采用DCS集散系统控制,生产过程全部连续化。 关健词:PA6聚合先进工艺比较 1938年,德国的P Schlack发明了已内酰胺聚合制取聚已内酰胺(PA6)和生产纤维的技术,并于1941年投入工业化生产。迄今,已内酰胺聚合工艺在长达半个多世纪的生产过程中,经历了从小容量到大容量,从间歇聚合到连续聚合,设备结构不断改进、完善,工艺技术日趋合理、成熟。本文就国外几个有代表性的公司所设计的PA6聚合工艺及设备的特点作一综合性的介绍。

1、PA6聚合方法 随着新技术的发展,PA6生产装置(包括切片萃取、干燥和废料回收)已进入大型化、连续化,自动化的高科技之列。PA6聚合技术有代表性的公司有德国Zimmer公司,Kart Fischer公司,Didier公司,Aqufil公司,瑞士 Inventa公司,意大利Noy公司,以及日本东丽、龙尼吉卡公司等。其聚合工艺根据产品用途不同而有几种不同的方法,表1列出了德国吉玛公司有关VK管能力、单耗、质量指标及切片用途等参数。 表1Zimmer公司PA6聚合工艺参数

*不包括回收的已内酰胺 -

1.1常压连续聚合法 该方法用于生产PA6民用丝。NOY公司特点:采用大型VK管(○1440mm×1690mm)连续聚合,聚合温度260℃,时间20h。热水逆流萃取切片中残余单体及低聚物、氮气气流干燥、DCS集散系统控制,单体回收采用萃取水连续三效蒸发浓缩,间断蒸馏浓缩液工艺。具有生产连续化、产量高、质量好、占地面积少的特点。是当前世界普遍采用的生产民用丝PA6切片的典型工艺。 1.2二段聚合法 该法由前聚合与后聚合二个聚合管组成,主要用于生产高粘度的工业帘子布用丝。二段聚合法又分为前聚合高压、后聚合常压;前聚合加压、后聚合减压;前、后聚合均为常压三种方法。在三种方法中从聚合时间及产物中含单体和低聚体量等比较则以加压、减压聚合法最好(但设备投资大,操作费用最高),高压、常压次之,前、后聚合均为常压最差(但设备投资最省,操作费用最低)、巴陵石化

PP聚合工艺

题 目 :聚丙烯聚合工艺的研究 学院:化工学院 班级:高分子专10-2 姓名:朱东毅 学号:50

聚丙烯合成工艺的研究 摘要 摘要摘要 摘要中国聚丙烯的工业生产始于20世纪70年代,经过30多年的发展, 已经基本上形成了溶剂法、液相本体-气相法、间歇式液相本体法、气相法等多 种生产工艺并举,大中小型生产规模共存的生产格局,本文主要介绍了世界5大 类聚丙烯生产工艺,着重介绍了液相本体法聚丙烯工艺流程及控制条件。 Abstract Industrial production of polypropylene in China began in the 20th century, 70's, after 30 years of development, has been basically formed a solvent, liquid bulk - Gas Law, intermittent liquid bulk, gas phase, and other production processes simultaneously,the coexistence of large and small scale production patterns, the paper introduces the world's five major categories of polypropylene production process, focusing on the liquid flow Polypropylene

and control conditions 中国聚丙烯的工业生产始于20世纪70年代,经过30多年的发展,已经基本上形成了溶剂法、液相本体-气相法、间歇式液相本体法、气相法等多种生产工 艺并举,大中小型生产规模共存的生产格局。现在中国的大型聚丙烯生产装置以 引进技术为主,中型和小型聚丙烯生产装置以国产化技术为主。 聚丙烯,英文名称:Polypropylene,日文名称:ポリプロピレン分子 式:C3H6nCAS 简称:PP由丙烯聚合而制得的一种热塑性树脂。按甲基排列位置 分为等规聚丙烯(isotaeticPolyProlene)、无规聚丙烯(atacticPolyPropylene)和间规聚丙烯(syndiotatic PolyPropylene)三种。目前,聚丙烯的生产工艺按 聚合类型可分为溶液法、淤浆法、本体法和气相法和本体法-气相法组合工艺5大类。具体工艺主要有BP公司的气相Innovene工艺、Chisso公司的气相法工艺、Dow公司的Unipol工艺、Novolene气相工艺、Sumitomo气相工艺、Basell公司 的本体法工艺、三井公司开发的Hypol 工艺以及Borealis公司的Borstar工艺等。

乙烯装置主要设备

乙烯装置是以石油或天然气为原料,以生产高纯度乙烯和丙烯为主,同时副产多种石油化工原料的石油化工装置。裂解原料在乙烯装置中通过高温裂解、压缩、分离得到乙烯,同时得到丙烯、丁二烯、苯、甲苯及二甲苯等重要的副产品。 国内乙烯装置工艺流程简述: 1、裂解工序 接收来自界外的炼厂C3/C4、粗混合C4、C5循环物流、分离部分返回的循环乙烷/循环丙烷、芳烃提余油、轻石脑油、重石脑油、以及加氢裂化石脑油(HCN),分别送入SL-1型及SL-2型炉内,加稀释蒸汽(DS)进行裂解,得到的裂解气(即:氢气、甲烷、乙烯、乙烷、丙烯、丙烷、丁二烯、裂解汽油、裂解燃料油等组分的混合物)经废热锅炉急冷,油冷、水冷至常温,回收部分热量,并把其中大部分油类产品分离后送入后续工序。负责接收从界外来的高压锅炉给水并将其转化为压力、温度500~525℃的超高压蒸汽(VHS)。接收本装置分离工序返回的甲烷氢及从界外补充的碳三/碳四等物料经混合、汽化后做为裂解炉燃料气。 2、压缩工序 将来自裂解工序的裂解气,经五段压缩后,将压力提高到 MPag ,为深冷分离提供条件。裂解气在压缩过程中,逐段冷却和分离,除去重烃和水,并在三段出口设有碱洗,除去裂解气中的酸性气体,为分离系统提供合格的裂解气。 制冷系统由丙烯制冷系统和乙烯、甲烷二元制冷系统构成,为深冷分离提供-40℃,-27℃,-3℃、13℃四个级别的丙烯冷剂;-40℃~-135℃的二元冷剂。丙烯、二元制冷系统为多段压缩,多级节流的封闭循环系统。 3、分离工序 将压缩工序来的裂解气,经脱水、深冷、加氢和精馏等过程,获得高纯度的乙烯、丙烯,同时得到付产品H2、CH4、C3LPG、混合碳四馏份及裂解汽油。 4、汽油加氢 裂解汽油加氢工序的任务是将来自乙烯单元的裂解汽油中的C5S及C9+脱除,剩余的C6~C8中心馏份经过二次加氢后作为二段加氢产品,去芳烃装置,作为芳烃抽提的原料,C5S及C+9

苯乙烯工艺流程

苯乙烯装置工艺流程叙述 一、乙苯工艺流程简述 本工艺包设计的乙苯装置界区内包括烃化反应系统(亦称烃化反应系统)、苯回收系统、乙苯回收系统、多乙苯回收系统、烷基转移反应系统(亦称反烃化反应系统)。为解决反应器在再生时停产影响,也是为了规避放大风险,烃化反应系统设计成反应器R-2101A/B、加热炉F-2101A/B、换热器 E-2101A/B;E-2102A/B;E-2103A/B 两套并联操作。 来自罐区的新鲜苯、油水分离器的回收苯、精馏工段回收的循环苯在T-2201 苯回收塔汇合,用苯循环泵P-2201A/B 泵入苯进料气化器E-2101A/B 的壳程,管程的高压蒸汽将其加热而气化,气相苯分别进入两套苯换热器E-2103A/B 的壳程,与管程的高温反应器出料换热而被过热。过热后的苯被分成两股:主苯流和急冷苯流。主苯流进入反应器进料加热炉F-2101A/B 被加热到反应温度,进 入烃化反应R-2101A/B。 界区外的原料乙醇用乙醇进料泵P-2101A/B加压,进入工艺水换热器E-2204,与苯塔回流罐底部排出的油水混合物换热回收热量,温度升至接近泡点,导入E-2102A/B乙醇蒸发器,用高压蒸汽将其气化,分段进入两台并联的烃化反应器。 在R-2101A/B中,乙醇发生脱水反应生成乙烯与水蒸汽,继而苯和乙烯发生烃化反应,生成乙苯及少量二乙苯、多乙苯等。为稳定反应器的温度,每段催化剂床层之间都有与进料乙醇蒸气相混合的急冷苯进入,使反应温度在适当范围内。反应器出料依次通过苯换热器E- 2103A/B 管程和苯回收 塔再沸器E-2201 管程被冷却后,便进入苯回收塔T- 2201 进行精馏分离。T- 2201 塔顶馏出苯、水和轻组分尾气,塔底则采出粗乙苯。罐区来的新鲜苯用新鲜苯泵P—2302A/B 加压后通过乙苯/苯换热器冷E-2208与来自乙苯塔回流泵的产品热乙苯换热,进入苯塔回流罐V —2201,补充回流罐的液位。苯塔回流泵将回流罐的一部分苯打入T-2201塔顶。T-2201塔底采出的粗乙苯则送至乙苯回收塔T - 2202 进一步加工。 在T-2201塔顶共沸馏出的水冷凝进入回流罐V-2201,由于高温下苯与工艺水有乳化现象,将大部分是水的乳化液从回流罐底部导出,与乙醇进入反应器的量按1:1的比例排入工艺水换热器E-2204B 管程,将热量交换给进料乙醇,然后进一步进入工艺水冷却器E-2205壳程,用循环水冷却到40C -15C 消除乳化现象,进入油水分离系统,分出的工艺水经汽提脱苯后作为废热回收系统的补充水,苯则回用。 苯塔回流罐V-2201 导出的气相进入苯塔尾冷器,将水蒸汽与苯进一步冷凝下来,凝液自流到V-2201底部乳化液导出管,不凝气则通过苯塔的压力控制排放到反烃化加热炉F-2102进口,进一步利用回收其中的乙烯与苯。 在乙苯塔T-2202 中,塔顶气在乙苯塔冷凝器E—2207 管程被软水冷凝,进入乙苯塔回流罐V—2202。一部分作为回流液打回T—2202,另一部分热乙苯通过乙苯/苯换热器E—2208将热量传给来自罐区的新鲜苯,作为本单元的精制乙苯产品而输往苯乙烯单元或罐区,E—2202中的软水则被蒸 发成低压蒸汽送苯乙烯工段综合利用。 T —2202塔底采出物送入多乙苯(PEB)回收塔T-2203实现精馏分离。可循环组分二乙苯由T —2203塔顶馏出,通入PEB回收塔冷凝器E-2211管程,同壳程的水换热而被冷却冷凝。冷凝液在PEB回流罐V —2203中实现汽/液分离。二乙苯被泵送到F—2102导入反烃化反应系统进行烷基转移反应以增产乙苯。由V —2203析出的不凝气则被PEB塔真空泵P—2206A/B抽吸,从而使二乙苯回收塔T - 2203实现真空操作。T - 2203塔底产物多乙苯残油送至界外。 由二乙苯回流泵P-2205A/B排出的二乙苯与来自E—2208的新鲜苯汇合,一同进入反烃化加热炉F—2102对流段预热,先后进入反烃化加热器E—2104A与反烃化换热器E—2104B,被中压蒸汽完全气化,并回收反烃化出料热量,返回F—2102对流段,被进一步加热到反烃化反应温度,再被导入反烃化反应器R-2102。在R-2102中,PEB同苯发生烷基转移反应,生成乙苯。R-2102的出料先后通过反烃化换热器E—2104B的管程和反烃化反应器出料蒸汽发生器E-2105的管程而被冷却冷凝, 进而被导入反烃化产物闪蒸罐V—2205。在V —2205中,比苯更易挥发的组分从罐顶顶气相口逸出,经尾冷器E—2215 冷凝冷却后,排出系统。苯和比苯更重的组分(乙苯、多乙苯等)则由V—2205罐底排出,用闪蒸罐底泵P—2207送到苯回收塔T-2201。 催化剂再生:考虑切换方便与节省电能,不设置专门的再生气加热炉,催化剂再生系统的再生气加热炉

乙烯装置操作手册

目录 第一部分乙烯裂解单元 (2) 一、工艺流程简介 (2) 1. 装置的生产过程 (2) 2. 装置流程说明 (2) 二、设备列表 (3) 三、仪表列表 (5) 四、操作参数 (7) 五、联锁逻辑图 (8) 六、复杂控制说明 (9) 1. 比例控制 (9) 2. 分程控制 (9) 3. 串级控制 (10) 七、重点设备的操作 (10) 八、操作规程 (10) 1. 正常开工 (10) 2. 热态开车 (14) 3. 正常运行 (16) 4. 正常停车 (16) 5. 全装置停电 (17) 6. 冷却水中断 (18) 7. 锅炉给水故障 (19) 8. 压缩工段故障 (20) 9. 脱盐水中断 (20) 10. 急冷油中断(泵A坏掉) (21) 11. 蒸汽中断 (21) 12. 石脑油进料中断 (22) 13. 燃料气中断 (23) 14. 裂解炉辐射段炉管烧穿 (24) 15. 引风机故障 (24) 16. 项目列表 (25) 九、仿DCS操作组画面 (29) 1. 操作组画面 (29) 2. 流程图画面 (30) 十、乙烯装置裂解单元仿真PI&D图 (31) 十一、裂解单元DCS图&现场图 (39)

第二部分丙烯压缩制冷单元 (58) 一、工艺流程简介 (58) 二、设备列表 (59) 三、仪表列表 (61) 四、操作参数 (63) 五、联锁系统 (64) 六、操作规程 (65) 七、仿DCS系统操作画面 (76) 八、压缩机升速曲线 (77) 九、乙烯装置压缩单元仿真PI&D图 (78) 十、DCS&现场图 (86) 第三部分热区分离精制单元 (102) 一、工艺流程简介 (102) 1.装置的生产过程 (102) 3. 装置流程说明 (102) 二、设备列表 (103) 三、仪表列表 (104) 四、操作参数 (108) 五、复杂控制说明 (109) 六、联锁系统 (112) 1. MAPD加氢反应器联锁系统的起因与结果 (112) 2. 联锁逻辑图 (112) 七、操作规程 (113) 1. 装置冷态开车过程 (113) 2. 正常运行 (115) 3. 正常停车 (115) 4. 热态开车 (116) 5. 提量10%操作 (117) 6. 降量20%操作 (117) 7. 特定事故 (117) 8. 项目列表 (122) 八、仿DCS系统操作画面 (126) 1. 操作组画面 (126) 2. 流程图画面 (126) 九、热区分离单元仿真PI&D图 (127) 十、热区分离单元DCS图&现场图 (132)

PVA聚合工艺流程

第一章醋酸乙烯的溶液聚合工艺流程醋酸乙烯溶液聚合的工艺流程如图51所示。 首先把一定量的甲醇加入引发剂配制槽1中,开动搅拌器,再把称量好的偶氮二异丁腈徐徐投入,继续搅拌,待完全溶解后,取样分析偶氮二异丁腈的浓度。如果浓度达不到 1.2%,再补加甲醇或偶氮二异丁腈,浓度合格后,放入引发剂贮槽2中。为了防止高温下偶氮二异丁腈的分解,贮槽2的夹套通入-7℃的冷冻盐水保冷。引发剂溶液用双柱塞计量泵3连续加入预热器4。 图51 醋酸乙烯溶液聚合工艺流程图 1—引发剂配制槽2—引发剂贮槽3—定量泵4—预热器5—第一聚合釜6、8—尾气冷凝器9—第二聚合釜7、10—泵11—脱单体塔12—第二精馏塔 溶剂甲醇用泵也连续加入预热器4,其量用仪表自动调节。 单体醋酸乙烯经过流量自动调节后,也连续加入预热器4中。 预热器4为立式,内有五层泡罩式塔板,并且带有夹套。开车时,夹套内通水蒸汽,把三种物料加热到60℃,然后流入第一聚合釜5。正常运转中,夹套内蒸汽停止。聚合过程中产生的热量,把甲醇蒸发。甲醇蒸汽从聚合釜上升至预热器4中,在此与物料直接接触,甲醇冷凝放出热量把物料加热。在预热器中没有 冷凝的甲醇蒸汽继续上升至尾气冷凝器6中,用地下水冷却,甲醇冷凝液回流至 1

聚合釜5中,未凝气通过氮封(或液封)排至大气。 年产一万吨的聚乙烯醇聚合装置,聚合釜为两个系列(也可以为一个系列,聚合釜大,这里不再重复介绍),每个系列有两台串联的聚合釜。第一聚合釜5直径1.8米,筒体部分高4米,全容积10米3。聚合釜带有上下两段夹套。下段夹套开车时通水蒸汽或热水升温,正常运转时,可停止通蒸汽或热水。上段夹套在正常运转中通冷却水,把聚合釜上面空间的甲醇、醋酸乙烯蒸汽部分冷凝下来。第一聚合釜带有搅拌器,它由两根直径300毫米的不锈钢管和横梁组成。两根立管的中心距聚合釜的中心距离不等,一个为400毫米,另一个为744毫米。搅拌器转动时,由于两根立管的回转半径不同,一根管走大圆,另一根管走小圆,这样可使物料搅拌均匀,传热效果好,温度分布均匀。回转半径大的立管还起刮壁的作用,防止聚合物粘壁。搅拌器设有下轴承,保证搅拌器在转动中稳定。搅拌器的转速为每分钟8转。聚合釜的材质为1Cr18Ni9Ti不锈钢。第一聚合釜5的液面一般控制在2.7米高,上面还有1.3米高的空间。当釜内发生爆聚时,物料呈沸腾状态,这部分空间起缓冲作用,防止物料通过上升管流至预热器中。聚合釜上设有安全板(爆破膜),为椭圆形铝板,有十字形刻痕、耐压 1.5~2公斤/厘米2。当聚合过程发生爆聚,釜压上升,达到一定压力时,安全板破裂,将压力泄出,可以保护聚合釜的安全。 物料在第一聚合釜5中进行引发(诱导期约为20分钟)和初聚合,聚合率约20%。 在聚合釜内,除了醋酸乙烯的聚合反应外,还进行下列副反应: VAC+CH3OH—→CH3COOCH3+CH3CHO VAC+H2O—→CH3COOH+CH3CHO 副反应所生成的乙醛,能够从回流液中分析出来。在第一聚合釜的回流液中,开车初期为0.1%左右,正常运转时为0.03~0.06%左右;第二聚合釜的回流液中,开车初期乙醛含量约0.25%左右,正常盍中约为0.08~0.1%左右。开车初期乙醛含量大,因为新的不锈钢表面有杂质,促使了乙醛的生成。经过一段时间的运转,不锈钢表面钝化,乙醛生成量下降。 2

聚合工艺题库汇总

-判断题聚合工艺作业1 特种作业人员危险化学品安全作业聚合工艺作业[ 对] 1、干燥机发生断料后,如果是洗涤水泵跳闸所致,应立即打开洗胶罐补水阀,先恢复干燥机的正常进料。 [ 错] 2、汽提是直接通入水蒸汽,水蒸气既作为惰性气体,又作为加热介质的一种脱吸方法。[ 对] 3、爆炸并不是在达到着火的临界条件时就立即发生。 [ 错] 4、石油化工装置检修现场,可以用汽油等易挥发性物质擦洗设备或零部件。 [ 对] 5、生产中在聚合压力很低情况下,提高聚合压力,聚合反应温度则会有明显增高。 [ 对] 6、聚合车间和岗位严禁携带移动电话、照相机和录像机进入。 [ 对] 7、油品从液体变为固体的过程为凝固。 [错] 8、防护罩、安全阀不属于安全防护装置。 [ 错] 9、仪表风就是压缩空气。 [ 对] 10、密封油泵不能空运转。 [ 对]11、在对接地连接系统的维护工作中,应重点检查螺栓紧固接点,及时更换腐蚀了的垫片。[ 对] 12、用沸腾床干燥聚合物时,由于多数聚合物的热稳定性小,密度小,粒度细,因而限制了干燥气的流速和温度。 [ 对]13、安全阀进行校验和压力调整时,调整及校验装置用的压力表精度等级应不低于Ⅰ级。[错] 14、自由基聚合反应根据引发的方式不同,可分为热引发、光引发、辐射引发、引发剂引发和链引发。 [ 对] 15、聚合度越大,聚合物的分子量越大。 [ 错] 16、往复泵也可以用安装出口阀门的方法来调节流量。 [ 对] 17、凝胶渗透色谱法(GPC)较为常用的各种平均分子量及分子量分布宽度的测试方法。[ 错] 18、在列管换热器中腐蚀性流体应走壳程。 [ 对] 19、装置停工大检修就是对装置进行全面检查、检修和工艺改造等。 [ 对] 20、吹扫的标准:空气吹扫时,首先是保证气源的压力和吹扫时的流速,当吹扫时从排出口流体中见不到颜色、混浊固体物,或者对塔槽类来说,其内部无沉淀物、异物,其吹扫即可停止。[错] 21、生产中膨胀干燥机突然断料,极易引起聚合物塑化着火,其原因是断料后膨胀干燥机压力直线上升所致。 [ 错] 22、当聚合釜系统出现超压时,必须打开事故阀。 [ 错] 23、演练要素中宜明确应急演练的规模、方式、频次、范围、内容、组织、评估、总结等内容。 [ 错] 24、生产经营单位应当制定本单位的应急预案演练计划,根据本单位的事故预防重点,每半年至少组织一次综合应急预案演练或者专项应急预案演练。 [ 错] 25、单位要根据需要,没有必要引进、采用先进适用的应急救援技术装备。 [ 对] 26、现场处置即根据事故情景,按照相关应急预案和现场指挥部要求对事故现场进行控制和处理。 [ 错] 27、对于危险性较大的重点设备、重点岗位和重点场所,生产经营单位应当制定重点工作岗位的现场处置方案。 [ 对] 28、二氧化硫会引起酸雨。 [ 对] 29、设备出厂检修,应进行充分置换,以防治污染物转移。 [ 对] 30、接触危险化学品的废包装物应作为危险废物处置。 [ 对] 31、工业废水包括生产废水和生产污水。 [ 对] 32、氧含量高于40%时,会造成氧中毒,长期吸入可能发生眼损害甚至失明。

高分子材料聚合工艺综述

高分子材料聚合工艺综述 姓名:王庆阳 班级:高分子材料与工程1301班 学号:0707130104

高分子材料聚合工艺综述 高分子材料与工程1301班王庆阳 0707130104 摘要:介绍高分子材料的主要工业合成工艺,以及产品的形貌及使用性能。 关键词:高分子材料;合成工艺;自由基聚合;缩合聚合;逐步加成聚合 一、前言 高分子材料作为新时期的全新全能型材料,是现代人类发展的重要支柱,是发展高新科技的基础与先导,高分子材料的应用将会使人类支配改造自然的能力和社会生产力的发展带到一个新的水平,对人类的发展将会出现前所未有的促进。 而作为高分子材料生产的工业基础,高分子材料的合成工艺及其重要,因为它不仅关乎到高分子材料后续产品的性能,并且易于改良、优化从而提高材料的综合性能;因此,本文将对高分子材料的主要合成工艺,即:自由基聚合工艺、缩合聚合工艺、逐步加成聚合工艺,作简单的探讨,为今后在高分子材料工业合成方面的学习及工作奠定基础。 二、自由基聚合工艺 2.1综述 自由基聚合反应是当前高分子合成工业中应用最广泛的化学反应之一。工业中,我们将自由基聚合工艺定义为:单体借助于光、热、辐射、引发剂的作用,使单体分子活化为活性单体自由基,再与单体连锁聚合形成高聚物的化学反应;通过高分子化学的学习,我们知道自由基聚合化学反应主要包括链引发、链增长和链终止三个“基元反应”;同时,在链引发阶段,我们通常选择引发剂作为产生自由基的物质,并通过改变自由基的种类来适应不同的聚合生产工艺。 通常而言,我们将自由基聚合工艺,以实施方法的为分类标准,继续细分为本体聚合、乳液聚合、悬浮聚合和溶液聚合。每种聚合方法聚合体系、产品形态、产品用途各具特色,具体可见表2-1高聚物生产中采用的聚合方法、产品形态与用途。 下面,我们将对这几种自由基聚合工艺的聚合体系组成、产品形貌及性能、适用范围做详细介绍。

第三章 自基聚合生产工艺

第三章自由基聚合生产工艺 本章主要内容: 3.1 自由基聚合工艺基础和本体聚合生产工艺 3.2 悬浮聚合生产工艺 3.3 溶液聚合生产工艺 3.4 乳液聚合生产工艺 重点:自由基聚合工艺基础 难点:无 3.1 自由基聚合工艺基础和本体聚合生产工艺 3.1.1 自由基聚合工艺基础 自由基聚合反应定义 单体借助于光、热、辐射、引发剂的作用,使单体分子活化为活性自由基,再与单体连锁聚合形成高聚物的化学反应。 ?单体类型: 主要是乙烯基单体、二烯烃类单体 ?聚合物特点:碳-碳为主链的线形高聚物、无定形聚合物;T g低于室温的常温为弹性体用作橡胶;T g高于室温的常温为塑性体(合成树脂)用作塑料、合成纤维、涂料。 自由基聚合反应的特点 ①整个聚合过程分为链引发、链增长、链终止,各步反应速率和活化能相差很 大; ②高分子瞬间形成,而产品的相对分子质量不随时间变化; ③体系内始终由单体和高聚物组成,产物不能分离; ④反应连锁进行,转化率随时间的延长而增加; ⑤反应是不可逆的。 自由基聚合反应的分类

按参加反应的单体种类分为: 自由基均聚合:只有一种单体参加的自由基聚合反应。常见的有:LDPE、PMMA、PVC、PV AC、PS等 自由基共聚合:两种以上单体同时参加的自由聚合反应。常见的有:乙丙橡胶、丁苯橡胶、丁腈橡胶、SBS 、ABS等 自由基聚合反应的重要地位 最典型;最常见;最成熟;经自由基聚合获得的高聚物产量占总产量的60%以上,占热塑性树脂的80% 自由基聚合反应的实施方法 本体聚合、乳液聚合、悬浮聚合、溶液聚合; 聚合方法的选择主要取决于根据产品用途所要求的产品形态和产品成本。 自由基聚合引发剂 除了苯乙烯本体聚合是热引发聚合,其他单体在工业上都是在引发剂引发聚合。 ?引发剂种类 主要有三大类:过氧化物类、偶氮化合物类、氧化还原引发体系 过氧化物类: 通式R-O-O-H 或R-O-O-R,R——为烷基、芳基、酰基、碳酸酯基、磺酰基。分子中含有—O—O—键,受热后断裂成相应的两个自由基,初级自由基主要用来引发单体,成为单体自由基,此外,还发生副反应。 偶氮类: 偶氮二异丁腈(AIBN)、偶氮二异庚腈(A VBN) 氧化还原引发体系: 特点:氧化-还原体系产生自由基的过程是单电子转移过程,即一个电子由一个

乙烯装置简介和重点部位及设备

编号:SM-ZD-46030 乙烯装置简介和重点部位 及设备 Organize enterprise safety management planning, guidance, inspection and decision-making, ensure the safety status, and unify the overall plan objectives 编制:____________________ 审核:____________________ 时间:____________________ 本文档下载后可任意修改

乙烯装置简介和重点部位及设备 简介:该安全管理资料适用于安全管理工作中组织实施企业安全管理规划、指导、检查和决策等事项,保证生产中的人、物、环境因素处于最佳安全状态,从而使整体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。 一、装置简介 (一)装置发展及其类型 1.装置发展 乙烯是石油化工的重要基础原料,乙烯装置是石油化工生产有机原料的基础,是石油化工的龙头,它的规模、产量、技术,标志着一个国家的石油化学工业的发展水平。乙烯生产装置起源于1940年,美孚公司建成了第一套以炼厂气为原料的乙烯生产装置,开创了以乙烯装置为中心的石油化工历史。50年代,德国、日本、英国、前苏联、意大利等国家相继建立了石油化工企业。 1960年世界乙烯产量为2910kt,1970年为19760kt,1980年达到34020kt,1990年为56300kt,到1997年世界乙烯生产能力接近86900kt,产量达78500kt。目前世界上乙烯生产的主要技术是管式炉蒸汽热裂解和深冷分离流程。

图解全套乙烯装置工艺流程

图解全套乙烯装置工艺流程 (一)工艺装置 –1.乙烯装置(Steam Cracker) –2.C4选择性加氢和烯烃转化(SHU/OCU) –3.汽油加氢装置(GTU or DPG) (二)附属装置 –1.化学品储存

–2.中间罐(粗汽油、粗碳四) –3.雨水处理系统 –4.排放系统(不包括火炬头系统) –5.开车用乙烯和丙烯加热器 –6.含油污水和废水收集系统和平衡罐–7.污油处理系统 –8.BFW、蒸汽和凝液系统 –9.废碱氧化单元 –10.碱储存和注入系统 –11.安全淋浴/洗眼器的水系统 –12.燃料系统 –13.公用水系统 –14.PA、IA –15.N2 –16.CW –17.消防水系统包括消防栓、消防炮等(三)工艺流程简介 ?1. 乙烯装置 ?2. SHU/OCU ?3. GTU ?4. 废碱氧化 ?5. 火炬排放系统

1.乙烯装置 ?工段: –裂解炉、急冷、压缩、冷分离、热分离、制冷?裂解气主要组成: –H2 、 –CH4 、 –碳二(C2H2、C2H4、C2H6) –碳三(C3H6、C3H8、MAPD) –C4 –C5 –C6~C8 –C9+ ?急冷区 –包括急冷油塔、急冷水塔、稀释蒸汽发生系统。 ?主要作用: –使裂解气快速降温,防止聚合。 –回收热量。 –发生稀释蒸汽。 –轻重燃料油汽提塔回收轻组份并降低QO的粘度。

?压缩区 –包括压缩机、碱洗、凝液汽提塔、裂解气干燥。 ?主要作用: –提高裂解气压力(1.4——38kg/cm2)。 –脱除酸性气CO2、H2S。 –脱除裂解气中的水分,防止冷区堵塞 ?冷区

–包括冷箱、脱甲烷塔系、脱乙烷塔、碳二加氢、乙烯塔。 ?主要作用: –分离出氢气、甲烷、乙烯和乙烷、甲烷化。 –采用冷箱的目的是将板翅式换热器集成在一起,尽量减少外部配管,降低冷损失。 –绝对禁止固体颗粒进入冷箱,若由于痕量水引起堵塞,可采用注甲醇以溶解。 ?热区 –包括脱丙烷塔、C3加氢、丙烯塔、脱丁烷塔。 ?主要作用: –生产丙烯、丙烷、混合C4、粗汽油。

乙烯生产废水处理技术与工艺

乙烯生产废水处理技术与工艺 乙烯生产主要利用石脑油、加氢尾油、直馏轻柴油作原料,包括乙烯生产装置、汽油加氢装置、丁二烯装置、芳烃抽提装置、聚乙烯装置、(HDPE/LLDPE)环氧乙烷/乙二醇(EO/EG)装置、丁幸醇装置、丙烯酸及酯装置、顺丁橡胶、苯酚丙酮装置以及双酚A装置等装置生产中将产生大量的污水。由于国家对环保的重视,要求各工业企业的污水不只是达到行业排放标准,而是要求达到规定的排放标准排放,着就使炼油化工企业在污水处理上的难度增加。乙烯废水中COD主要是含烃类、醇类、醛类、羧酸类、酚类、腈类所提供的,废水的性质通常为COD高、BOD低,BOD/COD的比值小于0.3,生化性能很差,所以必须采用适当的工艺技术,对高浓度的COD进行削峰,提高BOD/COD的比值,提高其生化性,使处理后的出水达到国家现在要求的综合排放标准8978-1996一级标准,或GB18918-2002一级A标准直接排放,本公司采用二级即“LPC物化+LPCA生化”处理。 1.工艺流程及功能 1)LPC物化进行COD削峰 本公司在乙烯废水处理中,采用自有的“发明专利”技术LPC法(物理化学凝聚法污水处理方法),和国家科技部“八五攻关”项目的水处理混/絮凝剂---PPA(混凝剂)、PPM(絮凝剂)进行物化处理,将乙烯污水中的高浓度污染物质进行高效混凝和絮凝,通过高效固液沉降分离器,将混/絮凝包裹后的各类不可溶污染物质和30%的可溶性污染物质有效地分离,将COD控制在300--500mg/l左右,使污水平稳进入后级生化处理系统。 2)LPCA生化处理确保出水达标 乙烯联合装置废水是一种高浓度、高污染、高色度的“三高”废水,其污染物成分十分复杂。虽然LPC物化处理时,已将大部分污染物质的峰值“削去”,但是,在深度处理时,如常用普通生物法,由于其处理系统的溶解氧不可能高于2mg/L,氧的传递速度慢,使得生物降解石化这种高难度废水的时间很长,甚至达到几十小时,处理系统占地大、处理成本很高。而且由于普通生物法中菌类的活性低,对于芳烃、环烷烃和酚类及其衍生物降解困难,处理后的水质很难达到国家规定的排放标准,更谈不上回用。 所以,我国石油工业从国外引进了“纯氧曝气污水处理工艺”及其配套装置,利用石化企业空分装置分离氮气用于防爆后剩余的纯氧来进行污水处理过程中的曝气,提高污水中的氧含量,增强生物的活性、传质速率,,提高降解能力和处理效果。但纯氧曝气法对于含有较高浓度烃类物质的系统易于产生燃烧和爆炸。 为了克服上述工艺的不足,有效地处理石油化工废水,我们在深度处理段工艺选择LPCA 法(连续式空气曝气污水处理方法),该工艺可以灵活在A/0、A2/O工艺中采用富氧空气曝气,达到纯氧曝气法的处理效果,却克服了纯氧曝气法对于含有较高浓度烃类物质的系统易于产生燃烧和爆炸的危险。 2.各工艺的优势 1)LPC物化法的优势: ◆LPC法能确保将乙烯生产污水中的高浓度污染物质削峰,使出水水质平稳保持在二级生物处理需要的水质条件;其配套的设备处理效率高、运行成本较少。 ◆LPC法配套使用的国家“八五”攻关产品的水处理破乳剂—PPA、PPM具有高效的去污和脱色能力,并能将乙烯污水中的乳化油破乳,避免油乳进入二级生物处理段后,将生物膜或菌胶团包裹、覆盖,使水中的溶解氧不能进入菌胶团,造成生物代谢受阻,传质速度减慢,乃至终止,轻则严重影响处理效果,重则使菌类缺氧死亡的问题,这是二级生物处理装置

PMMA溶液聚合生产工艺

摘要:本文阐述了用MMA溶液聚合法生产PMMA的工艺特点以及各种添加剂的作用,对于PMMA的生产具有指导意义。 关键词:溶液聚合工艺 用MMA生产PMMA的聚合方法有本体法、悬浮法、乳液法和溶液法。前三种聚合法早已在国内外实现工业化生产,而我公司的溶液法生产模塑料则是由美国聚合物技术公司开发的新工艺。 1工艺简述 本溶液聚合法生产工艺包括下列几个工段 1.1进料及添加剂制备 本工段包括三个单独的系统即单体制备和循环进料系统;第一级反映器进料、进料添加剂混合制备系统;添加剂制备系统。 1.2聚合脱挥发和循环回收 脱气的进料单体和循环液经过连续计量和过滤进入第一级反映器。在第一级反映器中部分聚合的物料用第泵连续输送到第二级反应器。脱挥发器是在真空下操作,用以脱除熔融粘稠聚合物中的未反应单体和溶剂。脱除的溶剂和未反应的单体经进化冷凝,然后循环回到进料脱器系统进而进入第一级反应器。 用聚合物挤压泵将聚合物从脱挥发器中经过静态混合器送入精制线。 1.3精制 经过脱挥发后熔融的聚合物经聚合物挤压泵从脱挥发室中泵出,由尾线添加剂计量泵将尾线添加剂注入到熔融的聚合物中。 熔融的聚合物从模头送到造粒系统,颗粒在一个振动的三网分离器中分出等级,将粉尘和较大的颗粒除掉,追终产品颗粒被输送到颗粒运输和储存工段。 1.4导热油系统 导热油系统为装置提供所需的全部热量。 2溶液聚合法生产工艺特点 ①原料及能量消耗少,生产成本低。 ②生产稳定性和安全性好。 ③公司的溶剂聚合工艺通过控制进料比例和使用高浓度溶剂,有效地控制了反应速度并能及时移出反映热,提高了该工艺的安全程度。 ④通过选择组分和操作条件,保证了在容器壁上或输送管线中不会有聚合物积存。 ⑤该反应系统能有效地利用引发剂、共聚物和链转移剂,并且在脱挥发过程减少了低分子量馏分的生成,保证了产品质量。 ⑥不需污水处理设施。 ⑦该工艺用反应热来加热第一反应器的进料,节约了能源。 ⑧用一个静态混合器来混合加入到精制的熔融聚合物中的尾线添加剂,混合不需要使聚合物受到剪切力或热损坏即可完成。因此消除了降解或黑色斑点的生成。 3溶剂和添加剂的作用 3.1溶剂甲苯 ①由于甲苯的加入降低了反应物的粘度从而控制了凝胶效应,有效地移除了反应热。 ②大量甲苯的加入也大大提高了溶液聚合系统的安全性和操作的简便性。 ③在溶液聚合过程中,链与溶剂转移是最重要的。链与溶剂转移的结果,减少了由于歧化而终止聚合物链的量,因此,增加了最终聚合物的热稳定性。 ④甲苯还可以防止聚合物在反应器中和其它设备上聚合。 3.2链转移剂正十二烷基硫醇 链与链转移剂的转移是系统中发生的主要转移反应,是一种高度活波的链转移剂,优先终止增长的单体链,生成一个稳定的端基,这样就使由于歧化机理而发生的终止的量最少,改善了聚合物的热稳定性。通过改善的量可调整产品的分子量。 3.3引发剂 加入到聚合进料物流中的引发剂在反应温度下分解,生成活波的自由基引发聚合。 实验表明,引发剂的用量影响着反应速度,聚合速率与引发剂浓度平方根成正比,动力学链长与引发剂浓度平方根成反比。因此确定引发剂的用量时要从这两个方面进行综合考虑。 4发展方向 用单体代替溶剂,聚合方法界于溶液和本体之间,这样相对来说就减少了溶剂的用量或者杜绝了溶剂,对产品质量的提高也是非常直接的,因为溶剂的存在或多或少都带入产品中,即使能全部移出必须增加成本,用单体代替溶剂,即改善产品质量提高生产效率又节约了能源。 需要解决的技术关键是: 4.1聚合控制过程 ①反应热的移除。 在聚合反应过程中,反应热的移出始终是难题,只要反应热移出及时,聚合反应就是在可控范围内,这些和物料的配比和、反应条件、设备的设计都是有关的。 ②转化率的控制。 当反应热能及时有效地移出后,就要在物料的配比和、反应条件上下工夫了。这还涉及到引发剂和链转移剂的选择,它们之间的配比,还有和工艺条件的配和。 4.2循环回收过程 防止聚合物产生。在循环回收过程中由于单体的大量的存在,防止聚合是首要任务。 5结束语 连续溶液聚合法生产PMMA有很多的优点,技术日趋成熟,在工业上已得到广泛的应用。 参考文献: [1]潘祖仁.《高分子化学》,化学工业出版社. [2]大森英三.《丙烯酸酯及其合成物》,化学工业出版社. PMMA溶液聚合生产工艺苏建国(黑龙江中盟龙新化工有限公司) 4.3安全可靠。原瓦斯抽采泵电源柜故障率高,接触器损耗快,变频改造后,性能优越保护齐全,操作简单、界面直观,可实时观察电机的各种参数,运行更可靠。 4.4延长设备使用寿命。启动转矩大、起停平稳,能实现瓦斯抽采泵电机在各种负载情况下的平滑启动、调速、停车等功能,消除了机械及电气冲击,通过对水环式真空泵的调频,使泵体在低负荷下运转,增加了瓦斯泵的使用寿命。 4.5节能降耗。实现变频无级调速,原运行方式下消耗的功率为额定功率(220kW)的70%,变频改造后运行方式为额定功率的20%左右,每小时可节电110kWh。 4.6改造简单、施工周期短、投入资金少。 5结论 经过对瓦斯抽采泵电控系统进行变频改造后,通过控制输入电源的频率即可改变电机的转速,从而控制瓦斯的流量。既可以保证瓦斯发电高效地运行,又可以杜绝资源浪费和环境污染。同时运行更安全、可靠,消除了机械及电气冲击,延长设备的使用寿命,节能降耗。 参考文献: [1]张燕宾.变频器的主要电路及外接器件的选择,变频技术应用2010第二期. [2]王栋.变频节能技术应用分析,中小企业管理与科技,2009年10月下旬. 实用科技 (上接第261页) 262

相关文档
最新文档