仪器分析笔记 《原子吸收光谱法》..
仪器分析教案第五章原子吸收光谱法

23:52:01
3)富燃性火焰:燃气与助燃气比例大于化学计量比, 燃助比大于1:3。这种火焰燃烧高度较高,温度较 低,噪声较大。但由于燃烧不完全,火焰呈强还原 性气氛,金属氧化物易被还原产生基态原子。适用 于易形成难熔氧化物的元素,如Mo,Cr等。 空气—乙炔火焰是原子吸收分析中最常用的火焰。
☆☆火焰原子化法的优点:重现性好、火焰稳定性 高、背景噪声低、易于操作的特点。 缺点:原子化效率仅为10%左右,灵敏度较低。
23:52:01
• 原子吸收光谱和原子发射光谱的比较 • 1.原子吸收法的选择性高,干扰较少且易于克服。 • 由于原于的吸收线比发射线的数目少得多,这样 谱线重叠的几率小得多。而且空心阴极灯一般并 不发射那些邻近波长的辐射线经,因此其它辐射 线干扰较小。 • 2.原子吸收具有较高的灵敏度。 • 在原子吸收法的实验条件下,原子蒸气中基态原 于数比激发态原子数多得多,所以测定的是大部 分原子。 • 3.原子吸收法 比发射法具有更佳的信噪比。 • 这是由于激发态原子数的温度系数显著大于基态 原子。
锐线光谱,光的强度稳定且背景小。
☆空心阴极灯、蒸气放电灯、无极放电灯 ☆空心阴极灯应用最广泛
直流电压 300V~500V
23:52:01
Anode Ne+
Optically transparent window
Cathode
M
M* →M + hn M
Shield
23:52:01
空心阴极灯的发射光谱主要是阴极元素的光谱, 用不同的待测元素作阴极,就制成相应待测元素的 空心阴极灯。
物,如AsH3 、SnH4 、BiH3等。这些氢化物经载气送入石
英管后,进行原子化与测定。
23:52:01
仪器分析 复习 重修 自学 预习5 原子吸收光谱分析法

原子吸收光谱分析法
原子吸收基本原理
第一节
一、共振线 二、基态原子数与原子化温度 三、定量基础
历史
原子吸收光谱法是一种基于待测基态原子对特征谱线的 吸收而建立的一种分析方法。这一方法的发展经历了3个发 展阶段:
原子吸收现象的发现
1802年Wollaston发现太阳光谱的暗线; 1859年Kirchhoff和 Bunson解释了暗线产生的原因;
试样雾滴在火焰中,经蒸发,干燥,离解(还原)等过 程产生大量基态原子。火焰原子化的方法就是使试样变成 原子蒸汽。 火焰温度的选择: (a)保证待测元素充分离解为基态原子的前提下,尽量 采用低温火焰;因为火焰温度越高,产生的热激发态原子 越多,则基态原子数量减少;但太低温就会使盐类无法解
离,降低灵敏度。
I
Ve
I 0V e KV L dv;当发射线宽《吸收线宽时,可以认为
0 Ve
KV 是常数,相当峰值吸收系数K 0:I e K 0 L 于是A lg 1 e
K0L
I
0
0V
dv
0.4343 K 0 L
K0=?
吸收线轮廓仅取决于多普勒变宽时 1 KV dv 2 ln 2 K 0v,结合积分吸收式 KV dv的值 2 ln 2 e 2 解得:K 0 fN 0 v mc
太阳光
暗 线
第一激发态
E
热能
基态
E = h = h
C
发现钠蒸汽发出的光线通过温度比较低的钠蒸汽,会引起 钠光的吸收,并且钠发射线和暗线在光谱中位置相同,由此 判断太阳连续光谱中的暗线是太阳外层中的钠原子对太阳光 谱中钠辐射吸收的结果
原子吸收光谱基本原理:
仪器分析笔记 《原子发射光谱分析》

第三章原子发射光谱分析§3.1 光化学分析法概述3.1.1 光化学分析法概述1、光学分析法的分类光学分析法分为光谱法和非光谱法两类。
✓光谱法:基于物质与辐射能作用时,测量由物质内部发生量子化的能级之间的跃迁而产生的发射、吸收或散射辐射的波长和强度进行分析的方法。
✓非光谱法:不涉及物质内部能级的跃迁,是基于物质与辐射相互作用时,电磁辐射只改变了传播方向、速度或某些物理性质,如折射、散射、干涉、衍射、偏振等变化的分析方法(即测量辐射的这些性质)。
属于这类分析方法的有折射法、偏振法、光散射法、干涉法、衍射法、旋光法和圆二向色性法等。
2、电磁波谱电磁辐射按照波长(或频率、波数、能量)大小的顺序排列就得到电磁波谱。
表3-1-1 各光谱区的光谱分析方法3、各种光分析法简介A、发射光谱法∙γ射线光谱法∙x射线荧光分析法∙ 原子发射光谱分析 ∙ 原子荧光分析法 ∙ 分子荧光分析法 ∙ 分子磷光分析法 ∙ 化学发光分析 B 、吸收光谱法 ∙ 莫斯堡谱法∙ 紫外可见分光光度法 ∙ 原子吸收光谱法 ∙ 红外光谱法∙ 顺磁共振波谱法 ∙ 核磁共振波谱法 C 、散射∙ Roman 散射4、原子发射光谱分析法的特点①可多元素同时检测:各元素同时发射各自的特征光谱;②分析速度快:试样不需处理,同时对几十种元素进行定量分析(光电直读仪); ③选择性高:各元素具有不同的特征光谱;④检出限较低:10~0.1μg ⋅g -1(一般光源);ng ⋅g -1(ICP ) ⑤准确度较高:5%~10% (一般光源); <1% (ICP);⑥ICP-AES 性能优越:线性范围4~6数量级,可测高、中、低不同含量试样; ⑦非金属元素不能检测或灵敏度低。
3.1.2 原子光谱与原子光谱分析法直接相关的原子光谱理论,主要指原子光谱的产生和谱线强度理论,这就是光谱定性、定量分析的理论依据。
1、原子光谱的产生量子力学认为,原子光谱的产生,是原子发生能级跃迁的结果,而跃迁几率的大小则影响谱线的强度,并决定了跃迁规则。
仪器分析第十四章 原子吸收光谱法

火焰原子化法原子化器
雾化器与雾化室
作用: 作用:将试 液雾化。 液雾化。 要求:喷雾 要求: 稳定、 稳定、雾滴 细小、 细小、均匀 和雾化效率 高,约(10%) 约 %
火焰原子化法原子化器
燃烧器
作用:形成火焰, 作用:形成火焰, 使进入火焰的试 样微粒原子化。 样微粒原子化。 火焰组成影响测 定灵敏度、 定灵敏度、稳定 性和干扰, 性和干扰,对不 同元素选择不同 的火焰。乙炔的火焰。乙炔 空气焰最常用。 空气焰最常用。
原子的量子能级 描述量子能级的形式: 描述量子能级的形式:光谱项 n2S+1LJ n:主量子数,核外电子的分布层次,0,1,2… :主量子数,核外电子的分布层次, , , L:总角量子数,电子的轨道性状, 0,1,2…, :总角量子数,电子的轨道性状, , , , 相应的符号为S、 、 、 相应的符号为 、P、D、F S:总自旋量子数,价电子自旋量子数的矢量和, :总自旋量子数,价电子自旋量子数的矢量和, 0,±1/2,±1,±3/2 , , , J:内量子数,电子运动过程中,轨道磁矩与自 :内量子数,电子运动过程中, 旋磁矩耦合形成的能级分裂,取值L+ , 旋磁矩耦合形成的能级分裂,取值 +S, L+S-1, … L-S。 + - , - 。 2S+1:光谱项的多重性。 光谱项的多重性。 光谱项的多重性
一种绝对测量方法,现在的分光装置无法实现。 一种绝对测量方法,现在的分光装置无法实现。
原子吸收法的定量基础 2.峰值吸收 2.峰值吸收 钨丝灯光源和氘灯,经分光 钨丝灯光源和氘灯, 后,光谱通带0.2 nm。而原子吸 光谱通带 。 收线的半宽度为10 收线的半宽度为 -3 nm。 。 用一般光源照射时,吸收光强 用一般光源照射时, 度变化仅为0.5%。灵敏度极差 。 度变化仅为 1955年瓦尔什(Walsh) 1955年瓦尔什(Walsh)提出用测定峰值吸收系数 年瓦尔什 K0 来代替积分吸收系数 υ的测定。 来代替积分吸收系数K 的测定。 锐线光源测量谱线的峰值吸收 并采用锐线光源测量谱线的峰值吸收。 并采用锐线光源测量谱线的峰值吸收。
仪器分析笔记 《原子吸收光谱法》

第四章 原子吸收光谱法——又称原子吸收分光光度法§ 原子吸收分光光度法(AAS )概述概述 1、定义原子吸收分光光度法是基于从光源辐射出具有待测元素特征谱线的光,通过试样蒸气时被蒸气中待测元素基态原子所吸收,由辐射谱线被减弱的程度来测定试样中待测元素含量的方法。
2、特点灵敏度高:在原子吸收实验条件下,处于基态的原子数目比激发态多得多,故灵敏度高。
检出限可达 10—9 g /mL (某些元素可更高 ) 几乎不受温度影响:由波兹曼分布公式0q E q q KTN g eN g -=知,激发态原子浓度与基态原子浓度的比值q N N 随T ↗而↗。
在原子吸收光谱法中,原子化器的温度一般低于3000℃,此时几乎所有元素的1%q N N =。
也就是说,q N 随温度而强烈变化,而0N 却式中保持不变,其浓度几乎完全等于原子的总浓度。
较高的精密度和准确度:因吸收线强度受原子化器温度的影响比发射线小。
另试样处理简单。
RSD 1~2%,相对误差~%。
选择性高:谱线简单,因谱线重叠引起的光谱干扰较小,即抗干扰能力强。
分析不同元素时,选用不同元素灯,提高分析的选择性应用范围广:可测定70多种元素(各种样品中)。
缺点:难熔元素、非金属元素测定困难,不能同时多元素分析。
3、操作①将试液喷入成雾状,挥发成蒸汽;②用镁空心阴极灯作光源,产生波长特征谱线;③谱线通过镁蒸汽时,部分光被蒸汽中基态镁原子吸收而减弱;④通过单色器和检测器测得镁特征谱线被减弱的程度,即可求得试样中镁的含量. 4、原子吸收光谱分析过程确定待测元素。
选择该元素相应锐线光源,发射出特征谱线。
试样在原子化器中被蒸发、解离成气态基态原子。
特征谱线穿过气态基态原子,被吸收而减弱,经色散系统和检测系统后,测定吸光度。
根据吸光度与浓度间线性关系,定量分析。
5、与发射光谱异同点①原子吸收光谱分析利用的是原子的吸收现象,发射光谱分析则基于原子的发射现象;②原子的吸收线比发射线的数目少得多,这样谱线重叠的概率就小得多;③原子吸收法的选择性、灵敏度和准确性都好。
仪器分析 第七章 原子吸收光谱法

第七章原子吸收光谱法1.原子吸收光谱的历史2.原子吸收光谱的特点3.原子吸收光谱与紫外可见吸收光谱的区别4.原子吸收光谱分析过程第一节概述1. 原子吸收光谱的历史◆1802年,沃拉斯顿(Wollaston)在研究太阳连续光谱时,首次发现太阳连续光谱中出现暗线。
◆1817年,夫琅和费(Fraunhofer)研究太阳连续光谱时再次发现这些暗线,但无法解释暗线产生的原因。
2/1363/1361825年,法国著名哲学家孔德在哲学讲义中说“恒星的化学组成是人类绝对不能得到的知识”◆1859年,本生、基尔霍夫研究碱金属和碱土金属火焰光谱时,发现钠蒸气发出的光通过温度较低的钠蒸气时,会引起钠光的吸收,并且钠在光谱中位置相同。
发射线与暗线D◆太阳光谱暗线:太阳外围大气圈中钠原子对太阳光谱中钠辐射特征波长光进行吸收的结果。
4/1365/136太阳中含有94种稳定和放射性元素:氢(71%)、氮(27%)、氧、碳、氖、硅、铁等。
◆1955年,澳大利亚物理学家Walsh(沃尔什)发表了著名论文《原子吸收光谱法在分析化学中的应用》,奠定了原子吸收光谱法的基础。
◆1960年以后,原子吸收光谱法得到迅速发展,成为微量、痕量金属元素的可靠分析方法。
6/1362. 原子吸收光谱法的特点✓检出限低:10-10~10-14g。
✓准确度高:1%~5%。
✓选择性好:一般情况下共存元素无干扰。
✓应用范围广:可测定70多种元素。
✗缺点:难熔元素、非金属元素测定困难,不能实现多元素同时分析。
7/1363. 原子吸收与紫外可见吸收的区别✓相同点:利用物质对辐射的吸收进行分析。
✗不同点:◆吸收机理不同:紫外可见为溶液中分子或离子宽带吸收,带宽为几纳米至几十纳米;原子吸收为气态基态原子的窄带吸收,带宽仅为10-3nm。
◆光源不同。
◆试样处理、实验方法及对仪器的要求不同。
8/1364. 原子吸收光谱分析过程◆确定待测元素。
◆选择该元素相应锐线光源,发射出特征谱线。
仪器分析教程知识点总结

仪器分析教程知识点总结一、光谱分析1. 原子吸收光谱法原子吸收光谱法是一种常用的分析技术,主要用于测定金属元素的含量。
其原理是通过测量金属元素的特征吸收线强度来定量分析样品中金属元素的含量。
在进行原子吸收光谱法实验时,需要掌握标准曲线法、内标法等定量分析方法,以及样品的预处理和稀释方法。
2. 紫外-可见吸收光谱法紫外-可见吸收光谱法是用于测定有机化合物和无机化合物的含量和结构的方法。
通过测量样品在紫外-可见光区域的吸收强度,可以获得样品的吸收光谱图,从而分析样品的成分和结构。
在进行紫外-可见吸收光谱法实验时,需要掌握分光光度计的操作方法、样品的制备和处理方法,以及吸收峰的解释和定量分析方法。
3. 红外光谱法红外光谱法是用于测定有机化合物和无机化合物的结构和功能基团的方法。
通过测量样品在红外光区域的吸收强度,可以获得样品的红外光谱图,从而分析样品的结构和功能基团。
在进行红外光谱法实验时,需要掌握红外光谱仪的操作方法、样品的制备和处理方法,以及吸收峰的解释和定量分析方法。
二、色谱分析1. 气相色谱法气相色谱法是用于分离和检测样品中有机化合物的方法。
通过样品分子在固定相和流动相之间的分配行为,可以实现样品分离和检测。
在进行气相色谱法实验时,需要掌握气相色谱仪的操作方法、固定相和流动相的选择和配制方法,以及色谱柱的使用和维护方法。
2. 液相色谱法液相色谱法是用于分离和检测样品中有机化合物和无机化合物的方法。
通过样品分子在固定相和流动相之间的分配行为,可以实现样品分离和检测。
在进行液相色谱法实验时,需要掌握液相色谱仪的操作方法、固定相和流动相的选择和配制方法,以及色谱柱的使用和维护方法。
三、质谱分析质谱分析是用于确定样品中有机分子和核素的相对分子质量和结构的方法。
通过测量样品离子的质荷比,可以获得样品的质谱图,从而确认样品的分子质量和结构。
在进行质谱分析实验时,需要掌握质谱仪的操作方法、样品的离子化和碎裂方法,以及质谱图的解释和质谱定性分析方法。
仪器分析第五章 原子吸收光谱法

第五章原子吸收光谱法Chapter FiveAtomic Absorption SpectrumFor Short:AAS第一节基本原理一、原子吸收光谱分析概述1、原子吸收光谱的起源18世纪初,人们便开始观察和研究原子吸收光谱-----太阳光谱中的暗线。
1955年,澳大利亚物理学家瓦尔西发表了著名论文“原子吸收光谱在化学分析中的应用”,奠定了原子吸收光谱分析法的理论基础。
1955年,原子吸收光谱作为一种分析方法开始应用。
并在60年代得到迅速发展和普及。
2、什么是原子吸收光谱?溶液中的金属离子化合物在高温下能够解离成原子蒸气,两种形态间存在定量关系。
当光源发射出的特征波长光辐射通过原子蒸气时,原子中的外层电子吸收能量,特征谱线的光强度减弱。
光强度的变化符合朗伯-比耳定律,进行定量分析。
它是基于物质所产生的原子蒸气对特征谱线的吸收作用来进行定量分析的一种方法。
❖原子与分子一样,吸收特定能量后,产生基态→激发态跃迁;产生原子吸收光谱,即共振吸收。
❖原子由基态→第一激发态的跃迁,最易发生。
❖每种原子的核外电子能级分布不同,当产生由基态→第一激发态的跃迁时,吸收特定频率的辐射能量。
二、共振线:共振吸收线——电子从基态跃迁至第一激发态所产生的吸收谱线称为共振吸收线(简称共振线)。
共振发射线——电子从第一激发态再跃回基态时,则发射出同样频率的辐射,对应的谱线称为共振发射线(也简称共振线)。
原子的共振线的吸收共振线称为元素的特征谱线,因为:各种元素的原子结构和外层电子排布不同。
所以不同元素的原子从基态激发成第一激发态(或由第一激发态跃回基态)时,吸收(或发射)的能量不同,因此各种元素的共振线各有其特征性。
共振线又称为元素的灵敏线,因为:这种从基态到第一激发态的跃迁最容易发生,因此对大多数元素来说,共振线是指元素所有谱线中最灵敏的谱线。
在原子吸收光度法中,就是利用处于基态的待测原子蒸气对从光源发射的共振发射线的吸收来进行分析的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章 原子吸收光谱法——又称原子吸收分光光度法§4.1 原子吸收分光光度法(AAS )概述4.1.1 概述 1、定义原子吸收分光光度法是基于从光源辐射出具有待测元素特征谱线的光,通过试样蒸气时被蒸气中待测元素基态原子所吸收,由辐射谱线被减弱的程度来测定试样中待测元素含量的方法。
2、特点✓ 灵敏度高:在原子吸收实验条件下,处于基态的原子数目比激发态多得多,故灵敏度高。
检出限可达 10—9 g /mL (某些元素可更高 )✓ 几乎不受温度影响:由波兹曼分布公式00qE q q KTN g e N g -=知,激发态原子浓度与基态原子浓度的比值0q N N 随T ↗而↗。
在原子吸收光谱法中,原子化器的温度一般低于3000℃,此时几乎所有元素的01%qN N 。
也就是说,q N 随温度而强烈变化,而0N 却式中保持不变,其浓度几乎完全等于原子的总浓度。
✓ 较高的精密度和准确度:因吸收线强度受原子化器温度的影响比发射线小。
另试样处理简单。
RSD 1~2%,相对误差0.1~0.5%。
✓ 选择性高:谱线简单,因谱线重叠引起的光谱干扰较小,即抗干扰能力强。
分析不同元素时,选用不同元素灯,提高分析的选择性✓ 应用范围广:可测定70多种元素(各种样品中)。
✗ 缺点:难熔元素、非金属元素测定困难,不能同时多元素分析。
3、操作①将试液喷入成雾状,挥发成蒸汽;②用镁空心阴极灯作光源,产生波长285.2nm 特征谱线;③谱线通过镁蒸汽时,部分光被蒸汽中基态镁原子吸收而减弱;④通过单色器和检测器测得镁特征谱线被减弱的程度,即可求得试样中镁的含量. 4、原子吸收光谱分析过程 确定待测元素。
选择该元素相应锐线光源,发射出特征谱线。
试样在原子化器中被蒸发、解离成气态基态原子。
特征谱线穿过气态基态原子,被吸收而减弱,经色散系统和检测系统后,测定吸光度。
根据吸光度与浓度间线性关系,定量分析。
5、与发射光谱异同点①原子吸收光谱分析利用的是原子的吸收现象,发射光谱分析则基于原子的发射现象; ②原子的吸收线比发射线的数目少得多,这样谱线重叠的概率就小得多; ③原子吸收法的选择性、灵敏度和准确性都好。
§4.2 原子吸收分光光度法的基本原理4.2.1 原子对辐射能的吸收过程——共振线与吸收线原子吸收光谱分析是通过测定基态原子对各元素共振线(一般为主共振线)的吸收来进行定量分析的方法。
1、共枕线与吸收线a 、共振发射线: 电子从基态跃迁到能量最低的激发态时要吸收一定频率的光,它再跃迁回基态时,则发射出同样频率的光(谱线),这种谱线称为共振发射线 。
b 、共振吸收线: 电子从基态跃迁至第一激发态所产生的吸收谱线称为共振吸收线 。
对大多数元素来说,共振线也是元素最灵敏的谱线。
4.2.2 原子吸收光谱的轮廓 1、谱线轮廓从能级跃迁的观点看,吸收线与发射线应是一条严格的几何线,但实际上有一定宽度的,其原因将在“谱线变宽”这个标题下讨论。
以~V K ν作图,得原子吸收线轮廓。
中心频率(峰值频率):曲线峰顶所对应的频率0ν,其数值决定于原子跃迁能级间的能量差,即0=E hν∆;峰值吸收(中心吸收):峰顶所对应的吸收值; 中心吸收系数:峰顶所对应的吸收系数0K ;谱线的半宽度:12峰高处的频率范围0ν∆。
通常以ν∆特征地表示谱线的宽度。
ν∆与谱线自然宽度N ν∆、多普勒变宽D ν∆、洛仑兹变宽L ν∆及共振变宽R ν∆的关系:()1222=DN L R ννννν⎡⎤∆∆+∆+∆+∆⎣⎦2、谱线变宽(1)谱线的自然宽度N ν∆自然宽度(无外界影响时),谱线仍有一定宽度,这种宽度称为自然宽度。
激发态原子的平均表征吸收线轮廓(峰)的参数:中心频率νO(峰值频率); 最大吸收系数对应的频率或波0K ; 中心波长:λ(nm); 半宽度:ΔνO 。
寿命越长,宽度越小。
以波长表示自然宽度N ν∆:22=2NN c c νλλνπτ∆∆= 式中——τ:激发态原子的平均寿命。
(2)多普勒变宽D ν∆多普勒变宽的起因是原子在空间作无规则的热运动,故又称热变宽。
当火焰中基态原子向光源方向运动时,由于 Doppler 效应而使光源辐射的波长增大,基态原子将吸收较长的波长;反之亦然。
因此,原子的无规则运动 就使该吸收谱线变宽。
当处于热力学平衡时, Doppler 变宽可用下式表示:7D 10νν-∆⨯⋅式中——D ν∆:以频率表示的多普勒变宽;0ν:谱线的中心频率; R :气体常数; T :绝对温度; c :光速;A :被测元素的相对原子质量。
由上式可知,D ν∆是决定谱线变宽程度的主要因素之一。
在2000~3000K 范围内,其值一般由于吸光原子与蒸气中原子或分子相互碰撞而引起的能级稍微变化,使发射或吸收光量子频率改变而导致的谱线变宽。
根据与之碰撞的粒子不同,可分为两类:①因和其它粒子(如待测元素的原子与火焰气体粒子)碰撞而产生的变宽——洛伦兹变宽,以ν∆表示。
共振变宽只有在被测元素浓度较高时才有影响。
在通常的条件下,压力变宽起重要作用的主要是洛伦兹变宽R ν∆。
(4)自吸变宽光源空心阴极灯发射的共振线被灯内同种基态原子所吸收产生自吸现象。
灯电流越大,自吸现象越严重。
(5)场致变宽4.2.3 原子吸收与原子浓度的关系在分光光度法中,测量的是分子吸收,属于宽带吸收,其峰值宽度达几十个纳米。
若由单色器得到的入射光范围在1个纳米左右,那么,它相对宽带吸收,就近似于单色的了。
在原子吸收中,吸收线的宽度很窄,要求入射光的宽度在0.01纳米以内,上述朗伯-比尔定律才能适用。
为此,解决的途径:①建立新的吸收理论——积分吸收原理 ②得到准单色光源——锐线光源 1、积分吸收积分吸收是指吸收线轮廓下所包围的面积d V K ν⎰。
根据经典色散理论可得:2200d =2.6510V z K fN fN mcπν-=⨯⎰式中——z 、m :电子的电荷及质量;c :光速; f :振子强度;0N :基态原子浓度,个数/cm 3。
由上式可知,若能求得积分吸收,则可求得原子浓度。
积分吸收虽然从理论上建立了原子吸收与浓度之间的正确关系,但要实现积分吸收的测量,在目前却是不可能的。
因为要测量一条0.001~0.005nm λ∆≈的谱线轮廓,以求得它的积分吸收,就要用分光装置将它分离出来,这要求单色器的分辨率应高达5×105级(现约为104级),目前还难以做到。
2、Walsh 测定原子吸收的方法——采用锐线光源测定峰值吸收 ✧ 锐线光源:①光源的发射线与吸收线的0ν一致; ②发射线的1/2ν∆小于吸收线的1/2ν∆。
✧ 空心阴极灯:可发射锐线光源(主共振线)。
图4-2-3 峰值吸收测量示意图若将锐线光源发射的不同频率的光通过原子蒸气,其入射光强度为0I ,当通过长度为L 自由原子蒸气后,其透过光强度为I ,则根据Lambert —Beer 定律有:0V K L I I e -= (a ) 式中——V K :原子蒸气对频率为ν的光吸收系数;在通常的原子吸收分析条件下,若吸收线的轮廓仅取决于多普勒变宽,则:0d V K K ν=⎰(b )对于中心吸收,有:0lg IA I= (c )因此lg 0.4343V K L V A e K L -== (d )式中——A :吸收度;V K c ∝。
结合上述(a )~(d )得:2000.8686ln 22.6510'D A fN L K N L νπ-=⋅⨯=∆式中——N 0:待测元素的浓度;该式表明,当使用很窄的锐线光源作原子吸收测量时,测得的吸光度与原子蒸汽中待测元素的基态原子数呈线性关系,因此,适当增加火焰的宽度可以提高测定的灵敏度。
3、原子吸收的测量:吸光度与试液中待测元素的c 也成正比: A Kc =K 包含了所有的常数。
此式称为Beer 定律,他指出在一定实验条件下,吸光度与浓度呈正比的关系。
通过测定吸光度就可以求出待测元素的含量。
这就是原子吸收分光光度分析的定量基础。
§4.3 原子吸收分光光度计✧ 基本组成:光源+原子化系统+光学系统+电学系统(检测系统)图4-3-1 原子吸收分光光度计基本构造示意图(1)、(2)✧ 如果将原子化器看作是分光光度计中的比色皿,则其仪器的构造原理与一般的分光光度计是相类似的。
区别如下:1、应用锐线光源作原子吸收的光源;2、分光系统安排在火焰及检测器之间。
避免来自火焰的辐射直接照射在光电检测器上,影响检测器的正常运转或使准确度降低;3、为了区分光源(经原子吸收减弱后的光源辐射)和发射背景(火焰发射的辐射),应采用调制方式进行工作。
4.3.1 光源1、光源应满足的条件:①能辐射出半宽度比吸收线半宽度还窄的谱线(即锐线光源),并且发射线的中心频率应与吸收线的中心频率相同;②辐射的强度应足够大;③辐射光的强度要稳定,且背景小。
2、作用:提供待测元素的特征谱线——共振线。
3、类型:蒸汽放电灯、无极放电灯、空心阴极灯。
(一)空心阴极灯1、构造:硬质玻璃管、石英窗口(波长小于350nm )或光学玻璃窗口(波长大于350nm )。
✧阴极:钨棒作成圆筒形,筒内熔入被测元素;✧阳极:钨棒,装有钛、锆等金属作成的阳极;✧管内充气:氩或氖,称载气。
2、工作原理①当在正负电极上施加适当电压(一般为200~500V)时,在正负电极之间便开始放电,这时,电子从阴极内壁射出,经电场加速后向阳极运动;②运动的电子与载气(惰性气体)原子碰撞使惰性气体电离成为阳离子,阳离子在电场加速下,以很快的速度轰击阴极表面,使阴极内壁待测元素的原子溅射出来,在阴极腔内形成待测元素的原子蒸气云;③蒸气云中的原子再与电子、惰性气体原子、离子发生碰撞而被激发,从而发射出所需频率的光。
阴极发射出的光谱,主要是阴极元素的光谱(待测元素的光谱,另外还杂有内充惰性气体和阴极杂质的光谱)。
3、影响空心阴极灯光谱特性的主要因素(1)阴极材料的性质:它决定于共振线的波长;(2)内充气体(载气)的种类及压力:载气担负着携载电流、溅射或蒸发及激发阴极原子蒸气的三项任务。
同时,载气压力太低,使灯失效;载气压力太高,引起洛仑兹变宽,且放电不稳定,因此,最好在130~670kPa范围内。
同时,载气的性质决定于发射线的性质。
一般用氖作内充气体,只是在氖光谱对空心阴极金属共振线产生光谱干扰时,才使用氩。
(3)灯电流:灯电流i与灯辐射线强度I的关系为nI ai=式中——n:与阴极材料、内充气体及选定谱线等相关的一个参数,对于氖及氩,2~3n=;a:比例常数。
由上式可见,在一定范围内增大灯电流,可提高激发线强度,改善稳定性。
4、多元素空心阴极灯:发射强度弱5、无极放电灯:强度高。
但制备困难,价格高。