35知识讲解_空间直角坐标系_基础
空间向量直角坐标运算详解

a // b a b( R) a // b a b( R)
a1 b1,a2 b2( R); a1 b1,a2 b2,a3 b3( R);
a b ab 0
a b ab 0
ab a b 0 ab a b a b 0
2.空间向量的平行和垂直的条件
1, a / /b(b 0) a b
例 1.已知 a =(1,1,0), b =(0,1,1), c =(1,0,1), p = a - b ,q = a +2 b - c , 求 p, q, p q 。
p (1, 0, 1)
q (0, 3, 1)
p q 1
探究二:垂直与平行问题
平面向量运算的坐标表示: 空间向量运算的坐标表示:
一对实数1,2,使a=1e1+2 e2。
(e1、e2叫做表示这一平面内所有向量的一组基底。)
平面向量的正交分解及坐标表示 y
a
a xi y j
i (1, 0), j (0,1), 0 (0, 0). i
空间向量基本定理:
如果三个向量 a, b, c不共面,那么对空间任一
向量 p,存在一个唯一的有序实数组x,y,z,
使 p xa yb zc.
任意不共面的三个向量都可做为空间的一个基底。
a, b, c都叫做基向量
z
从空间某一个定点0
引三条互相垂直且有相
同单位长度的数轴,这
o
样就建立了空间直角坐
y
标系0-xyz.
x
点O叫做坐标原点,x轴、y轴、z轴叫做
坐标轴,这三条坐标轴中每两条确定一个坐标
平面,分别称为xoy平面、 yoz平面、和 Zox
优秀个人与小组
小组 一 二 三 四 五 六 七 八 九 十
初中数学中考复习考点知识与题型专题讲解05 平面直角坐标系

初中数学中考复习考点知识与题型专题讲解专题05 平面直角坐标系【知识要点】考点知识一平面直角坐标系的基础有序数对概念:有顺序的两个数a与b组成的数对,叫做有序数对,记作(a ,b)。
【注意】a、b的先后顺序对位置的影响。
平面直角坐标系的概念:在平面内画两条互相垂直并且原点重合的数轴,这样就建立了平面直角坐标系。
两轴的定义:水平的数轴叫做x轴或横轴,通常取向右为正方向;竖直的数轴叫做y轴或纵轴,通常取向上方向为正方向。
平面直角坐标系原点:两坐标轴交点为其原点。
坐标平面:坐标系所在的平面叫坐标平面。
象限的概念:x轴和y轴把平面直角坐标系分成四部分,每个部分称为象限。
按逆时针顺序依次叫第一象限、第二象限、第三象限、第四象限。
【注意】坐标轴上的点不属于任何象限。
点的坐标:对于坐标轴内任意一点A,过点A分别向x轴、y轴作垂线,垂足在x轴、y轴上的对应的数a、b分别叫做点A的横坐标和纵坐标,有序数对A(a,b)叫做点A的坐标,记作A(a,b)。
考点知识二 点的坐标的有关性质(考点) 性质一 各象限内点的坐标的符号特征性质二 坐标轴上的点的坐标特征 1.x 轴上的点,纵坐标等于0; 2.y 轴上的点,横坐标等于0; 3.原点位置的点,横、纵坐标都为0. 性质三 象限角的平分线上的点的坐标1.若点P (n m ,)在第一、三象限的角平分线上,则n m =,即横、纵坐标相等; 2.若点P (n m ,)在第二、四象限的角平分线上,则n m -=,即横、纵坐标互为相反数;在第一、三象限的角平分线上 在第二、四象限的角平分线上 性质四 与坐标轴平行的直线上的点的坐标特征 1.在与x 轴平行的直线上, 所有点的纵坐标相等;X点A 、B 的纵坐标都等于m ;2.在与y 轴平行的直线上,所有点的横坐标相等;点C 、D 的横坐标都等于n ;性质五 点到坐标轴距离在平面直角坐标系中,已知点P ),(b a ,则 1.点P 到x 轴的距离为b ; 2.点P 到y 轴的距离为a ;3.点P 到原点O 的距离为PO = 22b a性质六 平面直角坐标系内平移变化P (b a ,)abxy OXYABmXYCDn性质七 对称点的坐标1. 点P ),(n m 关于x 轴的对称点为),(1n m P -, 即横坐标不变,纵坐标互为相反数;2. 点P ),(n m 关于y 轴的对称点为),(2n m P -, 即纵坐标不变,横坐标互为相反数;3.点P ),(n m 关于原点的对称点为),(3n m P --,即横、纵坐标都互为相反数;小结: XP X-X【考点题型】考点题型一 用有序数对表示位置【解题思路】要确定位置坐标,需根据题目信息、明确行和列的实际意义是解答本题的关键.典例1.(2021·湖北宜昌市中考真题)小李、小王、小张、小谢原有位置如图(横为排、竖为列),小李在第2排第4列,小王在第3排第3列,小张在第4排第2列,小谢在第5排第4列.撤走第一排,仍按照原有确定位置的方法确定新的位置,下列说法正确的是( ).A .小李现在位置为第1排第2列B .小张现在位置为第3排第2列C .小王现在位置为第2排第2列D .小谢现在位置为第4排第2列限(x,0)(0,y )(0,0)纵坐标相同横坐标不同横坐标相同纵坐标不同 x >0 y >0 x <0 y >0 x <0 y <0 x >0 y <0 (m,m) (m,-m )变式1-1.(2018·广西柳州市中考模拟)初三(1)班的座位表如图所示,如果如图所示建立平面直角坐标系,并且“过道也占一个位置”,例如小王所对应的坐标为(3,2),小芳的为(5,1),小明的为(10,2),那么小李所对应的坐标是()A.(6,3)B.(6,4)C.(7,4)D.(8,4)变式1-2.(2017·北京门头沟区一模)小军邀请小亮去他家做客,以下是他俩的对话:小军:“你在公交总站下车后,往正前方直走400米,然后右转直走300米就到我家了”小亮:“我是按照你说的走的,可是走到了邮局,不是你家…”小军:“你走到邮局,是因为你下公交车后朝向东方走的,应该朝向北方走才能到我家…”根据两人的对话记录,从邮局出发走到小军家应( )A.先向北直走700米,再向西走100米B.先向北直走100米,再向西走700米C.先向北直走300米,再向西走400米D.先向北直走400米,再向西走300米考点题型二求点的坐标典例2.(2021·天津中考真题)如图,四边形OBCD是正方形,O,D两点的坐标分别是()0,6,点C在第一象限,则点C的坐标是()0,0,()A .()6,3B .()3,6C .()0,6D .()6,6变式2-1.(2021·山东滨州市·中考真题)在平面直角坐标系的第四象限内有一点M ,到x 轴的距离为4,到y 轴的距离为5,则点M 的坐标为() A .()4,5-B .(5,4)-C .(4,5)-D .(5,4)-变式2-2.(2021·湖北襄阳市模拟)如图,四边形ABCD 为菱形,点A 的坐标为()4,0,点C 的坐标为()4,4,点D 在y 轴上,则点B 的坐标为()A .(4,2)B .(2,8)C .(8,4)D .(8,2)变式2-3.(2021·广东二模)已知点2,24()P m m +-在x 轴上,则点Р的坐标是() A .()4,0B .()0,8C .()4,0-D .()0,8-变式2-4.(2021·广西一模)点M (3,1)关于y 轴的对称点的坐标为( ) A .(﹣3,1)B .(3,﹣1)C .(﹣3.﹣1)D .(1,3) 考点题型三 点的坐标的规律探索【解题思路】考查坐标的规律探索,解题的关键是根据题意找到坐标的变化规律. 典例3.(2021·山东中考真题)如图,在单位为1的方格纸上,△A 1A 2A 3,△A 3A 4A 5,△A 5A 6A 7,…,都是斜边在x 轴上,斜边长分别为2,4,6,…的等腰直角三角形,若△A 1A 2A 3的顶点坐标分别为A 1(2,0),A 2(1,1),A 3(0,0),则依图中所示规律,A 2021的坐标为()A .(﹣1008,0)B .(﹣1006,0)C .(2,﹣504)D .(1,505)变式3-1.(2021·山东菏泽市·中考真题)在平面直角坐标系中,一个智能机器人接到的指令是:从原点O 出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点1A ,第二次移动到点2A ……第n 次移动到点n A ,则点2019A 的坐标是( )A .()1010,0B .()1010,1C .()1009,0D .()1009,1变式3-2.(2021·辽宁阜新市·中考真题)如图,在平面直角坐标系中,将△ABO 沿x 轴向右滚动到△AB 1C 1的位置,再到△A 1B 1C 2的位置……依次进行下去,若已知点A(4,0),B(0,3),则点C 100的坐标为( )A .121200,5⎛⎫ ⎪⎝⎭B .()600,0C .12600,5⎛⎫ ⎪⎝⎭D .()1200,0考点题型四 判断点的象限【解题思路】各象限内点的坐标的符号特征需记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).典例4.(2021·湖南株洲市·中考真题)在平面直角坐标系中,点(,2)A a 在第二象限内,则a 的取值可以..是( ) A .1B .32-C .43D .4或-4变式4-1.(2021·江苏扬州市中考真题)在平面直角坐标系中,点()22,3P x +-所在的象限是()A .第一象限B .第二象限C .第三象限D .第四象限变式4-2.(2021·湖北黄冈市·中考真题)在平面直角坐标系中,若点(,)A a b -在第三象限,则点(,)B ab b -所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限变式4-4.(2021·湖南邵阳市·中考真题)已知0,0a b ab +>>,则在如图所示的平面直角坐标系中,小手盖住的点的坐标可能是()A .(),a bB .(),a b -C .(),a b --D .(),a b - 考点题型五 点坐标的有关性质1.坐标轴上的点的坐标特征1.(2017·四川中考模拟)如果点P(a -4,a)在y 轴上,则点P 的坐标是( ) A .(4,0)B .(0,4)C .(-4,0)D .(0,-4)2.(2018·广西柳州十二中中考模拟)点P (m +3,m +1)在x 轴上,则点P 坐标为( ) A .(0,﹣4)B .(4,0)C .(0,﹣2)D .(2,0)3.(2021·甘肃中考真题)已知点(224)P m m ,﹣在x 轴上,则点P 的坐标是( ) A .(40),B .(04),C .40)(-,D .(0,4)- 4.(2021·甘肃中考模拟)已知点P (m+2,2m ﹣4)在x 轴上,则点P 的坐标是( ) A .(4,0)B .(0,4)C .(﹣4,0)D .(0,﹣4)5.(2021·广东华南师大附中中考模拟)如果点P (m +3,m +1)在平面直角坐标系的x 轴上,则m =( )A .﹣1B .﹣3C .﹣2D .0 2.象限角的平分线上的点的坐标1. 已知点A (-3+a ,2a+9)在第二象限角平分线上,则a=_________2.(2018·广西中考模拟)若点N 在第一、三象限的角平分线上,且点N 到y 轴的距离为2,则点N 的坐标是( )A .(2,2)B .(-2,-2)C .(2,2)或(-2,-2)D .(-2,2)或(2,-2) 3.与坐标轴平行的直线上的点的坐标特征1.(2021·广西中考模拟)已知点A (a ﹣2,2a +7),点B 的坐标为(1,5),直线AB ∥y 轴,则a 的值是( ) A .1B .3C .﹣1D .52.(2018·天津中考模拟)如果直线AB 平行于y 轴,则点A ,B 的坐标之间的关系是( )A .横坐标相等B .纵坐标相等C .横坐标的绝对值相等D .纵坐标的绝对值相等3.(2021·广东华南师大附中中考模拟)已知点A (5,﹣2)与点B (x ,y )在同一条平行于x 轴的直线上,且B 到y 轴的距离等于4,那么点B 是坐标是( )A .(4,﹣2)或(﹣4,﹣2)B .(4,2)或(﹣4,2)C .(4,﹣2)或(﹣5,﹣2)D .(4,﹣2)或(﹣1,﹣2)4.(2021·江苏中考模拟)若线段AB ∥x 轴且AB =3,点A 的坐标为(2,1),则点B 的坐标为( )A .(5,1)B .(﹣1,1)C .(5,1)或(﹣1,1)D .(2,4)或(2,﹣2)5.(2018·江苏中考模拟)已知点M (﹣1,3),N (﹣3,3),则直线MN 与x 轴、y 轴的位置关系分别为( )A .相交,相交B .平行,平行C .垂直,平行D .平行,垂直4.点到坐标轴距离1.(2018·天津中考模拟)已知平面内不同的两点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,则a 的值为( )A .﹣3B .﹣5C .1或﹣3D .1或﹣52.(2018·江苏中考真题)在平面直角坐标系的第二象限内有一点M ,点M 到x 轴的距离为3,到y 轴的距离为4,则点M 的坐标是( )A .(3,4)-B .(4,3)-C .(4,3)-D .()3,4-3.(2017·北京中考模拟)点P 是第二象限的点且到x 轴的距离为3、到y 轴的距离为4,则点P 的坐标是( )A.(﹣3,4)B.(3,﹣4)C.(﹣4,3)D.(4,﹣3)4.(2012·江苏中考模拟)在平面直角坐标系中,点P(-3,4)到x轴的距离为( ) A.3B.-3C.4D.-45.平面直角坐标系内平移变化1.(2021·山东中考真题)在平面直角坐标系中,将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,则点A′的坐标是()A.(﹣1,1)B.(﹣1,﹣2)C.(﹣1,2)D.(1,2)2.(2021·北京中考模拟)在平面直角坐标系中,已知线段AB的两个端点分别是A(4,-1),B(1,1)将线段AB平移后得到线段A′B′,若点A′的坐标为(-2,2),则点B′的坐标为() A.(-5,4) B.(4,3) C.(-1,-2) D.(-2,-1)3.(2015·广西中考真题)在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(-3,2)重合,则点A的坐标是()A.(2,5)B.(-8,5)C.(-8,-1)D.(2,-1)4.(2016·四川中考真题)已知△ABC顶点坐标分别是A(0,6),B(﹣3,﹣3),C(1,0),将△ABC平移后顶点A的对应点A1的坐标是(4,10),则点B的对应点B1的坐标为()A.(7,1)B.B(1,7)C.(1,1)D.(2,1)5.(2018·武汉市东西湖区教育局中考模拟)在坐标系中,将点P( -2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P’的坐标()A.(2,4)B.(1,5)C.(1,-3)D.(-5,5)6.对称点的坐标1.(2021·广东中考模拟)在平面直角坐标系中.点P(1,﹣2)关于x轴的对称点的坐标是( )A .(1,2)B .(﹣1,﹣2)C .(﹣1,2)D .(﹣2,1)2.(2021·山东中考模拟)已知点P (a +1,2a ﹣3)关于x 轴的对称点在第二象限,则a 的取值范围是( )A .﹣1<a <B .﹣<a <1C .a <﹣1D .a >3.(2014·广西中考真题)已知点A (a ,2013)与点B (2014,b )关于x 轴对称,则a+b 的值为( )A .﹣1B .1C .2D .34.(2018·广西中考模拟)已知点P(a +l ,2a -3)关于x 轴的对称点在第一象限,则a 的取值范围是( )A .a 1<-B .31a 2-<<C .3a 12-<<D .3a 2> 5.(2021·辽宁中考模拟)已知点P (m ﹣1,4)与点Q (2,n ﹣2)关于x 轴对称,则m n 的值为( )A .9B .﹣9C .﹣19D .196.(2018·四川中考模拟)平面直角坐标系中,与点(2,﹣3)关于原点中心对称的点是( )A .(﹣3,2)B .(3,﹣2)C .(﹣2,3)D .(2,3)。
高中数学人教A版2教案:空间直角坐标系含解析

空间直角坐标系【教学目标】1。
掌握空间直角坐标系的有关概念;会根据坐标找相应的点,会写一些简单几何体的有关坐标.通过空间直角坐标系的建立,使学生初步意识到:将空间问题转化为平面问题是解决空间问题的基本思想方法;通过本节的学习,培养学生类比,迁移,化归的能力。
2.解析几何是用代数方法研究解决几何问题的一门数学学科,在教学过程中要让学生充分体会数形结合的思想,进行辩证唯物主义思想的教育和对立统一思想的教育;培养学生积极参与,大胆探索的精神.【重点难点】教学重点:在空间直角坐标系中确定点的坐标.教学难点:通过建立适当的直角坐标系确定空间点的坐标,以及相关应用。
【课时安排】1课时【教学过程】导入新课大家先来思考这样一个问题,天上的飞机的速度非常的快,即使民航飞机速度也非常快,有很多飞机时速都在1 000 km以上,而全世界又这么多,这些飞机在空中风驰电掣,速度是如此的快,岂不是很容易撞机吗?但事实上,飞机的失事率是极低的,比火车,汽车要低得多,原因是,飞机都是沿着国际统一划定的航线飞行,而在划定某条航线时,不仅要指出航线在地面上的经度和纬度,还要指出航线距离地面的高度.为此我们学习空间直角坐标系,教师板书课题:空间直角坐标系。
推进新课新知探究提出问题①在初中,我们学过数轴,那么什么是数轴?决定数轴的因素有哪些?数轴上的点怎样表示?②在初中,我们学过平面直角坐标系,那么如何建立平面直角坐标系?决定平面直角坐标系的因素有哪些?平面直角坐标系上的点怎样表示?③在空间,我们是否可以建立一个坐标系,使空间中的任意一点都可用对应的有序实数组表示出来呢?④观察图1,体会空间直角坐标系该如何建立.⑤观察图2,建立了空间直角坐标系以后,空间中任意一点M如何用坐标表示呢?讨论结果:①在初中,我们学过数轴是规定了原点、正方向和单位长度的直线.决定数轴的因素有原点、正方向和单位长度.这是数轴的三要素.数轴上的点可用与这个点对应的实数x来表示.②在初中,我们学过平面直角坐标系,平面直角坐标系是以一点为原点O,过原点O分别作两条互相垂直的数轴Ox和Oy,xOy 称平面直角坐标系,平面直角坐标系具有以下特征:两条数轴:①互相垂直;②原点重合;③通常取向右、向上为正方向;④单位长度一般取相同的.平面直角坐标系上的点用它对应的横、纵坐标表示,括号里横坐标写在纵坐标的前面,它们是一对有序实数(x,y).③在空间,我们也可以类比平面直角坐标系建立一个坐标系,即空间直角坐标系,空间中的任意一点也可用对应的有序实数组表示出来.④观察图2,OABC—D′A′B′C′是单位正方体,我们类比平面直角坐标系的建立来建立一个坐标系即空间直角坐标系,以O 为原点,分别以射线OA,OC,OD′的方向为正方向,以线段OA,OC,OD′的长为单位长度,建立三条数轴Ox,Oy,Oz称为x轴、y轴和z轴,这时我们说建立了一个空间直角坐标系O-xyz,其中O叫坐标原点,x轴、y轴和z轴叫坐标轴.如果我们把通过每两个坐标轴的平面叫做坐标平面,我们又得到三个坐标平面xOy平面,yOz平面,zOx 平面.由此我们知道,确定空间直角坐标系必须有三个要素,即原点、坐标轴方向、单位长.图1图1表示的空间直角坐标系也可以用右手来确定。
2015-2016学年高二数学必修2课件 第四章 第三节 空间直角坐标系

则D(0,0,0),A(2,0,0),B1(2,4,2),C(0,4,0),
第27页
返回导航
第四章 圆与方程
第二十七页,编辑于星期五:八点 十三分。
高中同步学习方略 ·新课标A版 ·数学 ·必修2
设E的坐标(x,y,0).
在坐标平面xOy内,直线AC的方程为
x 2
+
4y =1,即2x+y-
4=0.
第6页
返回导航
第四章 圆与方程
第六页,编辑于星期五:八点 十三分。
高中同步学习方略 ·新课标A版 ·数学 ·必修2
2.空间两点间的距离公式. (1)空间中两点P1(x1,y1,z1),P2(x2,y2,z2)之间的距离是 |P1P2|=________. (2)空间任一点P(x,y,z)到坐标原点的距离|OP|= ________. 说明 空间两点间的距离公式可以看成平面内两点间距离 公式的推广.
第22页
返回导航
第四章 圆与方程
第二十二页,编辑于星期五:八点 十三分。
高中同步学习方略 ·新课标A版 ·数学 ·必修2
【解】 设M(x,0,z)为所求轨迹上任一点,则有 x-12+-22+z+12= x-22+02+z-22.
整理得x+3z-1=0. ∴M点的轨迹是xOz平面内的一条直线,其方程为x+3z- 1=0.
(2)坐标平面和坐标轴上点的坐标特点 xOy平 xOz平 yOz平
坐标平面 面面面
坐标特点 z=0 y=0 x=0 点的坐标 (x, (x,0, (0,
y,0) z) y,z)
第12页
返回导航
第四章 圆与方程
第十二页,编辑于星期五:八点 十三分。
高中同步学习方略 ·新课标A版 ·数学 ·必修2
空间直角坐标系PPT课件

的效果。
二面投影
将三维图形分别投影到两个互 相垂直的平面上,得到两个二
维图形。
三面投影
将三维图形分别投影到三个互 相垂直的平面上,得到三个二
维图形。
05
空间直角坐标系与向量代数
向量的线性运算
向量的加法
向量加法满足交换律和结合律,即向量a+b=b+a, (a+b)+c=a+(b+c)。
描述向量场中某点处场量旋转程度的大小和方向,其方向垂直于该 点处的场量。
06
空间直角坐标系与微积分
微分学在空间直角坐标系中的应用
空间直角坐标系中的导数
导数描述了函数在某一点处的切线斜率,在空间直角坐标 系中,导数可以用来研究函数在三维空间中的变化趋势。
空间曲线在某点的切线方向
通过求导数,可以得到空间曲线在某一点的切线方向向量, 从而确定该点处曲线的变化趋势。
曲线和曲面的长度
通过使用一重积分,可以计算三维空间中曲线和曲面的长度。
重积分在空间直角坐标系中的应用
01
重积分在解决实际问题中的应用
重积分在解决实际问题中有着广泛的应用,例如计算物体的质量、质心、
转动惯量等。
02 03
重积分的物理意义
重积分的结果具有明确的物理意义,例如三重积分的结果表示三维空间 的体积,二重积分的结果表示二维平面的面积,一重积分的结果表示一 维线段的长度。
性质
空间直角坐标系具有方向性、正 交性和无限延展性,是描述空间 中点位置的数学工具。
坐标系的建立
01
02
03
确定原点
选择一个点作为原点,该 点是空间直角坐标系的起 点。
空间直角坐标系教案

【课题】4.3.1空间直角坐标系【教材】人教A版普通高中数学必修二第134页至136页.【课时安排】1个课时.【教学对象】高二〔上〕学生.【授课教师】***一.教材分析:本节内容主要引入空间直角坐标系的根本概念,是在学生已学过的二维平面直角坐标系的根底上进展推广,为以后学习用空间向量解决空间中的平行、垂直以及空间中的夹角与距离问题、研究空间几何对象等内容打下良好的根底。
空间直角坐标系的知识是空间解析几何的根底,与平面解析几何的内容共同表达了"用代数方法解决几何问题〞的解析几何思想;通过空间直角坐标系内任一点与有序数组的对应关系,实现了形向数的转化,将数与形严密结合,提供一个度量几何对象的方法。
其对于沟通高中各局部知识,完善学生的认知构造,起到了很重要的作用。
二.教学目标:✧知识与技能(1)能说出空间直角坐标系的构成与特征;(2)掌握空间点的坐标确实定方法和过程;(3)能初步建立空间直角坐标系。
✧过程与方法(1)结合具体问题引入,诱导学生自主探究;. z.(2)类比学习,循序渐进。
情感态度价值观(1)通过实际问题的引入和解决,让学生体会数学的实践性和应用性,感受数学刻画生活的作用,进而拓展自己的思维空间。
(2)通过用类比的数学思想方法探究新知识,使学生感受新旧知识的联系,并加深领会研究事物从低维到高维的方法与过程。
(3)通过对空间坐标系的接触学习,进一步培养学生的空间想象能力。
三.教学重点与难点:教学重点:空间直角坐标系相关概念的理解;空间中点的坐标表示。
教学难点:右手直角坐标系的理解,空间中点与坐标的一一对应。
四.教学方法:启发式教学、引导探究五.教学根本流程:↓. z.六.教学情境设计:. z.〔二〕引导探究,动手实践约6分钟思考:借助于平面直角坐标系,我们就可以用坐标来表示平面上任意一点的位置,则能不能仿照直角坐标系的方式来表示空间上任意一点的位置呢?不妨动手试一试……思路点拨:通过在地面上建立直角坐标系*Oy,则地面上任一点的位置可以用一对有序实数对〔*,y〕确定。
平面直角坐标系知识点总结

平面直角坐标系二、知识重点梳理知识点一:有序数对比方教室中座位的地点,常用“几排几列”来表示,而排数和列数的先后序次影响座位的地点,所以用有序次的两个数 a 与b 构成有序数时,记作(a , b) ,表示一个物体的地点。
我们把这类有序次的两个数 a 与b 构成的数对叫做有序数对,记作: (a,b) .重点讲解:对“有序”要正确理解,即两个数的地点不可以随意交换,(a ,b) 与 (b ,a) 序次不一样,含义就不一样,表示不一样地点。
知识点二:平面直角坐标系以及坐标的看法1. 平面直角坐标系x 在平面内画两条相互垂直、原点重合的数轴就构成平面直角坐标系。
水平的数轴称为轴或横轴,习惯上取向右为正方向;竖直的数轴称为y 轴或纵轴,取向上方向为正方向,两坐标轴的交点为平面直角坐标系的原点(如图 1) 。
注:我们在画直角坐标系时,要注意两坐标轴是相互垂直的,且有公共原点,平时取向右与向上的方向分别为两坐标轴的正方向。
平面直角坐标系是由两条相互垂直且有公共原点的数轴构成的。
2.点的坐标点的坐标是在平面直角坐标系中确立点的地点的主要表示方法,是今后研究函数的基础。
在平面直角坐标系中,要想表示一个点的详尽地点,就要用它的坐标来表示,要想写出一个点的坐标,应过这个点 A 分别向 x 轴和 y 轴作垂线,垂足 M在 x 轴上的坐标是 a,垂足N在 y 轴上的坐标是 b,我们说点 A 的横坐标是 a,纵坐标是 b,那么有序数对( a,b )叫做点 A 的坐标 . 记作 :A(a,b). 用(a , b) 来表示,需要注意的是一定把横坐标写在纵坐标前面,所以这是一对有序数。
注:①写点的坐标时,横坐标写在前面,纵坐标写在后边。
横、纵坐标的地点不可以颠倒。
②由点的坐标的意义可知:点P(a ,b) 中, |a| 表示点到y 轴的距离; |b| 表示点到x轴的距离。
知识点三:点坐标的特色l.四个象限内点坐标的特色:两条坐标轴将平面分成4个地域称为象限,按逆时针序次分别叫做第一、二、三、四象限,如图 2.这四个象限的点的坐标符号分别是(+,+),( - , +),( - ,- ),( +,- ).2.数轴上点坐标的特色:x 轴上的点的纵坐标为0,可表示为(a,0 );y 轴上的点的横坐标为0,可表示为(0,b) .注意: x 轴, y 轴上的点不在任何一个象限内,关于坐标平面内随意一个点,不在这四个象限内,就在座标轴上。
知识要点空间直角坐标系

知识要点空间直角坐标系空间直角坐标系是用来描述三维空间中点位置的一种坐标系统。
它由三个坐标轴x、y、z构成,且彼此互相垂直,并在相交点处成为原点O。
在空间直角坐标系中,每个点的位置可由它在每个坐标轴上的投影来确定。
假设特定点P的坐标为(x,y,z),则在x轴上的投影为x,y轴上的投影为y,z轴上的投影为z。
空间直角坐标系的特点是可以将任意三维空间中的点表示为有序的数对(x,y,z),并且任意两点之间的距离可以用直线段来表示。
其基本特征有以下几点:1.原点O:空间直角坐标系的交点即为原点O,它的坐标为(0,0,0)。
2.坐标轴:空间直角坐标系有三个互相垂直的坐标轴,分别为x轴、y轴和z轴。
它们分别与三个方向对应:x轴正向为向右,y轴正向为向上,z轴正向为向外。
3. 坐标面:由三个坐标轴所确定的平面称为坐标面。
分别为xoy平面(z = 0)、xoz平面(y = 0)和yoz平面(x = 0)。
4.坐标轴方向:坐标轴方向有正负之分,规定沿着轴线正向的方向为正方向,反向则为负方向。
5.坐标轴长度:不同坐标轴的长度可以任选,但通常选择相等长度,方便计算。
在空间直角坐标系中,我们可以通过以下方法进行基本的空间点运算:1.点的移动:在坐标轴上,点的移动相当于坐标值的变化。
向右移动,坐标值加;向左移动,坐标值减;向上移动,坐标值加;向下移动,坐标值减;向外移动(离原点越来越远),坐标值加;向内移动(离原点越来越近),坐标值减。
2.点的关系:可以通过对比坐标值来判断两个点的相对位置。
若两点的x、y、z坐标值分别相等,则它们重合;若只有一个坐标值相等,则它们在同一坐标轴上;若有两个坐标轴的坐标值相等,则它们在同一平面上;若没有坐标值相等,则它们位于不同的坐标平面中。
3.点的中点坐标:求两点的中点坐标,可以将两个点的对应坐标分别相加然后除以24. 点的距离:可以根据勾股定理来求两点之间的距离。
设两点分别为P(x1, y1, z1)和Q(x2, y2, z2),则它们之间的距离d为:d =sqrt((x2 - x1)^2 + (y2 - y1)^2 + (z2 - z1)^2)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
空间直角坐标系【学习目标】通过具体情境,感受建立空间直角坐标系的必要性,了解空间直角坐标系,会用空间直角坐标系刻画点的位置.通过表示特殊长方体(所有棱分别与坐标轴平行)顶点的坐标,探索并得出空间两点间的距离公式.【要点梳理】要点一、空间直角坐标系1.空间直角坐标系从空间某一定点O 引三条互相垂直且有相同单位长度的数轴,这样就建立了空间直角坐标系Oxyz ,点O 叫做坐标原点,x 轴、y 轴、z 轴叫做坐标轴,这三条坐标轴中每两条确定一个坐标平面,分别是xOy 平面、yOz 平面、zOx 平面.2.右手直角坐标系在空间直角坐标系中,让右手拇指指向x 轴的正方向,食指指向y 轴的正方向,如果中指指向z 轴的正方向,则称这个坐标系为右手直角坐标系.3.空间点的坐标空间一点A 的坐标可以用有序数组(x ,y ,z)来表示,有序数组(x ,y ,z)叫做点A 的坐标,记作A(x ,y ,z),其中x 叫做点A 的横坐标,y 叫做点A 的纵坐标,z 叫做点A 的竖坐标.要点二、空间直角坐标系中点的坐标1.空间直角坐标系中点的坐标的求法通过该点,作两条轴所确定平面的平行平面,此平面交另一轴于一点,交点在这条轴上的坐标就是已知点相应的一个坐标.特殊点的坐标:原点()0,0,0;,,x y z 轴上的点的坐标分别为()()(),0,0,0,,0,0,0,x y z ;坐标平面,,xOy yOz xOz 上的点的坐标分别为()()(),,0,0,,,,0,x y y z x z .2.空间直角坐标系中对称点的坐标在空间直角坐标系中,点(),,P x y z ,则有点P 关于原点的对称点是()1,,P x y z ---;点P 关于横轴(x 轴)的对称点是()2,,P x y z --;点P 关于纵轴(y 轴)的对称点是()3,,P x y z --;点P 关于竖轴(z 轴)的对称点是()4,,P x y z --;点P 关于坐标平面xOy 的对称点是()5,,P x y z -;点P 关于坐标平面yOz 的对称点是()6,,P x y z -;点P 关于坐标平面xOz 的对称点是()7,,P x y z -.要点三、空间两点间距离公式1.空间两点间距离公式空间中有两点()()111222,,,,,A x y z B x y z ,则此两点间的距离222121212||()()()d AB x x y y z z ==-+-+-.特别地,点(),,A x y z 与原点间的距离公式为222OA x y z =++. 2.空间线段中点坐标空间中有两点()()111222,,,,,A x y z B x y z ,则线段AB 的中点C 的坐标为121212,,222x x y y z z +++⎛⎫ ⎪⎝⎭. 【典型例题】类型一:空间坐标系例1.在正方体ABCD —A 1B 1C 1D 1中,E 、F 分别是BB 1、D 1B 1的中点,棱长为1,建立空间直角坐标系,求点E 、F 的坐标。
【答案】11,0,2E ⎛⎫ ⎪⎝⎭,11,,122F ⎛⎫ ⎪⎝⎭【解析】 法一:如图,以A 为坐标原点,以AB ,AD ,AA 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,点E 在xOy 面上的投影为B (1,0,0),∵点E 竖坐标为12,∴11,0,2E ⎛⎫ ⎪⎝⎭。
F 在xOy 面上的投影为BD 的中点G ,竖坐标为1,∴11,,122F ⎛⎫ ⎪⎝⎭。
法二:如解法一所建立空间直角坐标系,∵B 1(1,0,1),D 1(0,1,1),B (1,0,0)E 为BB 1的中点,F 为B 1D 1的中点,∴E 的坐标为1100101,,1,0,2222+++⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭, F 的坐标为10011111,,,,122222+++⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭。
点评:本题主要考查空间中点的坐标的确定,关键是建立坐标系找到各个坐标分量。
由于正方体的棱AB ,AD ,AA 1互相垂直,可以以它们所在直线为坐标轴建系。
点的各个坐标分量就是这个点在各个坐标轴上的投影在相应坐标轴上的坐标。
举一反三:【变式1】在如图所示的空间直角坐标系中,OABC —D 1A 1B 1C 1是单位正方体,N是BB 1的中点,求这个单位正方体各顶点和点N 的坐标.【答案】O (0,0,0),A (1,0,0),B (1,1,0),C (0,1,0),D 1(0,0,1),A 1(1,0,1),B 1(1,1,1),C 1(0,1,1),N (1,1,12)。
例2.在平面直角坐标系中,点P (x ,y )的几种特殊的对称点的坐标如下:(1)关于原点的对称点是P '(-x ,-y );(2)关于x 轴的对称点是P "(x ,-y );(3)关于y 轴的对称点是P '''(-x ,y ).那么,在空间直角坐标系内,点P (x ,y ,z )的几种特殊的对称点坐标为:①关于原点的对称点是P 1________;②关于横轴(x 轴)的对称点是P 2________;③关于纵轴(y 轴)的对称点是P 3________;④关于竖轴(z 轴)的对称点是P 4________;⑤关于xOy 坐标平面的对称点是P 5________;⑥关于yOz 坐标平面的对称点是P 6________;⑦关于zOx 坐标平面的对称点是P 7________.【答案】①(-x ,-y ,-z ) ②(x ,-y ,-z ) ③(-x ,y ,-z ) ④(-x ,-y ,z ) ⑤(x ,y ,-z ) ⑥(-x ,y ,z ) ⑦(x ,-y ,z )【解析】类比平面直角坐标系,在空间直角坐标系有如下结论:①P 1(-x ,-y ,-z );②P 2(x ,-y ,-z );③P 3(-x ,y ,-z );④P 4(-x ,-y ,z );⑤P 5(x ,y ,-z );⑥P 6(-x ,y ,z );⑦P 7(x ,-y ,z ).【总结升华】上述结论的证明,可类比平面直角坐标系的方法加以证明:如P 点关于原点的对称点P 1,则有PP 1的中点为原点。
由中点坐标公式即可求出P 1点坐标.上述结论的记忆方法:“关于谁对称谁不变,其余的相反”,如关于x 轴对称的点,横坐标不变,纵、竖坐标变为原来的相反数;关于xoy 坐标平面对称的点,横、纵坐标不变,竖坐标相反.举一反三:【变式1】(2015春 福建厦门期末)在空间直角坐标系O —xyz ,点P (1,2,3)关于xOy 平面的对称点是( )A .(―1,2,3)B .(―1,―2,3)C .(1,2,―3)D .(1,―2,―3)【答案】C【解析】空间直角坐标系中任一点P (a ,b ,c )关于坐标平面xOy 的对称点为1(,,)P a b c -;由题意可得:点P (1,2,3)关于xOy 平面的对称点的坐标是(1,2,―3).故选:C .【总结升华】本题考查空间向量的坐标的概念,向量的坐标表示,空间点的对称点的坐标的求法,记住某些结论性的东西将有利于解题.空间直角坐标系中任一点P (a ,b ,c )关于坐标平面xOy 的对称点为4P (a ,b ,―c );关于坐标平面yOz 的对称点为5P (―a ,b ,c );关于坐标平面xOz 的对称点为6P (a ,―b ,c ).类型二:两点间的距离公式例3.空间坐标系Oxyz 中,点A 在x 轴上,点B (1,0,2),且||AB =A 坐标为________.【思路点拨】根据点A 在x 轴上,设点A (x ,0,0),再由||AB =关于x 的方程,解得x 值,从而得到点A 坐标.【答案】(0,0,0)或(2,0,0)【解析】∵点A 在x 轴上,∴可设点A (x ,0,0),又∵B (1,0,2),且||AB ==,解之得x =0或2,所以点A 的坐标为:(0,0,0)或(2,0,0);故答案为:(0,0,0)或(2,0,0).【总结升华】本题给出x 轴上一点到空间两个已知点的距离相等,求该点的坐标,着重考查了空间两点的距离公式和含有根号的方程的解法.举一反三:【高清课堂:空间直角坐标系381528 知识点3中的例题1】【变式1】在空间中,已知点A(1,0, -1),B(4,3, -1),求A 、B 两点之间的距离.【答案】||32AB = 【变式2】(2016 湖南衡阳模拟)四棱锥S —ABCD 中,底面边长为2,侧棱长为3,E 是侧棱SC 的中点,建立如图所示的空间直角坐标系,试求点A 、C 、E 的坐标.【思路点拨】根据如图所示的空间坐标系,即可求出点A 、C 、E 的坐标.【答案】27(,0,)2E - 【解析】四棱锥S —ABCD 中,∴四边形ABCD 为正方形,SO ⊥平面ABCD ,∴SO ⊥AC ,∵AB =2,∴2AO OC ==,∵SC =3,∴222327SO SC OC =-=-=,∴点(2,0,0)A ,(2,0,0)C -,(0,0,7)S , ∴27(,0,)22E - 例4.在正方体ABCD —A 1B 1C 1D 1中,P 为平面A 1B 1C 1D 1的中心,求证:PA ⊥PB 1.【解析】如图,建立空间直角坐标系D-xyz ,设棱长为1,则A (1,0,0),B 1(1,1,1),11,,122P ⎛⎫⎪⎝⎭, 由两点间的距离公式得 22116||122AP ⎛⎫⎛⎫=++= ⎪ ⎪⎝⎭⎝⎭,1112||442PB =+=,221||112AB =+=。
∵|AP|2+|PB 1|2=|AB 1|2=2,∴AP ⊥PB 1.【总结升华】本例的求解方法尽管很多,但利用坐标法求解,应该说是既简捷又易行,方法的对照比较,也更体现出了坐标法解题的优越性.依据题中的垂直关系,建立恰当的坐标系,利用空间中两点间的距离公式可以求距离、证垂直、求角度等,为我们提供了新的解题方法.举一反三:【变式1】如下图所示,已知PA ⊥平面ABCD ,平面ABCD 为矩形,M 、N 分别是AB 、PC 的中点,求证:MN ⊥AB 。
【解析】如图所示,以A 为坐标原点,分别以AB 、AD 、AP 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系,则A (0,0,0),设B (a ,0,0),D (0,b ,0),P (0,0,c ),因为M 、N 分别是AB 、PC 的中点,所以(,0,0)2a M ,(,,)222a b c N 。
方法一:连接AN ,在△AMN 中,有22||4a AM =,222||4b c MN +=,2222||4a b c AN ++=,所以|AN|2=|MN|2+|AM|2,所以MN ⊥AB 。