高考数学文化题汇总

合集下载

高中数学文化试题及答案

高中数学文化试题及答案

高中数学文化试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是函数y=2x^2的图像?A. 经过原点的抛物线B. 经过原点的直线C. 经过原点的双曲线D. 经过原点的椭圆答案:A2. 圆的一般方程是:A. (x-a)^2 + (y-b)^2 = r^2B. x^2 + y^2 = r^2C. x^2 + y^2 + r^2 = 0D. (x-a)^2 + (y-b)^2 = 0答案:A3. 已知集合A={1,2,3},B={2,3,4},则A∩B等于:A. {1,2}B. {2,3}C. {1,3}D. {3,4}答案:B4. 若f(x)=x^2-4x+3,则f(2)的值为:A. 1C. 3D. 5答案:A5. 等差数列{an}的前三项分别为1, 4, 7,则该数列的公差d为:A. 2B. 3C. 4D. 5答案:B6. 函数f(x)=x^3-3x^2+2在x=1处的导数为:A. 0B. 1C. 2D. -1答案:B7. 已知向量a=(2,3),b=(1,k),若a⊥b,则k的值为:A. 2B. -2C. 3D. -3答案:B8. 函数y=sinx在区间[0,π]上的最大值为:B. 1C. πD. -1答案:B9. 圆的半径为5,圆心在原点,该圆的方程为:A. x^2 + y^2 = 25B. (x-5)^2 + y^2 = 25C. x^2 + y^2 - 5^2 = 0D. x^2 + y^2 + 5^2 = 0答案:A10. 函数f(x)=x^2-6x+8的顶点坐标为:A. (3, -1)B. (-3, 1)C. (3, 1)D. (-3, -1)答案:A二、填空题(每题4分,共20分)1. 等比数列{an}的首项为2,公比为3,其第五项为______。

答案:1622. 抛物线y^2=4x的焦点坐标为______。

答案:(1,0)3. 直线l的斜率为-1,且经过点(2,3),则直线l的方程为______。

高三数学传统文化

高三数学传统文化

教育部考试中心要求“增加中华优秀传统文化的考核内容,积极培育和践行社会主义核心价值观,充分发挥高考命题的育人功能和积极导向作用.比如,在数学中增加数学文化的内容”.因此,我们特别编写了此课时,将数学文化与数学知识相结合.考点一立体几何中的数学传统文化题[典例1]“牟合方盖”是我国古代数学家刘徽在研究球的体积的过程中构造的一个和谐优美的几何体,它由完全相同的四个曲面构成,相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖).其直观图如图1,图2中四边形是为体现其直观性所作的辅助线,当其主视图和左视图完全相同时,它的主视图和俯视图分别可能是()A.a,b B.a,cC.c,b D.b,d[解析]A[当主视图和左视图完全相同时,“牟合方盖”相对的两个曲面正对前方,主视图为一个圆,俯视图为一个正方形,且两条对角线为实线,故选A.]“牟合方盖”是我国古代利用立体几何模型和数学思想方法解决数学问题的代表之一.本题取材于“牟合方盖”,通过加工改造,添加解释和提供直观图的方式降低了理解题意的难度.解题从识“图”到想“图”再到构“图”,考生要经历分析、判断的逻辑过程.另外,我国古代数学中的其他著名几何体,如“阳马”“鳖臑”和“堑堵”等的三视图问题都有可能在高考中考查.[跟踪训练1]《九章算术》商功章有题:一圆柱形谷仓,高1丈3尺313寸,容纳米2 000斛(1丈=10尺,1尺=10寸,斛为容积单位,1斛≈1.62立方尺,π≈3),则圆柱底面圆周长约为( )A .1丈3尺B .5丈4尺C .9丈2尺D .48丈6尺解析:B [设圆柱底面圆半径为r 尺,高为h 尺,依题意,圆柱体积为V =πr 2h =2 000×1.62≈3×r 2×13.33,所以r 2≈81,即r ≈9,所以圆柱底面圆周长为2πr ≈54,54尺=5丈4尺,则圆柱底面圆周长约为5丈4尺,故选B.]考点二 数列中的数学传统文化题[典例2] 中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思为:有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地,请问第二天走了( )A .192里B .96里C .48里D .24里[解析] B [设等比数列{a n }的首项为a 1,公比为q =12,依题意有a 1⎝⎛⎭⎫1-1261-12= 378,解得a 1=192,则a 2=192×12= 96,即第二天走了96里,故选B.]与等差数列一样,我国古代数学涉及等比数列问题也有很多,因此,涉及等比数列的数学文化题也频繁出现在各级各类考试试卷中.解决这类问题的关键是将古代实际问题转化为现代数学问题,掌握等比数列的概念、通项公式和前n 项和公式.[跟踪训练2]《周髀算经》是中国古代的天文学和数学著作.其中一个问题大意为:一年有二十四个节气,每个节气晷长损益相同(即太阳照射物体影子的长度增加和减少大小相同).若冬至晷长一丈三尺五寸,夏至晷长一尺五寸(注:一丈等于十尺,一尺等于十寸),则夏至之后的那个节气(小暑)晷长为( )A .五寸B .二尺五寸C.三尺五寸D.一丈二尺五寸解析:B[设晷长为等差数列{a n},公差为d,a1=15,a13=135,则15+12d=135,解得d=10.∴a2=15+10=25,∴《易经》中所记录的惊蛰的晷影长是2尺5寸.故选B.]考点三算法中的数学传统文化题[典例3]如图所示算法框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该算法框图,若输入的a,b分别为8,12,则输出的a=()A.4B.2C.0 D.14[解析]A[由算法框图输入的a=8,b=12,按算法框图所示依次执行,可得b=12-8=4,a=8;a=8-4=4,b=4,a=b,所以输出a=4.故选A.]《九章算术》系统总结了我国古代人民的优秀数学思想,开创了构造算法以解决各类问题的东方数学发展的光辉道路,这与当今计算机科学的飞速发展对数学提出的要求不谋而合.本题算法框图的算法思路源于《九章算术》中计算两个正整数的最大公约数的“更相减损术”算法.[跟踪训练3](2019·益阳、湘潭调研)秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数学九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法,如图所示的算法框图给出了利用秦九韶算法求某多项式值的一个实例.若输入n,x的值分别为3,3.则输出v的值为()A. 15B. 16C. 47D. 48解析:D [执行算法框图:输入n =3,x =3,v =1,i =2,i ≥0,是 i ≥0,是, v =1×3+2=5,i =1; i ≥0,是, v =5×3+1=16,i =0; i ≥0,是, v =16×3+0=48,i =-1; i ≥0,否,输出v =48.]考点四 概率统计中的传统文化题[典例4] (2018·全国Ⅰ卷)下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .△ABC 的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p 1,p 2,p 3,则( )A .p 1=p 2B .p 1=p 3C .p 2=p 3D .p 1=p 2+p 3[解析] A [法一:设直角三角形ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,则区域Ⅰ的面积即△ABC 的面积为S 1=12bc ,区域Ⅱ的面积S 2=12π×⎝⎛⎭⎫c 22+12π×⎝⎛⎭⎫b 22-⎣⎢⎡⎦⎥⎤π×⎝⎛⎭⎫a 222-12bc =18π(c 2+b 2-a 2)+12bc =12bc ,所以S 1=S 2,由几何概型的知识知p 1=p 2,故选A.法二:不妨设△ABC 为等腰直角三角形,AB =AC =2,则BC =22,所以区域Ⅰ的面积即△ABC 的面积,为S 1=12×2×2=2,区域Ⅱ的面积S 2=π×12-⎣⎢⎡⎦⎥⎤π×(2)22-2=2,区域Ⅲ的面积S 3=π×(2)22-2=π-2.根据几何概型的概率计算公式,得p 1=p 2=2π+2,p 3=π-2π+2,所以p 1≠p 3,p 2≠p 3,p 1≠p 2+p 3,故选A.]从中国古代文学作品中选取素材考查数学问题,丰富了数学文化题的取材途径.试题插图的创新是本题的一个亮点,其一,增强了数学问题的生活化,使数学的应用更贴近考生的生活实际;其二,有利于考生分析问题和解决问题,这对稳定考生在考试中的情绪和心态起到了较好的效果;其三,探索了数学试题插图的新形式,给出了如何将抽象的数学问题直观化的范例.[跟踪训练4](理科)(2018·全国Ⅱ卷)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是( )A.112B.114C.115D.118解析:C [不超过30的素数有2,3,5,7,11,13,17,19,23,29,共10个,从中随机选取两个不同的数有C 210种不同的取法,这10个数中两个不同的数的和等于30的有3对,所以所求概率p =3C 210=115,故选C.](文科)2017年8月1日是中国人民解放军建军90周年纪念日,中国人民银行发行了以此为主题的金银纪念币.如图所示的是一枚8克圆形金质纪念币,直径22毫米, 面额100元.为了测算图中军旗部分的面积,现向硬币内随机投掷100粒芝麻,已知恰有30粒芝麻落在军旗内,据此可估计军旗的面积大约是( )A. 726π5mm 2 B. 363π10mm 2C.363π5mm 2 D.363π20mm 2 解析:B [利用古典概型近似几何概型可得,芝麻落在军旗内的概率为p =30100=310,设军旗的面积为S ,由题意可得:S π×112=310,∴S =310×π×112=36310π()mm 2,故选B.] 考点五 三角函数中的数学传统文化题[典例5] 第24届国际数学家大会会标是以我国古代数学家赵爽的弦图为基础进行设计的.如图,会标是由四个全等的直角三角形与一个小正方形拼成的一个大正方形.如果小正方形的面积为1,大正方形的面积为25,直角三角形中较大的锐角为θ,那么tan ⎝⎛⎭⎫θ+π4= ________ .[解析] 依题意得大、小正方形的边长分别是5,1,于是有5sin θ-5cos θ=1(0<θ<π2),即有sin θ-cos θ=15.从而(sin θ+cos θ)2=2-(sin θ-cos θ)2=4925,则sin θ+cos θ=75,因此sin θ=45,cos θ=35,tan θ=43,故tan ⎝⎛⎭⎫θ+π4=tan θ+11-tan θ=-7. [答案] -71700多年前,赵爽绘制了极富创意的弦图,采用“出入相补”原理使得勾股定理的证明不证自明.该题取材于第24届国际数学家大会会标,题干大气,设问自然,流露出丰富的文化内涵.既巧妙地考查了三角函数的相关知识,又丰富了弦图的内涵,如正方形四边相等寓言各国及来宾地位平等,小正方形和三角形紧紧簇拥在一起,表明各国数学家要密切合作交流,等等.[跟踪训练5](2019·沈阳监测)刘徽是一个伟大的数学家,他的杰作《九章算术注》和《海岛算经》是中国最宝贵的文化遗产,他所提出的割圆术可以估算圆周率π,理论上能把π的值计算到任意的精度.割圆术的第一步是求圆的内接正六边形的面积.若在圆内随机取一点,则此点取自该圆内接正六边形的概率是( )A. 334π B. 332π C.12πD. 14π解析:B [设圆的半径为R ,则圆的内接正六边形可以分解为6个全等的三角形,且每个三角形的边长为R ,据此可得,圆的面积为S 1=πR 2,其内接正六边形的面积为S 2=6×⎝⎛⎭⎫12×R 2×sin 60°=332R 2,利用几何概型计算公式可得:此点取自该圆内接正六边形的概率是p =S 2S 1=332π.故选B.]特色专题 数学文化[基础训练组]1.二十四节气(The 24 Solar Terms)是指中国农历中表示季节变迁的24个特定节令,是根据地球在黄道(即地球绕太阳公转的轨道)上的位置变化而制定的,每一个分别相应于地球在黄道上每运动15°所到达的一定位置。

历年高考真题(数学文化).doc

历年高考真题(数学文化).doc

历年高考真题(数学文化)1. (2009 湖北· 理)古希腊人常用小石子在沙滩上摆成各种形状研究数,如他们研究过图 1 中的 1, 3, 6, 10,,由于这些数能表示成三角形,将其称为三角形数;类似地,称图 2 中的 1, 4,9,16这样的数为正方形数,下列数中既是三角形数又是正方形数的是()2. ( 2011 湖北·文)《九章算术》“竹九节”问题:现有一根9 节的竹子,自上而下各节的容积成等差数列,上面 4 节的容积共 3 升,下面 3 节的容积共 4 升,则第 5 节的容积为A.1升B .67升C .47升D .37升66 44 333. ( 2011 湖北·理)《九章算术》“竹九节”问题:现有一根9 节的竹子,自上而下各节的容积成等差数列,上面 4 节的容积共 3 升,下面 3 节的容积共4 升,则第 5 节的容积为升.4.( 2012? 湖北)我国古代数学名著《九章算术》中“开立圆术”曰:置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径,“开立圆术”相当于给出了已知球的体积V,求其直径 d 的一个近似公式 d 3 16 = .. 判断,V .人们还用过一些类似的近似公式.根据π9下列近似公式中最精确的一个是()A. d 3 16d 3 2V C. d 3300d 321 V B. V D. V 9 157 115. ( 2013? 湖北)在平面直角坐标系中,若点P(x, y)的坐标 x,y 均为整数,则称点P 为格点.若一个多边形的顶点全是格点,则称该多边形为格点多边形.格点多边形的面积记为 S,其内部的格点数记为 N,边界上的格点数记为 L.例如图中△ ABC是格点三角形,对应的S=1, N=0, L=4.(Ⅰ)图中格点四边形 DEFG对应的 S,N, L 分别是 ________;(Ⅱ)已知格点多边形的面积可表示为S aN bL c 其中a,b,c为常数.若某格点多边形对应的N=71, L=18,则 S=________(用数值作答).6.( 2014? 湖北)《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,令相乘也,又以高乘之,三十六成一,该术相当于给出了由圆锥的底面周长L 与高 h,计算其体积 V 的近似公式 V1 L2h,它实际上是将圆锥体积公式中的圆周率π近似取为3,那么,近似公式236V L2h 相当于将圆锥体积公式中的π近似取为()75A. 22B. 25C. 157D. 3557 8 50 1137.(2015湖北)我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米 1534 石,验得米内夹谷,抽样取米一把,数得 254 粒内夹谷28 粒,则这批米内夹谷约为PA. 134 石B. 169 石C. 338石D. 1365 石F E8. ( 2015 湖北)《九章算术》中,将底面为长方形且有一D CA B第19题图条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.如图,在阳马 P ABCD 中,侧棱 PD底面 ABCD ,且 PD CD ,过棱 PC 的中点 E ,作 EFPB 交 PB 于点 F ,连接 DE, DF, BD, BE.(Ⅰ)证明: PB平面 DEF .试判断四面体 DBEF 是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,说明理由;(Ⅱ)若面 DEF 与面 ABCD 所成二面角的大小为π,3求 DC的值. BC9. ( 2004 上海春季卷)如图,在由二项式系数所构成的杨辉三角形中,第_____行中从左至右第 14 与第 15 个数的比为2 : 3.10. ( 2013 上海)在 xOy 平面上,将两个半圆弧 ( x - 1) 2+ y 2= 1( x ≥ 1) 和( x - 3) 2+ y 2=1( x ≥ 3) 、两条直线 y = 1 和 y =- 1 围成的封闭图形记为,如图中阴影部分.记 D 绕 y 轴旋转一D周而成的几何体为 Ω. 过 (0 , y )(| y | ≤ 1) 作 Ω的水平截面,所得截面面积为 4 1 y 2 + 8π. 试利用祖暅原理、一个平放的圆柱和一个长方体,得出Ω的体积值为 ______.11. ( 2009 福建) . 五位同学围成一圈依序循环报数,规定:①第一位同学首次报出的数为1,第二位同学首次报出的数也为 1,之后每位同学所报出的数都是前两位同学所报出的数之和;②若报出的数为 3 的倍数,则报该数的同学需拍手一次已知甲同学第一个报数,当五位同学依序循环报到第100 个数时,甲同学拍手的总次数为________.12. ( 2003 全国卷·理)如图,一个地区分为 5 个行政区域,现给地图着色,要求相邻地区不得使用同一颜色,现有 4 种颜色可供选择,则不同的着色方法共有种(以数字作答)13. ( 2015 全国Ⅰ卷)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问:积及为米几何“其意思为:在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8 尺,米堆的高为 5 尺,问米堆的体积和堆放的米各为多少已知 1 斛米的体积约为立方尺,圆周率约为3,估算出堆放斛的米约有()A.14 斛B. 22 斛C.36 斛D.66 斛14.(2015 全国Ⅱ卷)下边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入a,b 分别为14,18,则输出的 a =()A. 0B.2C. 4D.1415.(2016 全国Ⅱ卷)中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图. 执行该程序框图,若输入的x=2,n=2,依次输入的 a 为 2, 2, 5,则输出的s=(A)7(B)12(C)17(D)34。

(完整版)高考数学文化题目:阿波罗尼斯圆问题

(完整版)高考数学文化题目:阿波罗尼斯圆问题

高考数学文化内容预测三:阿波罗尼斯圆问题一、高考考试大纲数学大纲分析及意义:普通高考考试大纲数学修订,加强了对数学文化的考查。

针对这一修订提出以下建议:建议教师对数学文化这一概念认真学习,结合教材内容学习,特别是教材中渗透数学文化的内容要充分重视,重点研究;结合近年新课标试题中出现的与数学文化有关的试题进行学习,重点关注题源、考法命题形式。

其主要意义为:(1)增加中华优秀传统文化的考核内容,积极培育和践行社会主义核心价值观,充分发挥高考命题的育人功能和积极导向作用.(2)能力要求:经命题专家精细加工,再渗透现代数学思想和方法;在内涵方面,增加了基础性、综合性、应用性、创新性的要求.二、往年新课标高考实例解析及2017年高考数学文化试题预测:往年新课标高考实例分析:分析一:古代数学书籍《九章算术》、《数书九章》等为背景近年来在全国高考数学试题中,从《九章算术》中选取与当今高中数学教学相映的题材背景.(1)2015年高考全国卷Ⅰ,此题源于《九章算术》卷第五《商功》之[二五],将古代文化“依垣”和现代教育元素“圆锥”结合.(2)2015年高考全国卷Ⅱ,此题源于《九章算术》卷第一《方田》之[六]:“又有九十一分之四十九.问约之得几何?”“可半者半之,不可半者,副置分母、子之数,以少减多,更相减损,求其等也.以等数约之”,后人称之为“更相减损术”.(3)2015年高考湖北卷,此题背景源于《九章算术》卷第五《商功》之[一五].今有阳马,广五尺,袤七尺,高八尺.问积几何;之[一六]今有鳖臑,下广五尺,无袤;上袤四尺,无广,高七尺.问积几何.考题将“阳马”,“鳖臑”相结合,以《选修2-1》P109例4为源进行有机整合.巧妙嫁接,精典设问,和谐优美的考题呼之即出.分析二:课后阅读或课后习题如阿波罗尼圆为背景从2005-2013年多次涉及考题,全国卷2011年16题以此为命题背景的其他省市:江苏:2008年13题、2013年17题.2009-2013年湖北高考连续出现等等.数学文化题型背景预测:预测1:古代数学书籍《九章算术》、《数书九章》等数为背景的数学文化类题目.预测2:高等数学衔接知识类题目.如微积分、初等数学和高等数学的桥梁,由高中向大学的知识过渡衔接.预测3:课本阅读和课后习题的数学文化类题目.如必修3中,辗转相除法、更相减损术、秦九韶算法、二进制、割圆术等。

高考中的数学文化(解析版)

高考中的数学文化(解析版)

高考中的数学文化一、单选题1.1750年,欧拉在给哥德巴赫的一封信中列举了多面体的一些性质,其中一条是:如果用V 、E 和F 表示闭的凸多面体的顶点数、棱数和面数,则有如下关系:2V E F -+=.已知正十二面体有20个顶点,则正十二面体有()条棱A .30B .14C .20D .26【答案】A 【分析】由已知条件得出20V =,12F =,代入欧拉公式2V E F -+=可求得E 的值,即为所求.【详解】由已知条件得出20V =,12F =,由欧拉公式2V E F -+=可得22012230E V F =+-=+-=.故选:A.2.龙马负图、神龟载书图像如图甲所示,数千年来被认为是中华传统文化的源头;其中洛书有云,神龟出于洛水,甲壳上的图像如图乙所示,其结构是戴九履一,左三右七,二四为肩,六八为足u ,以五居中,五方白圈皆阳数,四角黑点为阴数;若从阳数和阴数中分别随机抽出2个和1个,则被抽到的3个数的数字之和超过16的概率为()A .1340B .720C .14D .310【答案】A 【分析】由题可求出所有情况共40种,再求出满足条件的情况即可求出概率.【详解】依题意,阳数为1、3、5、7、9,阴数为2、4、6、8,故所有的情况有215440C C =种,其中满足条件的为()7,8,9,()7,6,9,()7,4,9,()7,2,9,()5,8,9,()5,6,9,()5,4,9,()3,8,9,()3,6,9,()1,8,9,()7,8,5,()7,6,5,,()7,8,3,共13种,故所求概率1340P =.故选:A .3.数学著作《孙子算经》中有这样一个问题:“今有物不知其数,三三数之剩二(除以3余2),五五数之剩三(除以5余3),问物几何?”现将1到2020共2020个整数中,同时满足“三三数之剩二,五五数之剩三”的数按从小到大的顺序排成一列,构成数列{},n a 则该数列共有()A .132项B .133项C .134项D .135项【答案】D 【分析】由题意抽象出数列是等差数列,再根据通项公式计算项数.【详解】被3除余2且被5除余3的数构成首项为8,公差为15的等差数列,记为{}n a ,则()8151157n a n n =+-=-,令1572020n a n =-≤,解得:213515n ≤,所以该数列的项数共有135项.故选:D 【点睛】关键点点睛:本题以数学文化为背景,考查等差数列,本题的关键是读懂题意,并能抽象出等差数列.4.攒尖是古代中国建筑中屋顶的一种结构形式.宋代称为撮尖,清代称攒尖.依其平面有圆形攒尖、三角攒尖、四角攒尖、六角攒尖等,也有单檐和重檐之分,多见于亭阁式建筑.如图所示,某园林建筑为六角攒尖,它的主要部分的轮廓可近似看作一个正六棱锥,若此正六棱锥的侧面等腰三角形的底角为α,则侧棱与底面外接圆半径的比为()A .12cos αB .12sin αC .sin 3πsin8αD .cos 3πcos8α【答案】A 【分析】根据正六棱锥的底面为正六边形计算可得结果.【详解】正六棱锥的底面为正六边形,设其外接圆半径为R ,则底面正边形的边长为R ,因为正六棱锥的侧面等腰三角形的底角为α,所以侧棱长为2cos 2cos RR αα=,所以侧棱与底面外接圆半径的比为12cos 2cos RR αα=.故选:A 【点睛】关键点点睛:掌握正六棱锥的结构特征是解题关键.5.《张丘建算经》卷上第22题为:“今有女善织,日益功疾(注:从第2天开始,每天比前一天多织相同量的布),第一天织5尺布,现一月(按30天计)共织390尺”,则从第2天起每天比前一天多织()A .12尺布B .518尺布C .1631尺布D .1629尺布【答案】D 【分析】设该女子第()Nn n *∈尺布,前()N n n *∈天工织布n S 尺,则数列{}n a 为等差数列,设其公差为d ,根据15a =,30390S =可求得d 的值.【详解】设该女子第()Nn n *∈尺布,前()N n n *∈天工织布n S 尺,则数列{}n a 为等差数列,设其公差为d ,由题意可得30130293015015293902S a d d ⨯=+=+⨯=,解得1629d =.故选:D.6.中国古代数学著作《九章算术》中有如下问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤.问次一尺各重几何?”意思是:“现有一根金锤,长五尺,一头粗一头细.在粗的一端截下一尺,重四斤;在细的一端截下一尺,重二斤.问依次每一尺各重几斤?”根据已知条件,若金箠由粗到细是均匀变化的,中间三尺的重量为()A .3斤B .6斤C .9斤D .12斤【答案】C 【分析】根据题意转化成等差数列问题,再根据等差数列下标的性质求234a a a ++.【详解】由题意可知金锤每尺的重量成等差数列,设细的一端的重量为1a ,粗的一端的重量为5a ,可知12a =,54a =,根据等差数列的性质可知1533263a a a a +==⇒=,中间三尺为234339a a a a ++==.故选:C 【点睛】本题考查数列新文化,等差数列的性质,重点考查理解题意,属于基础题型.7.古希腊时期,人们把宽与长之比为512-的矩形称为黄金矩形,把这个比值512称为黄金分割比例.下图为希腊的一古建筑.其中部分廊、檐、顶的连接点为图中所示相关对应点,图中的矩形ABCD ,EBCF ,FGHC ,FGJI ,LGJK ,MNJK 均近似为黄金矩形.若A 与D 间的距离大于18.7m ,C 与F 间的距离小于12m .则该古建筑中A 与B 间的距离可能是()(参考数据:510.6182-≈,70.6180.38≈,30.6180.236≈)A .29mB .29.8mC .30.8mD .32.8m【答案】C 【分析】由矩形ABCD 和EBCF 是黄金矩形,由边长的比求出AB 范围即可得.【详解】由黄金矩形的定义可知0.618AD AB ≈,20.6180.38BC CF CFAB BC AB⋅=≈≈,所以18.730.260.6180.618AD AB m ≈>≈,1231.580.380.38CF AB m ≈<≈,即()30.26,31.58AB ∈,对照各选项,只有C 符合.故选:C .【点睛】本题考查数学文化,考查学生的阅读理解能力,转化与化归能力,创新意识.属于基础题.8.德国著名的天文学家开普勒说过:“几何学里有两件宝,一个是勾股定理,另一个是黄金分割.如果把勾股定理比作黄金矿的话,那么可以把黄金分割比作钻石矿.”黄金三角形有两种,其中底与腰之比为黄金分割比的黄金三角形被认为是最美的三角形,它是一个顶角为36o 的等腰三角形(另一种是顶角为108 的等腰三角形).例如,五角星由五个黄金三角形与一个正五边形组成,如图所示,在其中一个黄金ABC 中,512BC AC -=.根据这些信息,可得sin126= ()A .1254-B.38+C .154+D .458+【答案】C 【分析】计算出51cos 724-= ,然后利用二倍角公式以及诱导公式可计算得出sin126cos36= 的值,即可得出合适的选项.【详解】因为ABC 是顶角为36o 的等腰三角形,所以,72ACB ∠= ,则1512cos 72cos 4BCACB AC-=∠==,()sin126sin 9036cos36=+= ,而2cos722cos 361=-,所以,51cos364+====.故选:C.【点睛】本题考查利用二倍角公式以及诱导公式求值,考查计算能力,属于中等题.9.《九章算术》是我国古代内容极为丰富的数学名著.书中有如下问题:“今有委米依垣内角,下周四尺.高三尺.何积及为米几何?”其意思为:“在屋内墙角处堆放米,米堆底部的弧长为4尺.米堆的高为3尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有()A .7斛B .3斛C .9斛D .12斛【答案】B 【分析】根据圆锥的体积公式计算出对应的体积即可.【详解】解:设圆锥的底面半径为r ,则42r π=,解得8r π=,故米堆的体积为2118163433ππ⎛⎫⨯⨯⨯⨯≈ ⎪⎝⎭,∵1斛米的体积约为1.62立方,∴161.6233÷≈,故选:B .【点睛】本题主要考查椎体的体积的计算,比较基础.10.《九章算术》中,将底面是直角三角形的直三棱柱称之为“堑堵”.已知某“堑堵”的三视图如图所示,俯视图中间的实线平分矩形的面积,则该“堑堵”的侧面积为()A .2B .242+C .42+D .442+【答案】D 【分析】利用三视图还原原几何体,结合三视图中的数据可计算出该“堑堵”的侧面积.【详解】由三视图还原原几何体如下图所示:2的等腰直角三角形,且直三棱柱的高为2,因此,该“堑堵”的侧面积为()22224+⨯=.故选:D.【点睛】本题考查利用三视图计算几何体的侧面积,一般要求还原原几何体,考查空间想象能力与计算能力,属于基础题.11.干支是天干(甲、乙、…、癸)和地支(子、丑、…、亥)的合称,“干支纪年法”是我国传统的纪年法.如图是查找公历某年所对应干支的程序框图.例如公元2041年,即输入2041N =,执行该程序框图,运行相应的程序,输出58x =,从干支表中查出对应的干支为辛酉.我国古代杰出数学家秦九韶出生于公元1208年,则该年所对应的干支为()六十干支表(部分)56789戊辰己巳庚午辛未壬申5657585960己未庚申辛酉壬戌癸亥A .戊辰B .辛未C .已巳D .庚申【答案】A 【分析】输出1208N =,计算输出结果,查表可得结果.【详解】输入1208N =,1i =,第一次循环,120836011145x =--⨯=,2i =,60x ≤不成立;第二次循环,120836021085x =--⨯=,3i =,60x ≤不成立;第三次循环,120836031025x =--⨯=,4i =,60x ≤不成立;由上可知,每执行一次循环后,x 的值对应地在上一次循环后x 的值中减去60,则输出的x 的值为1205除60后的余数,120620605=⨯+ ,则输出的x 的值为5,因此,公元1208年对应的干支为戊辰.故选:A.【点睛】本题考查数学文化中的“干支纪年法”,考查程序框图的应用,考查计算能力,属于中等题.12.古代中国的太极八卦图是以同圆内的圆心为界,画出相等的两个阴阳鱼,阳鱼的头部有阴眼,阴鱼的头部有个阳眼,表示万物都在相互转化,互相渗透,阴中有阳,阳中有阴,阴阳相合,相生相克,蕴含现代哲学中的矛盾对立统一规律.图2(正八边形ABCDEFGH )是由图1(八卦模型图)抽象而得到,并建立如下平面直角坐标系,设1OA =.则下述四个结论:①以直线OH 为终边的角的集合可以表示为32,4k k Z πααπ⎧⎫=+∈⎨⎬⎩⎭;②以点O 为圆心、OA 为半径的圆的弦AB 所对的弧长为4π;③22OA OD ⋅= ;④(BF = 中,正确结论的个数是()A .1B .2C .3D .4【答案】B 【分析】根据终边相同的角的定义可判断命题①的正误;利用扇形的弧长公式可判断命题②的正误;利用平面向量数量积的定义可判断命题③的正误;利用平面向量的坐标运算可判断命题④的正误.【详解】对于命题①,以直线OH 为终边的角的集合可以表示为3,4k k Z πααπ⎧⎫=+∈⎨⎬⎩⎭,命题①错误;对于命题②,4AOB π∠=,以点O 为圆心、OA 为半径的圆的弦AB 所对的弧长为4π,命题②正确;对于命题③,由平面向量数量积的定义可得3cos 42OA OD OA OD π⋅=⋅=- ,命题③错误;对于命题④,易知点22,22B ⎛⎫ ⎪ ⎪⎝⎭,22,22F ⎛-- ⎝⎭,所以,(BF = ,命题④正确.故选:B.【点睛】本题以数学文化为背景,考查了终边相同的角的集合、扇形的弧长、平面向量数量积的定义以及平面向量的坐标运算,考查计算能力,属于基础题.二、填空题13.世界四大历史博物馆之首卢浮宫博物馆始建于1204年,原是法国的王宫,是法国文艺复兴时期最珍贵的建筑物之一,以收藏丰富的古典绘画和雕刻而闻名于世,卢浮宫玻璃金字塔为正四棱锥,且该正四棱锥的高为21米,底面边长为30米,是华人建筑大师贝聿铭设计的.若玻璃金字塔五个顶点恰好在一个球面上,则该球的半径为______米.【答案】29714【分析】作出图形,设球体的半径为R ,根据几何关系可得出关于R 的等式,进而可解得R 的值.【详解】如下图所示:在正四棱锥P ABCD -中,设M 为底面正方形ABCD 的对角线的交点,则PM ⊥底面ABCD ,由题意可得21PM =,30AB =,2302BD ==,则152BM =设该球的半径为R ,设球心为O ,则O PM ∈,由勾股定理可得222OB OM BM =+,即()(22221152R R =-+,解得29714R =.故答案为:29714.【点睛】方法点睛:求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径;③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可.14.明朝著名易学家来知德以其太极图解释一年、一日之象的图式,一年气象图将二十四节气配以太极图,说明一年之气象,来氏认为“万古之人事,一年之气象也,春作夏长秋收冬藏,一年不过如此”.上图是来氏太极图,其大圆半径为4,大圆内部的同心小圆半径为1,两圆之间的图案是对称的,若在大圆内随机取一点,则该点落在黑色区域的概率为______.【答案】1532【分析】设大圆面积为1S ,小圆面积2S ,求得116S π=,2S π=,进而求得黑色区域的面积,结合面积比,即可求解.【详解】设大圆面积为1S ,小圆面积2S ,则21416S ππ=⨯=,221S ππ=⨯=,可得黑色区域的面积为()1211522S S π⨯-=,所以落在黑色区域的概率为()121115232S S P S -==.故答案为:1532.【点睛】本题主要考查了几何概型的概率的计算问题,解决此类问题的步骤:求出满足条件A 的基本事件对应的“几何度量()N A ”,再求出总的基本事件对应的“几何度量N ”,然后根据()N A P N =求解,着重考查了分析问题和解答问题的能力,属于基础题.15.《九章算术》是我国古代著名数学经典,其中对勾股定理的论述,比西方早一千多年,其中有这样一个问题:“今有圆材埋在壁中,不知大小;以锯锯之,深一寸,锯道长一尺,问径几何?”其意为:今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯该材料,锯口深1寸,锯道长1尺,问这块圆柱形木料的直径是多少?长为0.5丈的圆柱形木材部分镶嵌在墙体中,截面图如图所示(阴影部分为镶嵌在墙体内的部分).已知弦1AB =尺,弓形高1CD =寸,估算该木材镶嵌墙内部分的体积约为______立方寸.(注:一丈=10尺=100寸,53.14,sin 22.513π≈≈ ,答案四舍五入,只取整数...........)【答案】317【分析】根据弓形的锯口深1寸,锯道长1尺,求出圆的半径,从而求出弓形(阴影部分)面积后,由柱体体积公式得木材体积【详解】如图,设圆半径为r 寸(下面长度单位都是寸),连接,OA OD ,已知152AD AB ==,1OD OC CD r =-=-,在Rt ADO 中,222AD OD OA +=,即2225(1)r r +-=,解得13r =,由5sin 13AD AOD AO ∠==得22.5AOD ∠=︒,所以45AOB ∠=︒,图中阴影部分面积为S S =扇形214131012 6.332522AOB S πππ-=⨯⨯-⨯⨯≈△(平方寸),镶嵌在墙体中木材是以阴影部分为底面,以锯刀长为高的柱体,所以其体积为 6.332550317V Sh =≈⨯≈(立方寸)故答案为:317.【点睛】本题考查柱体的体积,关键是求底面面积,方法是由扇形面积减去相应三角形面积得弓形面积,属基础题.16.中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体的棱长为______1-【分析】从图形中作一个最大的水平截面,它是一个正八边形,八个顶点都在边长为铁正方形边上,由此可计算出棱长.【详解】作出该图形的一个最大的水平截面正八边形ABCDEFGH ,如图,其八个顶点都在边长为1的正方形上,设“半正多面体”棱长为a ,则2212a a ⨯+=,解得1a =-,1-.【点睛】本题考查学生的空间想象能力,抽象概括能力,解题关键是从“半正多面体”中作出一个截面为正八边形且正八边形的八个顶点都在边长为1的正方形上,由此易得棱长.。

高考数学文化题汇总

高考数学文化题汇总

数学与日常生活
总结词
数学在日常生活中无处不在,从购物决策到 建筑设计,都涉及到数学的应用。
详细描述
购物时比较不同商品的价格和性价比需要进 行简单的算术计算;建筑设计需要考虑几何 学原理;时间管理则涉及到线性规划等数学 知识。此外,天气预报、股票交易等领域也 大量使用了数学工具。
04
CATALOGUE
现代中国数学
中国现代数学在几何学、拓扑学、概率论和统计学等方面取得了一定的成就, 逐渐与国际数学界接轨。
02
CATALOGUE
数学与文学艺术
数学与诗歌
总结词
数学概念和原理经常被用作诗歌的主题,以增加其深度和复 杂性。
详细描述
数学与诗歌的结合可以追溯到古代文明,如毕达哥拉斯学派 用诗歌来表达数学理念。在现代,也有许多诗人运用数学概 念和原理,如分形、无限等,来创作出富有哲理和美感的诗 歌。
近现代数学文化题解析
总结词
考察近现代数学的重要分支和应用
详细描述
近现代数学文化题主要涉及19世纪和20世纪的数学发展 ,如微积分、线性代数、概率论和统计学等分支的进展 。这些题目要求考生了解近现代数学的基本概念、定理 和思想,并能够运用这些知识解决实际问题。同时,这 些题目还要求考生了解数学与其他学科的交叉融合,如 数学与物理、经济和计算机科学等领域的联系。
高考数学文化题汇 总
contents
目录
• 数学历史与文化 • 数学与文学艺术 • 数学与社会生活 • 高考数学文化题解析
01
CATALOGUE
数学历史与文化
古代数学的发展
01
02
03
古埃及数学
古埃及人发展了数学符号 系统,用于解决日常生活 和建筑、农业等方面的问 题。

高考数学卷里的亮点———“数学文化”题

高考数学卷里的亮点———“数学文化”题

哈尔滨师范大学附属中学刘冰2017年,高考考试大纲修订内容中增加了对数学文化的要求,但是高考数学试题中早就出现过以数学文化为背景的新颖命题,经过持续发展,在2018年高考中呈现出了求新、求变的效果.把历史和文化内容引入高考数学,为高考数学题打上了文化的烙印.教师应在平时的教学中弘扬中国传统文化,吸收世界文化的精华,引导学生胸怀祖国,放眼世界.例1(2018年全国新课标I,理10)下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,A C.△ABC的三边所围成的区域记为I,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自I,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则A.p1=p2B.p1=p3C.p2=p3D.p1=p2+p3解析:设AB=a,A C=b,BC=a2+b2,√设整个图形的面积为S则p1=ab2S,p2=1S{π(a2)22+π(b2)22-[π(a2+b2√2)22-1 2ab]}=ab2S=p1故选A.【数学文化】古希腊数学家希波克拉底发现的一条平面几何里应用广泛的优美定理———月牙定理,指以直角三角形两条直角边为直径向外做两个半圆,以斜边为直径向内做半圆,则三个半圆所围成的两个月牙型面积之和等于该直角三角形的面积.本题依据这一定理考查几何概型问题.例2(2017年全国卷II,理3)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A.1盏B.3盏C.5盏D.9盏解析:设顶层灯数为a1,q=2,s7=a1(1-27)1-2=381,解得a1=3.故选B.【数学文化】《算法统宗》,又名《直指算法统宗》《新编直指算法统宗》,明代数学家程大位撰,共17卷.1592年编成《算法统宗》共列算题595道,以珠算为主要的计算工具,卷一介绍数学常识,卷二介绍珠算,卷三以后分别为方田、粟布、衰分、少广、分田截积、商功、均输、盈亏、方程、勾等,第十七卷附以难题杂法,又列有14个纵横图.本题以数学史中《算法统宗》的一个问题为包装,考查数列问题.例3(2016年全国新课标II,理8)中国古代有计算多项式值的秦九韶算法,实现该算法的程序框图见下页.执行该程序框图,若输入的x=2,n=2,依次输入的a 为2,2,5,则输出的s=.(A)7(B)12(C)17(D)34解析:第一次运算:s=0×2+2=2,第二次运算:s=2×2+2=6,第三次运算:s=6×2+5=17,故选C.【数学文化】秦九韶算法是中国南宋时期的数学家秦九韶提出的一种多项式简化算法.在著作《数书九章》中提出了这一先进的多项式简化算法.一般一元n次多项式的求值需要经过n(n+1)2次乘. All Rights Reserved.a ,ba ≠ba >ba =a -bb =b-aa法和n 次加法,而秦九韶算法只需要n 次乘法和n 次加法.在人工计算时,大大简化了运算过程.本题以数学史中《秦九韶算法》的问题为背景,考查程序框图问题.例4(2015年全国卷II,理8)下边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入a ,b 分别为14,18,则输出的a =.(A )0(B )2(C )4(D )14解析:逐次运行程序,直至程序结束得出a .a=14,b =18.第一次循环:14≠18且14<18,b =18-14=4;第二次循环:14≠4且14>4,a=14-4=10;第三次循环:10≠4且10>4,a=10-4=6;第四次循环:6≠4且6>4,a=6-4=2;第五次循环:2≠4且2<4,b =4-2=2;第六次循环:a=b =2,跳出循环,输出a=2,故选B.【数学文化】更相减损术出自《九章算术》中的求最大公约数的算法,原本是为约分而设计的,但它适用于任何需要求最大公约数的场合.本题将更相减损术与程序框图相结合,加大了该问题的考查难度.考生若能看出此程序框图的功能,便很容易解决.例5(2015年湖北卷,理2)我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓有人送来米1534石,验得米内夹谷,254粒内夹谷28粒,则这批米内夹谷约为(A )134石(B)169石(C)338石解析:254粒和1534致相同的,设1534解得x =169,故这批米内夹谷约为169石.【数学文化】中的“米谷粒分”问题,体.本题以《数书九章》为载体,例6(2018年全国新课标II,理8)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是()A.112B.114C.115D.118解析:不超过30的素数有2,3,5,7,11,13,17,19,23,29,共10个,随机选取两个不同的数,共有n =C 210=45种不同的情况,其中和等于30的有7+23=30,11+19=30,13+17=30,共m =3种不同的情况,则所求的概率p =m n =345=115,故选C.【数学文化】在1742年给欧拉的信中,哥德巴赫提出了如下猜想:任一大于2的偶数都可写成两个素数之和.但是哥德巴赫自己无法证明它,于是就写信请教赫赫有名的大数学家欧拉帮忙证明,但是一直到死,欧拉也无法证明.1966年,陈景润证明了“1+2”成立,即“任一充分大的偶数都可以表示成二个素数的和,或是一个素数和一个半素数的和”.本题依据这一定理,考查古典概型问题.“数学文化”题是经典与创新的完美结合,也是近几年全国及各省份高考数学题中的一大亮点.我们在教学中应引导学生多多了解中国数学史及世界数学史,以便学生在高考中更好地发挥.编辑/王一鸣E-mail:***************考试KAOSHI. All Rights Reserved.。

高考数学文化题知识点总结

高考数学文化题知识点总结

高考数学文化题知识点总结一、直线与曲线1. 直线方程在平面直角坐标系中,直线的一般方程为Ax+By+C=0,其中A、B不同时为0。

当B=0时,直线方程为y=k;当A=0时,直线方程为x=h;当A、B均不为0时,直线方程为y=kx+b。

2. 曲线方程(1)一次曲线一次曲线的一般方程为y=f(x)=ax+b。

(2)二次曲线二次曲线的一般方程为y=f(x)=ax^2+bx+c。

(3)圆圆的标准方程为(x-a)^2+(y-b)^2=r^2。

(4)椭圆椭圆的标准方程为(x/a)^2+(y/b)^2=1。

(5)双曲线双曲线的标准方程为(x/a)^2-(y/b)^2=1。

(6)抛物线抛物线的一般方程为y=f(x)=ax^2+bx+c。

3. 曲线图像曲线的图像可以通过方程的变换、平移、伸缩、翻转等方法来进行分析,从而得到曲线的性质和图像。

二、平面向量1. 向量的定义和性质向量是一种有大小和方向的量,常用箭头表示。

向量的加法、减法和数量积满足交换律、结合律和分配率。

2. 向量的坐标表示平面向量a的坐标表示为a=(x,y),其中x为向量在x轴上的分量,y为向量在y轴上的分量。

3. 向量的数量积向量a、b的数量积为a·b=|a|·|b|·cosθ,其中|a|, |b|分别为向量a、b的模长,θ为向量a、b之间的夹角。

4. 向量的应用向量在平面几何、力学、电磁学、计算机图形学等领域有着广泛的应用,可以描述物体的移动、力的作用、坐标变换等现象。

三、立体几何1. 空间直线和平面直线的一般方程为Ax+By+Cz+D=0,平面的一般方程为Ax+By+Cz+D=0。

2. 空间直线的位置关系两条直线相交、平行、重合等位置关系可以通过直线的方向向量和过直线上一点的平面方程来进行判断。

3. 空间直线的倾斜角和方向余弦直线与坐标轴间的夹角为倾斜角,其余弦值分别称为方向余弦。

4. 空间曲线的参数方程空间曲线可以通过参数方程r(t)=xi+yj+zk描述,其中xi、yj、zk分别为曲线在x、y、z三个轴上的分量,t为参数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八.斐波那契数列
例9:2009年福建卷理15题 15.五位同学围成一圈依序循环报数,规定: ①第一位同学首次报出的数为1,第二位同学首次报出的数 也为1,之后每位同学所报出的数都是前两位同 学所报出的数之和; ②若报出的数为3的倍数,则报该数的同学需拍手一次 已知甲同学第一个报数,当五位同学依序循环报到第100个 数时,甲同学拍手的总次数为
ห้องสมุดไป่ตู้
五.杨辉三角
例6:2004年上海春季卷11题;
11.如图,在由二项式系数所构成的杨辉三角形中,第 _____行中从左至右第14与第15个数的比为
答案:34
六.祖暅原理
例7:2013年上海卷理13题; 13.在 xOy 平面上,将两个半圆弧 ( x 1) y 1( x 1) 和 ( x 3)2 y2 1( x 3) 、两条直线y=1 和y=-1 围成的封闭图形记 为D,如图中阴影部分.记D绕y轴旋转一周而成的几何体 为 ,过 (0, y)(| y | 1) 作 的水平截面,所得截面面积 为 4 1 y 8 ,试利用祖暅原理、一个平放的圆柱和一个长 方体,得出 的体积值为__________
九.阿波罗尼斯圆
例10:2014年湖北卷文17题; 17.(2014•湖北)已知圆O:x2+y2=1和点A(﹣2,0), 若定点B(b,0)(b≠﹣2)和常数λ满足:对圆O上任意一 点M,都有|MB|=λ|MA|,则: (Ⅰ)b= ; (Ⅱ)λ= .
解析:设圆锥底面半径为r,则1/4×2×3r=8, 得r=16/3,所以米堆的体积为 1/4×1/3×3×(16/3)2×5=320/9,故堆放的米 约为320/9÷1.62≈22,故选B。
总结:本题以《九章算术》中的问题为材 料,试题背景新颖,解答本题的关键应想 到米堆是1/4圆锥,底面周长是两个底面 半径与1/4圆的和,根据题中的条件列出 关于半径的方程,解出底面半径,是基础 题
解析:
程序在执行过程中,a,b的值依次 为a=14,b=18,b=4,a=10,a=6,a=2,b=2, 此时a=b=2程序结束,输出a的值为 2,故选B
四.数学名著中的统计题
例5:2015年湖北卷文2理2题 2.(2015•湖北)我国古代数学名著《九章算术》有“米谷 粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹 谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹 谷约为( )石 A. 134 B. 169 C. 338 D . 1356
一.数学名著中的立几题
例2:2012年湖北理科数学第10题 10.我国古代数学名著《九章算术》中“开立圆术”曰:置 积尺数,以十六乘之,九而一,所得开立方除之,即立圆 径. “开立圆术”相当于给出了已知球的体积V ,求其直径d 的一个近似公式 d 3 16.V 人们还用过一些类似的近似公式. 根 9 据 π =3.14159 判断,下列近似公式中最精确的一个是 ( ) A.
2 2
2
解析:根据提示,一个半径为1,高为 的圆柱平放,一 个高为2,底面面积8π 的长方体,这两个几何体与放 在一起,根据祖暅原理,每个平行水平面的截面面积 都相等,故它们的体积相等,即 的体积值 为 12 2 2 8 2 . 2 16
七.形数
例8:2009年湖北卷文10理10题; 10.古希腊人常用小石子在沙滩上摆成各种形状来研究数。 比如:他们研究过图1中的1,3,6,10,…,由于这些数能 够表示成三角形,将其称为三角形数;类似的,称图2中的 1,4,9,16,…这样的数为正方形数。下列数中既是三角 形数又是正方形数的是 A.289 B.1024 C.1225 D.1378
2017新课标高考数学文化题汇总: 一.数学名著中的立几题
例1:2015年全国1卷文6理6题 6、《九章算术》是我国古代内容极为丰富的数学名著,书 中有如下问题:“今有委米依垣内角,下周八尺,高五尺, 问”积及为米几何?”其意思为:“在屋内墙角处堆放米(如 图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺, 米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已 知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆 放的米约有( ) (A) 14斛 (B) 22斛 (C) 36斛 (D) 33斛
16 d V 9
3
B.
d
3
2V
300 d V C. 157
3
D. d
3
21 V 11
解析:
3 4 d 3 6V a 6b 69 由V ( ) ,得d , 设选项中常数为 , 则 = ;A中代入得 = =3.375, 3 2 b a 16 6 1 6 157 6 11 B中代入得 = =3,C中代入得 = =3.14, D中代入得 = =3.142857, 2 300 21 由于D中值最接近的真实值,故选择D。
高考数学文化题汇总
淮北一中数学组 陈朋
2017高考考试大纲数学大纲分析:
2017年普通高考考试大纲数学修订,加强了对数学文化的考 查。针对这一修订提出以下建议: 建议教师对数学文化这一概念认真学习,结合教材内容 学习,特别是教材中渗透数学文化的内容要充分重视,重 点研究;结合近年新课标试题中出现的与数学文化有关的 试题进行学习,重点关注题源、考法命题形式。 其主要意义为: (1)增加中华优秀传统文化的考核内容,积极培育和践行 社会主义核心价值观,充分发挥高考命题的育人功能和积 极导向作用. (2)能力要求:经命题专家精细加工,再渗透现代数学思 想和方法;在内涵方面,增加了基础性、综合性、应用性、 创新性的要求.
二.数学名著中的数列题
例3:2011年湖北卷文9理13题; 13.《九章算术》“竹九节”问题:现有1根9节的竹子,自 上而下各节的容积成等差数列,上面四节的容积共3升,下 面3节的容积共4升,则第5节的容积为 升。
解析:
三.数学名著中的算法题
例4:2015年全国2卷文8理8题; (8)右边程序框图的算法思路源于我国古代数学名著《九 章算术》中的“更相减损术”。执行该程序框图,若输入a,b 分别为14,18,则输出的a= A.0 B.2 C.4 D.14
相关文档
最新文档