动量和能量中的滑板滑块模型专题
2020年高考物理素养提升专题02 动力学中的“滑块-滑板”模型(解析版)

素养提升微突破02 动力学中的“滑块-滑板”模型——构建模型,培养抽象思维意识“滑块-滑板”模型“滑块-滑板”模型涉及两个物体,并且物体间存在相对滑动。
叠放在一起的滑块和木板,它们之间存在着相互作用力,在其他外力作用下它们或加速度相同,或加速度不同,无论哪种情况受力分析和运动过程分析都是关键,特别是对相对运动条件的分析。
本模型深刻体现了物理运动观念、相互作用观念的核心素养。
【2019·新课标全国Ⅲ卷】如图(a),物块和木板叠放在实验台上,物块用一不可伸长的细绳与固定在实验台上的力传感器相连,细绳水平。
t=0时,木板开始受到水平外力F的作用,在t=4 s时撤去外力。
细绳对物块的拉力f随时间t变化的关系如图(b)所示,木板的速度v与时间t的关系如图(c)所示。
木板与实验台之间的摩擦可以忽略。
重力加速度取g=10 m/s2。
由题给数据可以得出A.木板的质量为1 kgB.2 s~4 s内,力F的大小为0.4 NC.0~2 s内,力F的大小保持不变D.物块与木板之间的动摩擦因数为0.2【答案】AB【解析】结合两图像可判断出0~2 s物块和木板还未发生相对滑动,它们之间的摩擦力为静摩擦力,此过程力F等于f,故F在此过程中是变力,即C错误;2~5 s内木板与物块发生相对滑动,摩擦力转变为滑动摩擦力,由牛顿运动定律,对2~4 s和4~5 s列运动学方程,可解出质量m为1 kg,2~4 s内的力F 为0.4 N,故A、B正确;由于不知道物块的质量,所以无法计算它们之间的动摩擦因数μ,故D错误。
【素养解读】本题以木板为研究对象,通过f-t与v-t图像对运动过程进行受力分析、运动分析,体现了物理学科科学推理的核心素养。
一、水平面上的滑块—滑板模型水平面上的滑块—滑板模型是高中参考题型,一般采用三步解题法:【典例1】如图所示,质量m=1 kg 的物块A放在质量M=4 kg的木板B的左端,起初A、B静止在水平地面上。
滑块滑板模型专题

滑块与滑板相互作用模型【模型分析】1、相互作用:滑块之间的摩擦力分析2、相对运动:具有相同的速度时相对静止。
两相互作用的物体在速度相同,但加速度不相同时,两者之间同样有位置的变化,发生相对运动。
3、通常所说物体运动的位移、速度、加速度都是对地而言的。
在相对运动的过程中相互作用的物体之间位移、速度、加速度、时间一定存在关联。
它就是我们解决力和运动突破口。
4、求时间通常会用到牛顿第二定律加运动学公式或动量定理:应用动量定理时特别要注意条件和方向,最好是对单个物体应用动量定理求解。
5、求位移通常会用到牛顿第二定律加运动学公式或动能定理,应用动能定理时研究对象为单个物体或可以看成单个物体的整体。
另外求相对位移时:通常会用到系统能量守恒定律。
6、求速度通常会用到牛顿第二定律加运动学公式或动能定理或动量守恒定律:应用动量守恒定律时要特别注意系统的条件和方向。
1、如图所示,在光滑水平面上有一小车A ,其质量为0.2=A m kg ,小车上放一个物体B ,其质量为0.1=B m kg ,如图(1)所示。
给B 一个水平推力F ,当F 增大到稍大于3.0N 时,A 、B 开始相对滑动。
如果撤去F ,对A 施加一水平推力F ′,如图(2)所示,要使A 、B 不相对滑动,求F ′的最大值m F2.如图所示,质量M=8 kg 的小车放在水平光滑的平面上,在小车左端加一水平推力F=8 N ,当小车向右运动的速度达到1.5 m/s 时,在小车前端轻轻地放上一个大小不计,质量为m=2 kg 的小物块,物块与小车间的动摩擦因数μ=0.2,小车足够长(取g=l0 m/s 2)。
求: (1)小物块放后,小物块及小车的加速度大小各为多大? (2)经多长时间两者达到相同的速度?(3)从小物块放上小车开始,经过t=1.5 s 小物块通过的位移大小为多少?FA B 图(1)F ′A B 图(2)Mm3.如图所示,一块质量为M,长为L的均质板放在很长的光滑水平桌面上,板的左端有一质量为m的小物体(可视为质点),物体上连接一根很长的细绳,细绳跨过位于桌边的定滑轮.某人以恒定的速率v向下拉绳,物体最多只能到达板的中点,而板的右端尚未到达桌边定滑轮处.试求:(1)物体刚达板中点时板的位移.(2)若板与桌面之间有摩擦,为使物体能达到板的右端,板与桌面之间的动摩擦因数的范围是多少?4.如图所示,质量为M,长度为L的长木板放在水平桌面上,木板右端放有一质量为m长度可忽略的小木块,木块与木板之间、木板与桌面之间的动摩擦因数均为μ。
动量与能量综合---滑块模型

07年重庆市第一轮复习第三次月考卷 年重庆市第一轮复习第三次月考卷17 年重庆市第一轮复习第三次月考卷 17、( 20分)如图甲所示, 质量为 、 长 L= 1.0m、 、 分 如图甲所示,质量为M、 、 右端带有竖直挡板的木板B静止在光滑水平面上 静止在光滑水平面上, 右端带有竖直挡板的木板 静止在光滑水平面上,一个 质量为m的小木块A(可视为质点),以水平速度 v0=4.0 m/s滑上 的左端 , 而后与右端挡板碰撞 , 最后 滑上B的左端 滑上 的左端,而后与右端挡板碰撞, 恰好滑到木板B的左端 已知M/m=3,并设 与挡板碰 的左端, 恰好滑到木板 的左端 , 已知 , 并设A与挡板碰 撞时无机械能损失,碰撞时间可以忽略, 撞时无机械能损失,碰撞时间可以忽略,求; 最终的速度。 (1)A、B最终的速度。 ) 最终的速度 与木块B间的动摩擦因数 (2)木块 与木块 间的动摩擦因数。 )木块A与木块 间的动摩擦因数。 相对地的v-t图 ( 3)在图乙所给坐标中画出此过程中 相对地的 图 ) 在图乙所给坐标中画出此过程中B相对地的 -1 v/ms 要写出分析和计算) 线。(要写出分析和计算) A L 甲 B 乙 0
题目 2页 页
t/s
3页 页 末页
如图所示,物块A质量1kg,静止在光滑水平面上木板B上, B质量0.5kg,长 1m,某时刻A以4m/s的初速度在B上滑行,为了A不滑落,在A滑上B的同时, 给B施加一个水平拉力,若A与B之间的动摩擦因素为0.2,试求拉力满足什么条 件
v0 2v0
A
B C
如图所示,在光滑得水平面上有一质量为 ,长为L的 如图所示,在光滑得水平面上有一质量为m,长为 的 小车,小车左端有一质量m为可视为质点的物块 为可视为质点的物块。 小车,小车左端有一质量 为可视为质点的物块。车子 的右壁固定有一处于锁定状态的压缩轻弹簧(弹簧长度 的右壁固定有一处于锁定状态的压缩轻弹簧 弹簧长度 与车长相比可忽略),物块与小车间的动摩擦因数为µ, 与车长相比可忽略 ,物块与小车间的动摩擦因数为 , 整个系统处于静止。 整个系统处于静止。现在给物块一个水平向右的初速度 V0,物块刚好能与小车右壁的弹簧相接触,此时弹簧锁 物块刚好能与小车右壁的弹簧相接触, 定瞬间解除,当物块再回到左端时,与小车相对静止。 定瞬间解除,当物块再回到左端时,与小车相对静止。 求: (1)物块的初速度。 物块的初速度。 物块的初速度 (2)在上述整个过程中小车相对地面的位移。 在上述整个过程中小车相对地面的位移。 在上述整个过程中小车相对地面的位移
高考物理素养提升专题02动力学中“滑块滑板”模型(原卷版)

修养提高微打破02动力学中的“滑块-滑板”模型——建立模型,培育抽象思想意识“滑块 -滑板”模型“滑块 -滑板”模型波及两个物体,而且物体间存在相对滑动。
叠放在一同的滑块和木板,它们之间存在着互相作使劲,在其余外力作用下它们或加快度同样,或加快度不一样,不论哪一种状况受力剖析和运动过程剖析都是重点,特别是对相对运动条件的剖析。
本模型深刻表现了物理运动观点、互相作用观点的核心修养。
如图( a),物块和木板叠放在实验台上,物块用一不行伸长的细绳与固定在实验台上的力传感器相连,细绳水平。
t=0 时,木板开始遇到水平外力 F 的作用,在 t=4 s 时撤去外力。
细绳对物块的拉力 f 随时间 t 变化的关系如图( b)所示,木板的速度 v 与时间 t 的关系如图( c)所示。
木板与实验台之间的摩擦能够忽视。
重力加快度取 g=10 m/s2。
由题给数据能够得出A .木板的质量为 1 kgB .2 s~4 s 内,力 F 的大小为0.4 NC.0~2 s 内,力 F 的大小保持不变D.物块与木板之间的动摩擦因数为一、水平面上的滑块—滑板模型水平面上的滑块—滑板模型是高中参照题型,一般采纳三步解题法:如下图,质量m= 1 kg 的物块 A 放在质量M= 4 kg 的木板 B 的左端,开初A、 B 静止在水平川面上。
现用一水平向左的力 F 作用在 B 上,已知 A、 B 之间的动摩擦因数为μ=,地面与 B 之间的动摩擦因1数为μ2=。
假定最大静摩擦力等于滑动摩擦力,g=10 m/s2。
求:(1)能使 A、 B 发生相对滑动的力 F 的最小值;(2)若力 F = 30 N,作用 1 s 后撤去,要想 A 不从 B 上滑落,则 B 起码多长;从开始到A、 B 均静止, A 的总位移是多少。
二、斜面上的滑块—滑板模型1、抓住重点:一个转折和两个关系一个转折两个关系滑块与滑板达到同样速度转折前、后受力状况之间的关系和滑块、滑板位移与板长之间或许滑块从滑板上滑下是的关系。
热点专题突破系列 滑块—滑板模型综述

热点概述
(2)牛顿第三定律;
(3)运动学公式; (4)动能定理; (5)功能关系; (6)动量守恒定律;
(7)能量守恒定律。
ቤተ መጻሕፍቲ ባይዱ 动力学中的滑块—滑板模型
知识梳理
知识梳理
1.模型特点: 上、下叠放两个物体,并且两物体在摩擦力的相互作用下发 生相对滑动. 2.建模指导 解此类题的基本思路: ( 1 )牛顿第二定律分析滑块和木板的受力情况,根据牛顿 第二定律分别求出滑块和木板的加速度;
动力学中的滑块—滑板模型
典型例题
[规范解答]—————————该得的分一分不丢! (1)A、 B 之间的最大静摩擦力为 fm> μ1mg=0.3× 1× 10 N= 3 N(2 分 ) 假设 A、 B 之间不发生相对滑动,则 对 A、 B 整体: F=(M+m)a(2 分 ) 对 A: fAB= Ma(2 分) 解得: fAB=2.5 N(1 分 ) 因 fAB<fm,故 A、 B 之间不发生相对滑动.(1 分 ) (2)对 B: F- μ1mg=maB(2 分) 对 A: μ1mg- μ2(M+m)g= MaA(2 分 ) 据题意: xB- xA= L(2 分 ) 1 1 xA= aAt2; xB= aBt2(2 分) 2 2 解得: t= 2 s. (2 分 ) [答案] (1)不会 (2) 2 s
同时锻炼学生综合应用牛顿运动定律、功能关系及能量守恒定律解决
综合问题的能力,是近几年高考的热点。具体如下:
1.常见的三类问题:
(1)滑块和滑板的初速度相同; (2)滑块和滑板中有一个物体初速度为零; (3)滑块和滑板的初速度均不为零。
动力学中的滑块—滑板模型
2.考查角度:
(1)“滑块+滑板”的动力学问题; (2)“滑块+滑板”的动量守恒问题。 3.规律应用: (1)牛顿第二定律;
动量与能量综合应用五大模型

动量与能量综合应用五大模型专题综述利用动量和能量观点的解题策略1.若研究对象为单一物体,当涉及功和位移问题时,应优先考虑动能定理;当涉及冲量和时间问题时,应优先考虑动量定理.2.若研究对象为一个系统,应优先考虑应用动量守恒定律和能量守恒定律.3.利用动量和能量观点的解题,只涉及运动始末两个状态相关的物理量,不细究过程的细节,特别对于变力问题,就更显示出优越性.题型透析题型1、“滑块-平板”模型例1如图所示,质量m1=0.3 kg的小车静止在光滑的水平面上,车长L=1.5 m,现有质量m2=0.2 kg可视为质点的物块,以水平向右的速度v0=2 m/s从左端滑上小车,最后在车面上某处与小车保持相对静止.物块与车面间的动摩擦因数μ=0.5,取g=10 m/s2,求:(1)物块与小车共同速度;(2)物块在车面上滑行的时间t;(3)小车运动的位移x;(4)要使物块不从小车右端滑出,物块滑上小车左端的速度v′0不超过多少?►方法提炼“滑块-平板”模型的解题思路(1)应用系统的动量守恒.(2)在涉及滑块或平板的时间时,优先考虑用动量定理.(3)在涉及滑块或平板的位移时,优先考虑用动能定理.(4)在涉及滑块的相对位移时,优先考虑用系统的能量守恒.(5)滑块恰好不滑动时,滑块与平板达到共同速度.题型2、“滑块-弹簧”模型例2如图所示,质量分别为1 kg、3 kg的滑块A、B位于光滑水平面上,现使滑块A以4 m/s 的速度向右运动,与左侧连有轻弹簧的滑块B发生碰撞.二者在发生碰撞的过程中,求:(1)弹簧的最大弹性势能;(2)滑块B的最大速度.►方法提炼“滑块-弹簧”模型的解题思路(1)应用系统的动量守恒;(2)应用系统的机械能守恒;(3)临界条件1:两滑块同速时,弹簧的弹性势能最大.(4)临界条件2:从A开始压缩弹簧到弹簧恢复原长时,B的速度最大,此过程类似弹性碰撞,可直接利用结论:v1=m1-m2m1+m2v0,v2=2m1m1+m2v0.题型3、“滑块-斜(弧)面”模型例3(2016·课标全国Ⅱ)如图,光滑冰面上静止放置一表面光滑的斜面体,斜面体右侧一蹲在滑板上的小孩和其前面的冰块均静止于冰面上.某时刻小孩将冰块以相对冰面3 m/s的速度向斜面体推出,冰块平滑地滑上斜面体,在斜面体上上升的最大高度为h=0.3 m(h小于斜面体的高度).已知小孩与滑板的总质量为m1=30 kg,冰块的质量为m2=10 kg,小孩与滑板始终无相对运动.取重力加速度的大小g=10 m/s2.例4(1)求斜面体的质量;(2)通过计算判断冰块与斜面体分离后能否追上小孩?►方法提炼“滑块-斜面”模型的解题思路(1)应用系统在水平方向的动量守恒;(2)应用系统的能量守恒;(3)临界条件1:滑块沿斜面上升到最高点时,滑块与斜面同速;(4)临界条件2:从冰块滑上斜面到分离时,斜面的速度最大,此过程类似弹性碰撞,可直接利用结论:v1=m1-m2m1+m2v0,v2=2m1m1+m2v0题型4、“滑块—摆球”模型例4(2018·安徽一模)如图所示,水平固定一个光滑长杆,有一个质量为2m小滑块A套在细杆上可自由滑动.在水平杆上竖直固定一个挡板P,小滑块靠在挡板的右侧处于静止状态,在小滑块的下端用长为L的细线悬挂一个质量为m的小球B,将小球拉至左端水平位置使细线处于自然长度,由静止释放,已知重力加速度为g.求:(1)小球第一次运动到最低点时,细绳对小球的拉力大小;(2)小球运动过程中,相对最低点所能上升的最大高度;(3)小滑块运动过程中,所能获得的最大速度.►方法提炼“滑块—摆球”模型的解题思路(1)应用系统在水平方向的动量守恒;(2)应用系统的能量守恒;(3)临界条件1:小球与滑块共速时,小球运动到最高点.(4)临界条件2:小球摆回最低点时,滑块获得最大速度,此过程类似弹性碰撞,可直接利用结论:v1=m1-m2m1+m2v0,v2=2m1m1+m2v0.“小球-圆弧槽”模型例5如图所示,质量分布均匀、半径为R的光滑半圆形金属槽,静止在光滑的水平面上,左边紧靠竖直墙壁.一质量为m的小球从距金属槽上端R处由静止下落,恰好与金属槽左端相切进入槽内,到达最低点后向右运动从金属槽的右端冲出,小球到达最高点时距金属槽圆弧最低点的距离为74R,重力加速度为g,不计空气阻力.求:(1)小球第一次到达最低点时对金属槽的压力大小;(2)金属槽的质量.►方法提炼“小球-圆弧槽”模型的解题思路(1)应用系统在水平方向的动量守恒;(2)应用系统的能量守恒;(3)注意:小球离开圆弧槽时,小球与圆弧槽水平速度相同,离开后二者水平位移相同,然后小球沿切面再进入圆弧槽.。
动量守恒定律滑块木板模型

动量守恒定律之滑块+木板模型1.把滑块、木板看作一个整体,摩擦力为内力,在光滑水平面上滑块和木板组成的系统动量守恒.2.由于摩擦生热,把机械能转化为内能,系统机械能不守恒.应由能量守恒求解问题.3.注意:滑块不滑离木板时最后二者有共同速度.1.如下图,在光滑的水平面上有一质量为M 的长木板,以速度v 0向右做匀速直线运动,将质量为m 的小铁块轻轻放在木板上的A 点,这时小铁块相对地面速度为零,小铁块相对木板向左滑动.由于小铁块和木板间有摩擦,最后它们之间相对静止,它们之间的动摩擦因数为μ,问:(1)小铁块跟木板相对静止时,它们的共同速度多大?(2)它们相对静止时,小铁块与A 点距离多远?(3)在全过程中有多少机械能转化为内能?2.(多项选择)质量为M 、内壁间距为L 的箱子静止于光滑的水平面上,箱子中间有一质量为m 的小物块,小物块与箱子底板间的动摩擦因数为μ.初始时小物块停在箱子正中间,如图10所示.现给小物块一水平向右的初速度v ,小物块与箱壁碰撞N 次后恰又回到箱子正中间,并与箱子保持相对静止.设碰撞都是弹性的,那么整个过程中,系统损失的动能为()A.12mv 2B.12mM m +M v 2C.12NμmgL D .NμmgL 3.将一长木板静止放在光滑的水平面上,如图甲所示,一个小铅块〔可视为质点〕以水平初速度v 0由木板左端向右滑动,到达右端时恰能与木板保持相对静止。
小铅块运动过程中所受的摩擦力始终不变,现将木板分成A 和B 两段,使B 的长度和质量均为A 的2倍,并紧挨着放在原水平面上,让小铅块仍以初速度v 0由木块A 的左端开场向右滑动,如图乙所示,那么以下有关说法正确的选项是〔〕A. 小铅块恰能滑到木板B 的右端,并与木板B 保持相对静止B. 小铅块将从木板B 的右端飞离木板C. 小铅块滑到木板B 的右端前就与木板B 保持相对静止D. 小铅块在木板B 上滑行产生的热量等于在木板A 上滑行产生热量的2倍4.如下图,固定的光滑圆弧面与质量为6 kg 的小车C 的上外表平滑相接,在圆弧面上有一个质量为2 kg 的滑块A ,在小车C 的左端有一个质量为2 kg 的滑块B ,滑块A 与B 均可看做质点.现使滑块A 从距小车的上外表高h =1.25 m 处由静止下滑,与B 碰撞后瞬间粘合在一起共同运动,最终没有从小车C 上滑出.滑块A 、B 与小车C 的动摩擦因数均为μ=,小车C 与水平地面的摩擦忽略不计,取g =10 m/s 2.求:(1) 滑块A 与B 碰撞后瞬间的共同速度的大小;(2)小车C上外表的最短长度.5.如下图,质量m1=0.3 kg的小车静止在光滑的水平面上,车长L=15 m,现有质量m2=0.2 kg 可视为质点的物块,以水平向右的速度v0=2 m/s从左端滑上小车,最后在车面上某处与小车保持相对静止。
素养培优1 “板块”模型中动力学、能量和动量的综合讲义(学生版)-2025高考物理素养培优

素养培优1 “板块”模型中动力学、能量和动量的综合模型图示 模型特点“滑块—滑板”模型作为力学的基本模型经常出现,是对直线运动和牛顿运动定律及动量守恒定律有关知识的巩固和应用,这类问题可分为两类:①没有外力参与,滑板放在光滑水平面上,滑块以一定速度在滑板上运动,滑块与滑板组成的系统动量守恒,注意滑块若不滑离滑板,最后二者具有共同速度,摩擦力与相对路程的乘积等于系统损失的动能,即F f ·x 相对=ΔE k。
②系统受到外力,这时对滑块和滑板一般隔离分析,画出它们运动的示意图,应用牛顿运动定律、运动学公式及动量定理求解。
【典例1】 (2024·湖北宜昌高三二模)如图甲所示,一辆质量为M =1.5 kg 的小车静止在光滑的水平面上,一质量为m 的木块以一定的水平速度滑上小车,最后与小车以相同的速度运动,它们的运动速度随时间变化的图像如图乙所示。
重力加速度取g =10 m/s 2。
求:(1)木块的质量m ;(2)木块与小车上表面间的动摩擦因数;(3)这个过程中系统损失的机械能。
尝试解答【典例2】 (2024·海南三亚高三三模)如图所示,质量M =2 kg 的足够长的木板静止在光滑的水平面上,质量m =1 kg 的滑块静止在木板的左端。
现给滑块施加一方向水平向右、大小F =3 N 的拉力,经时间t =6 s 后撤去拉力,已知撤去拉力的瞬间,木板的速度大小v 1=3 m/s ,取重力加速度大小g =10 m/s 2。
求:(1)滑块与木板间的动摩擦因数μ;(2)撤去拉力的瞬间,滑块的速度的大小v 2;(3)木板和滑块最后的共同速度的大小v 共。
尝试解答【典例3】 (2024·海南高考17题)某游乐项目装置简化如图,A 为固定在地面上的半径R =10 m 的光滑圆弧形滑梯,滑梯顶点a 与滑梯末端b 的高度差h =5 m ,静止在光滑水平面上的滑板B ,紧靠滑梯的末端,并与其水平相切,滑板的质量M =25 kg ,一质量为m =50 kg 的游客从a 点由静止开始下滑,并从b 点滑上滑板,当滑板右端运动到与其上表面等高的固定平台C 边缘时,游客恰好滑上平台,并在平台上滑行s =16 m 停下。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动量和能量中的滑块—滑板模型一、三个观点及其概要——— 解决力学问题的三把金钥匙二、思维切入点1、五大定律和两大定理是该模型试题所用知识的思维切入点。
该模型试题一般主要是考查学生对上述五大定律和两大定理的综合理解和掌握,因此,学生在熟悉这些定律和定理的内容、研究对象、表达式、适用条件等基础上,根据试题中的已知量或隐含已知量选择解决问题的最佳途径和最简捷的定律,以达到事半功倍的效果。
2、由于滑块和木板之间依靠摩擦力互相带动,因此,当滑块和木板之间的摩擦力未知时,根据动能定理、动量定理或能量守恒求摩擦力的大小是该模型试题的首选思维切入点。
3、滑块和木板之间摩擦生热的多少和滑块相对地面的位移无关,大小等于滑动摩擦力与滑块相对摩擦面所通过总路程之乘积是分析该模型试题的巧妙思维切入点。
若能先求出由于摩擦生热而损失的能量,就可以应用能量守恒求解其它相关物理量。
4、确定是滑块带动木板运动还是木板带动滑块运动是分析该模型运动过程的关键切入点之一.当(没有动力的)滑块带动木板运动时,滑块和木板之间有相对运动,滑块依靠滑动摩...擦力..带动木板运动;当木板带动滑块运动时,木板和滑块之间可以相对静止,若木板作变速运动,木板依靠静摩擦力....带动滑块运动。
三、专题训练1.如图所示,右端带有竖直挡板的木板B ,质量为M ,长L =1.0m ,静止在光滑水平面上.一个质量为m 的小木块(可视为质点)A ,以水平速度0 4.0m /s v 滑上B 的左端,而后与其右端挡板碰撞,最后恰好滑到木板B 的左端.已知M =3m ,并设A 与挡板碰撞时无机械能损失,碰撞时间可忽略(g 取210m /s ).求:(1)A 、B 最后的速度;(2)木块A 与木板B 间的动摩擦因数.2.如图所示,光滑水平地面上停着一辆平板车,其质量为2m ,长为L ,车右端(A 点)有一块静止的质量为m 的小金属块.金属块与车间有思想观点 规律 研究对象 动力学观点 牛顿运动(第一第二第三)定律及运动学公式 单个物体或整体 动量观点 动量守恒定律 系统 动量定理 单个物体 能量观点 动能定理 单个物体 机械能守恒定律能量守恒定律 单个(包含地球)或系统摩擦,与中点C 为界,AC 段与CB 段摩擦因数不同.现给车施加一个向右的水平恒力,使车向右运动,同时金属块在车上开始滑动,当金属块滑到中点C 时,即撤去这个力.已知撤去力的瞬间,金属块的速度为v 0,车的速度为2v 0,最后金属块恰停在车的左端(B 点)如果金属块与车的AC 段间的动摩擦因数为μ1,与CB 段间的动摩擦因数为μ2,求μ1与μ2的比值.3.如图所示,质量为M 的小车A 右端固定一根轻弹簧,车静止在光滑水平面上,一质量为m 的小物块B 从左端以速度v 0冲上小车并压缩弹簧,然后又被弹回,回到车左端时刚好与车保持相对静止.求整个过程中弹簧的最大弹性势能E P 和B 相对于车向右运动过程中系统摩擦生热Q 各是多少?4.如图所示,质量M =4kg 的滑板B 静止放在光滑水平面上,其右端固定一根轻质弹簧,弹簧的自由端C 到滑板左端的距离L =0.5m ,这段滑板与木块A 之间的动摩擦因数μ=0.2,而弹簧自由端C 到弹簧固定端D 所对应的滑板上表面光滑.可视为质点的小木块A 以速度v 0=0.2,由滑板B 左端开始沿滑板B 表面向右运动.已知A 的质量m =1kg ,g 取10m/s 2 .求: (1)弹簧被压缩到最短时木块A 的速度;(2)木块A 压缩弹簧过程中弹簧的最大弹性势能.5.一块质量为M 长为L 的长木板,静止在光滑水平桌面上,一个质量为m 的小滑块以水平速度v 0从长木板的一端开始在木板上滑动,直到离开木板,滑块刚离开木板时的速度为v 05.若把此木板固定在水平桌面上,其他条件相同.求:(1)求滑块离开木板时的速度v ;(2)若已知滑块和木板之间的动摩擦因数为μ,求木板的长度.6.如图所示,质量m A 为4.0kg 的木板A 放在水平面C 上,木板与水平面间的动摩擦因数μAB v 0Mm为0.24,木板右端放着质量m B 为1.0kg 的小物块B (视为质点),它们均处于静止状态.木板突然受到水平向右的12N ·s 的瞬时冲量I 作用开始运动,当小物块滑离木板时,木板的动能E kA 为8.0J ,小物块的动能E kB 为0.50J ,重力加速度取10m/s 2,求: (1)瞬时冲量作用结束时木板的速度v 0; (2)木板的长度L .7.如图所示,长木板ab 的b 端固定一挡板,木板连同档板的质量为M=4.0kg ,a 、b 间距离s=2.0m .木板位于光滑水平面上.在木板a 端有一小物块,其质量m =1.0kg ,小物块与木板间的动摩擦因数μ=0.10,它们都处于静止状态.现令小物块以初速v 0=4.0m/s 沿木板向前滑动,直到和挡板相碰.碰撞后,小物块恰好回到a 端而不脱离木板.求碰撞过程中损失的机械能.8.如图所示,在一光滑的水平面上有两块相同的木板B 和C .重物A (视为质点)位于B 的右端,A 、B 、C 的质量相等.现A 和B 以同一速度滑向静止的C 、B 与C 发生正碰.碰后B 和C 粘在一起运动,A 在C 上滑行,A 与C 有摩擦力.已知A 滑到C 的右端而未掉下.试问:从B 、C 发生正碰到A 刚移到C 右端期间,C 所走过的距离是C 板长度的多少倍.9.如图所示,光滑水平面上有一质量M=4.0kg 的带有圆弧轨道的平板车,车的上表面是一段长L=1.5m 的粗糙水平轨道,水平轨道左侧连一半径R=0.25m 的41光滑圆弧轨道,圆弧轨道与水平轨道在O ′点相切。
现将一质量m=1.0kg 的小物块(可视为质点)从平板车的右端以水平向左的初速度v 0滑上平板车,小物块与水平轨道间的动摩擦因数μ=0.5。
小物块恰能到达圆弧轨道的最高点A 。
取g=10m/2,求:(1)小物块滑上平板车的初速度v 0的大小。
(2)小物块与车最终相对静止时,它距O ′点的距离。
(3)若要使小物块最终能到达小车的最右端,则v 0要增大到多大?10.竖直平面内的轨道ABCD 由水平滑道AB 与光滑的四分之一A vOOM mD圆弧滑道CD 组成AB 恰与圆弧CD 在C 点相切,轨道放在光滑的水平面上,如图所示。
一个质量为m 的小物块(可视为质点)从轨道的A 端以初动能E 冲上水平滑道AB ,沿着轨道运动,由DC 弧滑下后停在水平滑道AB 的中点。
已知水平滑道AB 长为L ,轨道ABCD 的质量为3m 。
求:(1)小物块在水平滑道上受到摩擦力的大小。
(2)为了保证小物块不从滑道的D 端离开滑道,圆弧滑道的半径R 至少是多大?(3)若增大小物块的初动能,使得小物块冲上轨道后可以达到最大高度是1.5R ,试分析小物块最终能否停在滑道上? 11.如图所示,两个完全相同的质量为m 的木板A 、B 置于水平地面上,它们的间距s=2.88m .质量为2m ,大小可忽略的物块C 置于A 板的左端.C 与A 之间的动摩擦因数为μ1=0.22,A 、B 与水平地面之间的动摩擦因数为μ2=0.10,最大静摩擦力可以认为等于滑动摩擦力.开始时,三个物体处于静止状态.现给C 施加一个水平向右,大小为mg 52的恒力F ,假定木板A 、B碰撞时间极短且碰撞后粘连在一起,要使C 最终不脱离木板,每块木板的长度至少应为多少?12.如图所示,一质量为M 、长为l 的长方形木板B 放在光滑的水平地面上,在其右端放一质量为m 的小木块A ,m <M .现以地面为参照系,给A 和B 以大小相等、方向相反的初速度(如图),使A 开始向左运动、B 开始向右运动,但最后A 刚好没有滑离木板.以地面为参考系.(1)若已知A 和B 的初速度大小为v 0,求它们最后的速度的大小和方向;(2)若初速度的大小未知,求小木块A 向左运动到达的最远处(从地面上看)离出发点的距离.滑板滑块模型之二动量和能量中的滑块—滑板模型参考答案A CB Fs v 0v 01.【答案】(1)1m/s ;(2)0.3 解析:(1)A 、B 最后速度相等,由动量守恒可得解得01m /s 4v v == (2)由动能定理对全过程列能量守恒方程解得0.3μ=2.【答案】2321=μμ解:设水平恒力F 作用时间为t 1.对金属块使用动量定理F f t 1=mv 0-0即μ1mgt 1=mv 0,得t 1=01v gμ 对小车有(F -F f )t 1=2m ×2v 0-0,得恒力F =5μ1mg 金属块由A →C 过程中做匀加速运动,加速度a 1=f F m=g mmg11μμ=小车加速度11215222f F F mg mga g mmμμμ--===金属块与小车位移之差22202111111111(2)()222v s a t a t g g gμμμ=-=- 而2L s =,所以,201v gL μ= 从小金属块滑至车中点C 开始到小金属块停在车的左端的过程中,系统外力为零,动量守恒,设共同速度为v ,由2m ×2v 0+mv 0= (2m +m )v ,得v =35v 0 由能量守恒有22200011152(2)3()22223L mg mv m v m v μ=+⨯⨯-⨯⨯,得20223v gLμ=所以,2321=μμ3.解.v M m mv )(0+=,220)(21212v M m mv Q +-=,E P =Q=)(420M m mMv +4.【答案】(1)2m/s ;(2)39J解析:(1)弹簧被压缩到最短时,木块A 与滑板B 具有相同的速度,设为V ,从木块A 开始沿滑板B 表面向右运动至弹簧被压缩到最短的过程中,A 、B 系统的动量守恒,则mv 0=(M +m )V ①()M m v mv +=0μmg L mv M m v ⋅=-+21212022()V =mM m+v 0②木块A 的速度:V =2m/s ③(2)木块A 压缩弹簧过程中,弹簧被压缩到最短时,弹簧的弹性势能最大. 由能量守恒,得E P =22011()22mv m M v mgL μ-+-④解得E P =39J5.【答案】(1(2)208(12)25v mg Mμ- 解析:(1)设长木板的长度为l ,长木板不固定时,对M 、m 组成的系统,由动量守恒定律,得005v mv mMv '=+ ①由能量守恒定律,得22200111()2252v mgl mv m Mv μ'=-- ②当长木板固定时,对m ,根据动能定理,有2201122mgl mv mv μ-=- ③联立①②③解得v =(2)由①②两式解得208(12)25v ml g Mμ=- 6.【答案】0.50m解析:(1)设水平向右为正方向,有I =m A v 0 ① 代入数据得v 0=3.0m/s ②(2)设A 对B 、B 对A 、C 对A 的滑动摩擦力的大小分别为F AB 、F BA 和F CA ,B 在A 滑行的时间为t ,B 离开A 时A 和B 的速度分别为v A 和v B ,有 -(F BA +F CA )t =m A v A -m A v A ③ F AB t =m B v B ④ 其中F AB =F BA F CA =μ(m A +m B )g ⑤ 设A 、B 相对于C 的位移大小分别为s A 和s B , 有2211()22BACA AA A A F F s m v m v ⑥ F AB s B =E kB⑦动量与动能之间的关系为A A m v = ⑧ 2B B B kB m v m E ⑨木板A 的长度L =s A -s B⑩代入数据解得L =0.50m 7.【答案】2.4J解析:设木块和物块最后共同的速度为v ,由动量守恒定律得v M m mv )(0+=①设全过程损失的机械能为E ,则220)(2121v M m mv E +-=②用s 1表示从物块开始运动到碰撞前瞬间木板的位移,W 1表示在这段时间内摩擦力对木板所做的功.用W 2表示同样时间内摩擦力对物块所做的功.用s 2表示从碰撞后瞬间到物块回到a 端时木板的位移,W 3表示在这段时间内摩擦力对木板所做的功.用W 4表示同样时间内摩擦力对物块所做的功.用W 表示在全过程中摩擦力做的总功,则W 1=1mgs μ③ W 2=)(1s s mg +-μ ④ W 3=2mgs μ- ⑤ W 4=)(2s s mg -μ⑥ W =W 1+W 2+W 3+W 4⑦ 用E 1表示在碰撞过程中损失的机械能,则 E 1=E -W⑧由①~⑧式解得mgs v Mm mM E μ221201-+=⑨代入数据得E 1=2.4J ⑩8.【答案】73解析:设A 、B 、C 的质量均为m .碰撞前,A 与B 的共同速度为v 0,碰撞后B 与C 的共同速度为v 1.对B 、C ,由动量守恒定律得 mv 0=2mv 1 ① 设A 滑至C 的右端时,三者的共同速度为v 2.对A 、B 、C ,由动量守恒定律得 2mv 0=3mv 2 ②设A 与C 的动摩擦因数为μ,从发生碰撞到A 移至C 的右端时C 所走过的距离为s ,对B 、C 由功能关系2122)2(21)2(21v m v m mgs -=μ ③设C 的长度为l ,对A ,由功能关系22202121)(mv mv l s mg -=+μ④由以上各式解得73sl =9.解:(1)平板车和小物块组成的系统水平方向动量守恒,设小物块到达圆弧最高点A 时,二者的共同速度1v ,由动量守恒得:10)(v m M mv += ①由能量守恒得:mgL mgR v m M mv μ+=+-2120)(2121 ② 联立①②并代入数据解得:s m v /50= ③(2)设小物块最终与车相对静止时,二者的共同速度2v ,从小物块滑上平板车,到二者相对静止的过程中,由动量守恒得: 20)(v m M mv += ④设小物块与车最终相对静止时,它距O ′点的距离为x 。