5.戴维南定理和诺顿定理的研究(报告答案)

合集下载

戴维南定理和诺顿定理的验证实验+数据

戴维南定理和诺顿定理的验证实验+数据

戴维南定理和诺顿定理的验证实验+数据在电路分析中,戴维南定理和诺顿定理是两个非常重要的定理,它们为简化复杂电路的分析提供了有力的工具。

为了深入理解和验证这两个定理,我们进行了一系列实验,并收集了相关的数据。

首先,让我们来简单了解一下戴维南定理和诺顿定理的基本概念。

戴维南定理指出,任何一个线性含源二端网络,对外电路来说,可以用一个电压源和电阻的串联组合来等效替代。

其中,电压源的电压等于该网络的开路电压,电阻等于该网络中所有独立电源置零后的等效电阻。

诺顿定理则表明,任何一个线性含源二端网络,对外电路来说,也可以用一个电流源和电阻的并联组合来等效替代。

电流源的电流等于该网络的短路电流,电阻同样等于该网络中所有独立电源置零后的等效电阻。

接下来,我们详细介绍一下实验的过程和所使用的设备。

实验设备包括:直流电源、电阻箱、电压表、电流表、万用表等。

实验电路的设计是这样的:我们选取了一个具有多个电阻和电源的复杂电路作为原始电路。

通过测量原始电路在不同负载情况下的电压和电流,来获取相关数据。

在验证戴维南定理时,我们首先测量了原始电路的开路电压。

将电路中的负载断开,使用电压表测量开路端的电压,得到了开路电压的值。

然后,将电路中的所有独立电源置零(即电压源短路,电流源开路),使用万用表测量此时电路的等效电阻。

有了开路电压和等效电阻的值,我们就可以构建戴维南等效电路。

将一个电压源与一个电阻串联,电压源的电压设置为开路电压,电阻的值为等效电阻。

然后,将这个等效电路连接到与原始电路相同的负载上,测量负载两端的电压和通过负载的电流。

在验证诺顿定理时,我们先测量了原始电路的短路电流。

将电路中的负载短路,使用电流表测量短路电流。

同样,将独立电源置零后测量等效电阻。

有了短路电流和等效电阻,构建诺顿等效电路,即一个电流源与一个电阻并联,电流源的电流为短路电流,电阻为等效电阻。

再将这个等效电路连接到负载上,测量相关数据。

下面是我们在实验中收集到的一组具体数据。

戴维南定理和诺顿定理实验报告

戴维南定理和诺顿定理实验报告

戴维南定理和诺顿定理实验报告戴维南定理和诺顿定理是电路理论中非常重要的两个定理,它们为我们理解和分析电路提供了重要的理论支持。

本次实验旨在通过实际操作验证戴维南定理和诺顿定理,并对实验结果进行分析和讨论。

实验一,验证戴维南定理。

首先,我们搭建了一个包含多个电阻的电路,并通过测量电路中各个电阻的电压和电流,得到了电路的电压-电流特性曲线。

然后,我们通过改变电路中的电阻值,重新测量电路的电压-电流特性曲线。

最后,我们根据戴维南定理,将电路简化为一个等效的电压源和电阻,通过比较原始电路和简化电路的特性曲线,验证了戴维南定理的有效性。

实验二,验证诺顿定理。

在这个实验中,我们利用相同的电路,通过测量电路中的电压和电流,得到了电路的电压-电流特性曲线。

然后,我们将电路简化为一个等效的电流源和电阻,重新测量电路的电压-电流特性曲线。

通过比较原始电路和简化电路的特性曲线,验证了诺顿定理的有效性。

实验结果分析。

通过实验验证,我们发现戴维南定理和诺顿定理在实际电路中具有很高的适用性。

戴维南定理告诉我们,任何线性电路都可以用一个等效的电压源和电阻来表示,而诺顿定理则告诉我们,任何线性电路都可以用一个等效的电流源和电阻来表示。

这些定理为我们分析复杂电路提供了便利,使得我们可以通过简化电路结构来更好地理解电路的特性和行为。

结论。

通过本次实验,我们验证了戴维南定理和诺顿定理在实际电路中的有效性,这些定理为我们理解和分析电路提供了重要的理论基础。

在今后的电路设计和分析中,我们可以充分利用这些定理,简化复杂电路的分析过程,提高工作效率,更好地理解电路的行为。

总结。

戴维南定理和诺顿定理是电路理论中的重要定理,通过本次实验,我们验证了它们在实际电路中的有效性。

这些定理为我们提供了简化电路分析的方法,为电路设计和分析提供了重要的理论支持。

希望通过本次实验,能够加深对这些定理的理解,提高电路分析能力,为今后的学习和工作打下良好的基础。

戴维南定理和诺顿定理验证实验报告(参考)

戴维南定理和诺顿定理验证实验报告(参考)

戴维南定理和诺顿定理验证实验报告(参考)戴维南定理和诺顿定理验证实验报告(参考)第二篇:戴维南和诺顿等效电路 2200字《电路与电子学基础》实验报告实验名称戴维南和诺顿等效电路班级学号姓名实验1 戴维南和诺顿等效电路一、实验目的1.对一个已知网络,求出它的戴维南等效电路。

2.对一个已知网络,求出它的诺顿等效电路。

3.确定戴维南定理的真实性。

4.确定诺顿定理的真实性。

5.对一个已知网络,确定它的戴维南等效电路。

6.对一个已知网络,确定它的诺顿等效电路。

二、实验器材直流电压电源 1个直流电压表 1个直流电流表 1个电阻数个三、实验步骤1.在电子工作平台上建立如图1-1所示的实验电路。

2.以鼠标左键单击仿真电源开关,激活该电路,测量a-b两端开路电压Voc。

实验测得a-b两端开路电压Voc=4.950 V3.根据图1-1所示的电路的元件值,计算a-b两端的电压Voc。

根据两电阻串联分压原理可得? Voc=10*10/(10+10)=5 V4.在电子工作平台上建立如图1-2所示的实验电路。

5.以鼠标左键单击仿真电源开关,激活该电路,测量a-b两端的短路电流Isc。

实验测得a-b两端的短路电流 Isc=500.0 uA6.根据图1-2所示的电路元件值,计算短路电流Isc。

计算时应该用一个短导线代替电流表。

由图易知:r2和r3并联再与r1串联计算r1//r2=1/(1/5+1/10)=3.33333 k ohm所以干路总电阻 R=10+3.33333=13.33333 k ohm所以干路电流为 I=10/13.33333=0.75 mA =750 uA再由并联分流原理可得Isc=750×10/15 = 500.0 uA7.根据Voc和Isc的测量值,计算戴维南电压Vtn和戴维南电阻Req。

Req=Voc/Isc=4.95/500*10^-6=9900 ohmVtn=4.95 V8.根据步骤7的计算值,画出戴维南等效电路。

戴维南定理与诺顿定理实验报告

戴维南定理与诺顿定理实验报告

4、可调电阻
R=1K 1个
5、戴维南定理与诺顿定理实验挂箱
戴维南定理与诺顿定理
三、实验原理
1、戴维南定理:
任何一个线性有源二端网络,对外电路来说, 总可以用一个理想电压源和电阻串联的有源支路代 替, 其中理想电压源的电压值等于原网络端口 的开路电压Uoc,电阻R0为原网络中所有独立电源为 零时的等效电阻。
Uoc = Isc × Ro
戴维南定理与诺顿定理
四、实验内容: 实验电路如图所示:
1、利用戴维南定理和诺顿定理分别计算该 网络的开路电压U’oc、等效电阻R’o和短路 电流I’sc。
戴维南定理与诺顿定理
2、调节可调直流稳压电源Us=12V、可调 直流恒流源Is=10mA,接入实验电路,测 量该网络的开路电压Uoc、等效内阻Ro和 短路电流Isc,分别填入表2.3.3中。 (注:本实验中开路电压Uoc、等效内阻 Ro 的测量均采用直接测量法。)
戴维南定理与诺顿定理
戴维南定理与诺顿定理
一、实验目的 1、通过验证戴维南定理与诺顿定
理,加深对等效概念的ቤተ መጻሕፍቲ ባይዱ解;
2、学习测量有源二端网络的开路电 压和等效内阻的方法。
戴维南定理与诺顿定理
二、实验仪器
1、可调直流稳压电源 0~30V 1个
2、可调直流恒流源 0~200mA 1个
3、指针式万用表 MF-47型 1块
3、测量原网络的外特性:
将可变电阻RL接入原网络端口A、B之 间,每改变一次电阻值,测量RL上的电流 和其两端电压,并记入表2.3.4中。
戴维南定理与诺顿定理
4、测量戴维南等效电路 的外特性:
自行连接如右图电 路,每改变一次电阻 值,测量RL上的电流 和其两端电压,并记 入表2.3.4中。

戴维南定理和诺顿定理的验证实验报告 -回复

戴维南定理和诺顿定理的验证实验报告 -回复

戴维南定理和诺顿定理的验证实验报告 -回复尊敬的领导:实验目的本实验旨在验证戴维南定理和诺顿定理,并探究其在电路分析方面的应用。

实验原理戴维南定理和诺顿定理是在电路分析中经常使用的两个基本定理,能够将一个复杂的电路简化为一个等效的电源和电阻组成的简单电路。

戴维南定理:任何线性电路都可以看做是一个电压源和电阻的组合,用于求解某个电阻上的电流时,可以用这个电流的源电压和电阻值进行等效转换。

即:$I=\frac{V_S}{R_S+R_L}$$V_S$为等效电源电压,$R_S$为等效电源内阻,$R_L$为负载电阻。

诺顿定理:任何线性电路都可以看做是一个电流源和电阻的组合,用于求解某个电阻上的电流时,可以用这个电流的源电流和电阻值进行等效转换。

即:$I=\frac{I_S \cdot R_N}{R_N+R_L}$$I_S$为等效电流源电流,$R_N$为等效电流源内阻,$R_L$为负载电阻。

实验设计本实验设计了两组电路,分别用于验证戴维南定理和诺顿定理。

具体电路图如下:戴维南定理验证电路图:诺顿定理验证电路图:实验步骤1. 按照实验设计,搭建电路图。

2. 测量各元件的电阻值,并分别记录在表中。

3. 连接电流计和电压计,并记录电流和电压值。

4. 根据戴维南定理和诺顿定理公式,计算出等效电源电压、等效电源内阻、等效电流源电流和等效电流源内阻等值。

5. 测量负载电阻值,并根据公式计算出电路中的电流值。

6. 将负载电阻值替换为理论计算的电流值,再次测量电路中的电流值,并进行对比分析。

实验结果按照实验步骤进行测量和计算,得到以下结果:戴维南定理验证结果:诺顿定理验证结果:由结果可知,实验测量值与理论计算值相近,验证了戴维南定理和诺顿定理的正确性。

实验分析本实验从实际电路出发,验证了戴维南定理和诺顿定理的准确性,并说明了两个定理在电路分析上的实际应用。

实验结果也提示我们,实际电路中各元件的阻值存在一定的误差,因此在实际应用中需要谨慎处理。

戴维宁定理和诺顿定理的实验报告

戴维宁定理和诺顿定理的实验报告

戴维宁定理和诺顿定理的实验报告1. 引言戴维宁定理和诺顿定理是电路理论中的两个重要定理,它们可以用来简化复杂的电路分析问题。

本实验旨在通过实际测量和计算,验证戴维宁定理和诺顿定理的正确性,并理解它们在电路分析中的应用。

2. 实验目的- 验证戴维宁定理和诺顿定理的正确性;- 掌握运用戴维宁定理和诺顿定理简化电路分析问题的方法。

3. 实验原理3.1 戴维宁定理戴维宁定理指出,任何线性电路都可以用一个等效电源和一个等效电阻来代替。

等效电源称为戴维宁电流源,等效电阻称为戴维宁电阻。

戴维宁电流源的大小等于戴维宁电阻两端的电压除以电阻本身的值。

3.2 诺顿定理诺顿定理是戴维宁定理的一种特殊情况,即等效电源为电流源。

诺顿定理指出,任何线性电路都可以用一个等效电流源和一个等效电阻来代替。

等效电流源称为诺顿电流源,等效电阻称为诺顿电阻。

诺顿电流源的大小等于诺顿电阻两端的电压除以电阻本身的值。

4. 实验装置和步骤4.1 实验装置本实验所需的主要装置包括直流电源、可变电阻箱、电流表、电压表、万用表等。

4.2 实验步骤4.2.1 利用直流电源、可变电阻箱和电压表搭建一个简单的电路。

4.2.2 测量电路中的电流和电压值,并记录下来。

4.2.3 根据测量结果,计算出电路的等效电流源和等效电阻。

4.2.4 利用戴维宁定理和诺顿定理,将原始电路简化为一个等效电路。

4.2.5 比较简化后的等效电路和原始电路的电流和电压值,验证定理的正确性。

5. 实验结果与分析通过测量和计算,得到了原始电路的电流和电压值,同时计算出了等效电流源和等效电阻。

将原始电路简化为等效电路后,再次测量等效电路的电流和电压值。

通过比较两者的结果,可以发现它们非常接近,验证了戴维宁定理和诺顿定理的正确性。

6. 实验总结本实验通过实际测量和计算,验证了戴维宁定理和诺顿定理的正确性。

戴维宁定理和诺顿定理是电路分析中常用的工具,可以简化复杂的电路分析问题,提高计算效率。

戴维宁定理和诺顿定理实验报告

戴维宁定理和诺顿定理实验报告

戴维宁定理和诺顿定理实验报告戴维宁定理和诺顿定理实验报告引言:在物理学领域,有两个重要的定理被广泛应用于电路分析和设计中,它们分别是戴维宁定理和诺顿定理。

本文将通过实验报告的形式,对这两个定理进行探讨和验证。

实验一:戴维宁定理的验证戴维宁定理是电路分析中的重要定理之一,它指出在直流电路中,电流分支与电压分支之间的关系可以通过电流和电压的比值来表示。

为了验证戴维宁定理,我们设计了以下实验。

实验装置:1. 直流电源2. 电阻器3. 电流表4. 电压表5. 连接线实验步骤:1. 将直流电源连接到电路的一端,另一端接地。

2. 将电阻器连接到电路中,形成一个简单的直流电路。

3. 将电流表和电压表分别连接到电路的不同位置,测量电流和电压数值。

4. 记录电流和电压的数值。

实验结果:根据戴维宁定理,我们可以通过电流和电压的比值来计算电阻的阻值。

通过实验测量得到的电流和电压数值,我们可以得出电阻的阻值,并与理论值进行比较。

实验结果表明,实测值与理论值相符,验证了戴维宁定理的准确性。

实验二:诺顿定理的验证诺顿定理是电路分析中另一个重要的定理,它指出在直流电路中,任意两个电路元件之间的电流可以通过等效电流源来表示。

为了验证诺顿定理,我们进行了以下实验。

实验装置:1. 直流电源2. 电阻器3. 电流表4. 连接线实验步骤:1. 将直流电源连接到电路的一端,另一端接地。

2. 将电阻器连接到电路中,形成一个简单的直流电路。

3. 将电流表连接到电路中,测量电流数值。

4. 移除电流表,用一个等效电流源连接到电路中,调整其电流大小与实测值相同。

5. 记录等效电流源的电流数值。

实验结果:根据诺顿定理,我们可以通过等效电流源来表示电路中的电流。

通过实验测量得到的等效电流源的电流数值与实测值相同,验证了诺顿定理的准确性。

讨论:戴维宁定理和诺顿定理在电路分析和设计中起到了重要的作用。

它们使得我们能够通过简化电路的结构和参数,更方便地进行电路分析和计算。

戴维南定理和诺顿定理的验证实验+数据

戴维南定理和诺顿定理的验证实验+数据

戴维南定理和诺顿定理的验证一、实验目的1、掌握有源二端网络代维南等效电路参数的测定方法。

2、验证戴维南定理、诺顿定理和置换定理的正确性。

3、进一步学习常用直流仪器仪表的使用方法。

二、原理说明1、任何一个线性含源网络,如果仅研究其中一条支路的电压和电流,则可将电路的其余部分看作是一个有源二端网络(或称为含源二端网络)。

2、戴维南定理:任何一个线性有源网络,总可以用一个理想电压源与一个电阻的串联支路来等效代替,此电压源的电压等于该有源二端网络的开路电压U0C,其等效内阻R0等于该网络中所有独立源均置零(理想电压源视为短路,理想电流源视为开路)时的等效电阻。

这一串联电路称为该网络的代维南等效电路。

3、诺顿定理:任何一个线性有源网络,总可以用一个理想电流源与一个电阻的并联组合来等效代替,此电流源的电流等于该有源二端网络的短路电流I SC,其等效内阻R0定义与戴维南定理的相同。

4、有源二端网络等效参数的测量方法U0C、I SC和R0称为有源二端网络的等效电路参数,可由实验测得。

(一)开路电压U OC的测量方法(1)可直接用电压表测量。

(2)零示法测U OC在测量具有高内阻有源二端网络的开路电压时,用电压表直接测量会造成较大的误差。

为了消除电压表内阻的影响,往往采用零示测量法,如图3-1所示。

零示法测量原理是用一低内阻的稳压电源与被测有源二端网络进行比较,当稳压电源的输出电压与有源二端网络的开路电压相等时,电压表的读数将为“0”。

然后将电路断开,测量此时稳压电源的输出电压,即为被测有源二端网络的开路电压。

图3-1 图3-2(二)等效电阻R0的测量方法(1)开路电压、短路电流法测R 0该方法只实用于内阻较大的二端网络。

因当内阻很小时,若将其输出端口短路则易损坏其内部元件,不宜用此法。

该测量方法是:在有源二端网络输出端开路时,用电压表直接测其输出端的开路电压U 0C ,然后将其输出端短路,用电流表测其短路电流I SC ,则等效内阻为 SC OC O I U R =(2)伏安法测R 0用电压表、电流表测出有源二端网络的外特性如图3-2所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验五戴维南定理和诺顿定理的研究
一、实验目的
1. 验证戴维南定理和诺顿定理的正确性,加深对该定理的理解。

2. 掌握测量有源二端网络等效参数的一般方法。

二、原理说明
1. 任何一个线性含源网络,如果仅研究其中一条支路的电压和电流,则可将电路的其余部分看作是一个有源二端网络(或称为含源一端口网络)。

戴维南定理指出:任何一个线性有源网络,总可以用一个电压源与一个电阻的串联来等效代替,此电压源的电动势U S等于这个有源二端网络的开路电压U OC,其等效电阻R0等于该网络中所有独立源均置零(理想电压源视为短接,理想电流源视为开路)时的等效电阻。

诺顿定理指出:任何一个线性有源网络,总可以用一个电流源与一个电阻的并联组合来等效代替,此电流源的电流I S等于这个有源二端网络的短路电流I SC,其等效电阻R0定义同戴维南定理。

U OC(U S)和R0或者I SC(I S)和R0称为有源二端网络的等效参数。

2. 有源二端网络等效参数的测量方法
(1) 开路电压、短路电流法测R0
在有源二端网络输出端开路时,用电压表直接测其输出端的开路电压U OC,然后再将其输出端短路,用电流表测其短路电流I SC,则等效电阻为
U OC
R0=────
I SC
如果二端网络的内阻很小,若将其输出端口短路则易损坏其内部元件,因此不宜用此法。

(2) 伏安法测R0
用电压表、电流表测出有源二端网络的外特性曲线,如图8-1所示。

根据外特性曲线求出斜率tgφ,则等效电阻
△U U OC
R0 =t gφ =──── =───
△I I SC
图8-1
图8-2
图8-3
也可以先测量开路电压U OC,再测量电流为额定值I N时的输出端电压值U N,则等效电阻为
U OC-U N
R0 =────
I N
(3) 半电压法测R0
如图8-2所示,当负载电压为被测网络开路电压的一半时,负载电阻(由电阻箱的读数确定)即为被测有源二端网络的等效电阻值。

(4) 零示法测U OC
在测量具有高内阻有源二端网络的开路电压时,用电压表直接测量会造成较大的误差。

为了消除电压表内阻的影响,往往采用零示测量法,如图8-3所示.。

零示法测量原理是用一低内阻的稳压电源与被测有源二端网络进行比
较,当稳压电源的输出电压与有源二端网络的开路电压相等时,电流表的读数将为“0”。


后将电路断开,测量此时稳压电源的输出电压,即为被测有源二端网络的开路电压。

1.用开路电压、短路电流法测定戴维南等效电路的开路电压U OC和诺顿等效电路的短路电流I SC。

按图8-4(a)接入稳压电源U S=12V和恒流源I S=10mA,不接入R L。

(1)将开关K打向右端,不接入R L,测出开路电压U OC(测U OC时,不接入mA表)。

(2)将开关K打向左端,测出短路电流I SC。

最后计算出R0。

2. 测量有源二端网络的外特性:如图8-4(a)所示
3. 验证戴维南定理:如图8-4(b)所示
将可变电阻箱调到实验步骤“1”时计算出的等效电阻R0之值,然后将R0与直流稳压
电源相串联(将直流稳压电源调到实验步骤“1”时测得的开路电压U OC之值),仿照实验步骤“2”
4. 验证诺顿定理:如图8-5所示
将可变电阻箱调到实验步骤“1”时计算出的等效电阻R0之值,然后将R0与直流恒流源相并联(将直流恒流源调到实验步骤“1”时测得的短路电流I SC之值),仿照步骤“2”测其外特性,对诺顿定理进行验证。

5. 有源二端网络等效电阻R0的直接测量法。

如图8-4(a)所示。

将被测有源二端网络内的所有独立源置零(去掉电流源I S和电压源U S,并在原电压源所接的两点用一根短路导线相连),然后用伏安法或者直接用万用表的欧姆档去测定负载R L开路时A、B两点间的电阻,此即为被测网络的等效电阻R0。

6. 用半电压法和零示法测量被测网络的等效电阻R0及其开路电压U oc。

线路及数据表格自拟。

五、实验注意事项
1. 测量时应注意电流表量程的更换。

2. 实验步骤“5”中,电压源置零时不可将稳压源短接。

3. 用万用表直接测R0时,网络内的独立源必须先置零,以免损坏万用表。

其次,欧姆档必须经调零后再进行测量。

4. 用零示法测量U OC时,应先将稳压电源的输出调至接近于U OC,再按图8-3测量。

5. 改接线路时,要关掉电源。

六、预习思考题
1. 在求戴维南或诺顿等效电路时,作短路试验,测I SC的条件是什么?在本实验中可否直接作负载短路实验?请实验前对线路8-4(a)预先作好计算,以便调整实验线路及测量时可
2. 说明测有源二端网络开路电压U OC及等效电阻R0的几种方法,并比较其优缺点。

答:(1)测开路电压U OC的方法优缺点比较:
①零示法测U OC。

优点:可以消除电压表内阻的影响;缺点:操作上有难度,难于把握精确度。

②直接用电压表测U OC。

优点:方便简单,一目了然;缺点:会造成较大的误差。

(2)测等效电阻R0的方法优缺点比较:
①直接用欧姆表测R0。

优点:方便简单,一目了然;缺点:会造成较大的误差。

②开路电压、短路电流测R0。

优点:测量方法简单,容易操作;缺点:当二端网络的内阻很小时,容易损坏其内部元件,因此不宜选用。

③伏安法测R0。

优点:利用伏安特性曲线可以直观地看出其电压与电流的关系;缺点:需作图,比较繁琐。

④半电压法测R0。

优点:方法比较简单;缺点:难于把握精确度。

七、实验报告
1. 根据步骤2、3、4,分别绘出曲线,验证戴维南定理和诺顿定理的正确性,并分析产生误差的原因。

2. 根据步骤1、5、6的几种方法测得的U OC与R0与预习时电路计算的结果作比较,你能得出什么结论。

3. 归纳、总结实验结果。

4. 心得体会及其他。

相关文档
最新文档