2021-2022年高一下学期5月月考 数学 含解析
浙江省湖州市第二中学2023-2024学年高一下学期5月月考数学试题

浙江省湖州市第二中学2023-2024学年高一下学期5月月考数学试题一、单选题 1.计算()221i -的结果是( )A .2iB .2i -C .iD .i -2.已知a r ,b r 为单位向量,则“a r ,b r 的夹角为23π”是“a b -=r r 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件3.已知事件A 、B 相互独立,()0.4,()0.3P A P B ==,则()P A B +=( ) A .0.58B .0.9C .0.7D .0.724.从3名男老师和4名女老师中任选3名老师,那么互斥而不对立的事件是( ) A .至少有一名男老师与都是男老师 B .至少有一名男老师与都是女老师 C .恰有一名男老师与恰有两名男老师 D .至少有一名男老师与至少有一名女老师5.若甲、乙两个圆柱的体积相等,底面积分别为S 甲和S 乙,侧面积分别为1S 和2S .若2SS=甲乙,则12S S =( ) ABC.D6.已知圆锥的高为8,底面圆的半径为4,顶点与底面的圆周在同一个球的球面上,则该球的表面积为( ) A .100πB .68πC .52πD .50π7.某测量爱好者在城市CBD 核心区测量一座国际金融中心摩天大楼时,过国际金融中心摩天大楼底部(当作点Q )一直线上位于Q 同侧两点A ,B 分别测得摩天大楼顶部点P 的仰角依次为30°,45°,已知AB 的长度为330米,则金融中心的高度约为( )A .350米B .400米C .450米D .500米8.在平行四边形ABCD 中,E 为CD 的中点,13BF BC =u u u r u u u r,AF 与BE 交于点G ,过点G 的直线分别与射线BA ,BC 交于点M ,N ,BM BA λ=u u u u r u u u r ,BN BC μ=u u ur u u u r ,则2λμ+的最小值为( ) A .1B .87C .97D .95二、多选题9.下列关于向量的说法正确的是( )A .若a b r r P ,b c r r∥,则a c r r ∥B .若单位向量,a b rr 夹角为θ,则向量a r 在向量b r 上的投影向量为cos b θrC .若a r 与b r 不共线,且0sa tb +=r r r ,那么0s t ==D .若a c b c ⋅=⋅r r r r 且0c ≠r r ,则a b =r r10.在ABC V 中,下列说法正确的是( )A .若ABC >>,则sin sin sin A B C >> B .若A B C >>,则sin 2sin 2sin 2A B C >> C .若A B C >>,则cos cos cos A B C <<D .若A B C >>,则cos2cos2cos2A B C << 11.如图,在长方体1111ABCD A B C D -中,4AB =,12BC BB ==,,EF 分别为棱11AB,A D 的中点,则下列说法中正确的有( )A .直线CF 与1AB 为相交直线 B .异面直线1DB 与CE 所成角为90︒C .若P 是棱11CD 上一点,且11D P =,则E C PF 、、、四点共面 D .平面CEF 截该长方体所得的截面可能为六边形三、填空题12.若复数()()222i z m m m =--+-为纯虚数,则实数m =.13.某人上楼梯,每步上1阶的概率为34,每步上2阶的概率为14,设该人从第1阶台阶出发,到达第3阶台阶的概率为.14.在一次高三年级统一考试中,数学试卷有两道满分均为10分的选做题,学生可以从A ,B 两道题目中任选一题作答,某校有900名高三学生参加了本次考试,为了了解该校学生解答该选做题的得分情况,计划从900名学生的选做题成绩中随机抽取一个容量为10的样本,为此将900名学生的选做题成绩随机编号为001,002,,900L .若采用分层随机抽样,按照学生选择A 题目或B 题目,将成绩分为两层,且样本中选择A 题目的成绩有8个,平均数为7,方差为4;样本中选择B 题目的成绩有2个,平均数为8,方差为1,则估计该校900名学生的选做题得分的平均数为,方差为.四、解答题15.已知ABC V 的内角A ,B ,C 的对边分别是a ,b ,c ,ABC V 的面积为S ,且满足()4tan 0S bc B C +⋅+=.(1)求角A 的大小;(2)若4a =,求ABC V 周长的最大值.16.我国是世界上严重缺水的国家之一,为提倡节约用水,我市为了制定合理的节水方案,对家庭用水情况进行了调查,通过抽样,获得了2021年 100个家庭的月均用水量(单位:t ),将数据按照[0,2),[2,4),[4,6),[6,8),[8,10]分成5组,制成了如图所示的频率分布直方图.(1)求全市家庭月均用水量不低于 6t 的频率;(2)假设同组中的每个数据都用该组区间的中点值代替,求全市家庭月均用水量平均数的估计值;(3)求全市家庭月均用水量的75%分位数的估计值(精确到0.01).17.如图所示,在正三棱柱111ABC A B C -中,12,1AB AA ==,点D 是AB 的中点.(1)证明:1AC ∥平面1CDB ;(2)求异面直线1AC 和BC 所成角的余弦值.18.如图1,在矩形ABCD 中,已知2AB BC ==,E 为AB 的中点.将ADE V 沿DE 向上翻折,进而得到多面体1A BCDE -(如图2).(1)当平面1A DE ⊥平面BED ,求直线1AC 与平面BCD 所成角的正切值; (2)在翻折过程中,求二面角1A DC B --的最大值. 19.已知函数()23,f x x a a a =-+∈R . (1)若函数()f x 为偶函数, 求a 的值; (2)设函数()()[]()81,4g x f x x x=-∈,已知当[]2,8a ∈时,()g x 存在最大值,记为()M a . (i )求()M a 的表达式; (ii )求()M a 的最大值.。
2021-2022学年辽宁省六校协作体高一(下)第三次月考数学试卷(含答案解析)

2021-2022学年辽宁省六校协作体高一(下)第三次月考数学试卷1. 若复数z 满足iz =2+4i ,则在复平面内,z 对应的点的坐标是( ) A. (2,4)B. (2,−4)C. (4,−2)D. (4,2)2. 下列命题正确的是( )A. 棱柱的侧棱都相等,侧面都是全等的平行四边形B. 用一个平面去截棱锥,棱锥底面与截面之间的部分是棱台C. 四面体的任何一个面都可以作为棱锥的底面D. 棱台的侧棱延长后交于一点,侧面是等腰梯形 3. sin77∘cos43∘+sin13∘cos47∘的值为( ) A. 12B. √32C. −12D. −√324. 将函数y =sin(2x +π4)图象上的所有点的横坐标变为原来的0.5倍(纵坐标不变),然后再向右平移π6个单位长度,则所得图象的函数解析式是( )A. y =sin(4x −7π12) B. y =sin(4x −5π12) C. y =sin(x +5π12) D. y =sin(x +π12)5. 下列命题正确的有( )A. ∃α,β使得等式sin(α+β)=sinα+sinβ成立B. ∀α,β都有tan(α+β)=tanα+tanβ1−tanα⋅tanβC. 已知α,β为第一象限角,若α>β,则sinα>sinβD. 若sinα+cosα=√32,则角α是第一象限角6. 玩具制造商设计并投产一种全新的益智玩具”智慧立方”它的形状为正四面体.通过大量的人体力学实验得知当“智慧立方系数“=12√2V−√3S+5aa∈[4,7]时尺寸最适合3−6岁的小朋友把玩,其中V 是正四面体的体积,S 是正四面体的表面积.则棱长a 尺寸最合适范围是( )A. [0.5,2]B. [0.5,1]C. [0.5,2.5]D. [1,2]7. 如图,四边形ABCD 四点共圆,其中BD 为直径,AB =4,BC =3,∠ABC =60∘,则△ACD的面积为( )A. √36 B. √32C. 5√36 D.7√368. 在△ABC 中,AB =5,AC =4,∠BAC =60∘,D 为BC 的中点,点E 满足AE ⃗⃗⃗⃗⃗ =4EB ⃗⃗⃗⃗⃗ ,直线CE 与AD 交于点P ,则cos∠DPE =( )A. 45 B. √61122 C.√241482D. 24259. 已知复数z ,z 1,z 2,下列命题错误的有( ) A. 若z =z 1⋅z 2,则|z|=|z 1|⋅|z 2| B. 若z 1⋅z 2∈R ,那么z 1+z 2∈R C. 若z 1+z 2∈R ,那么z 1⋅z 2∈R D. 若|z 1⋅z 2|=1,那么z 1=1z 210. 函数f(x)=sin2x1+cos2x ,则( ) A. f(x)的值域为RB. f(x)在(π,2π)上单调递增C. f(x)有无数个零点D. f(x)在定义域内存在递减区间11. 在正方体ABCD −A 1B 1C 1D 1中,M ,N ,P 分别为棱AB ,CC 1,C 1D 1的中点,动点Q ∈平面MNP ,DQ =AB =2,则( )A. AC 1//MNB. 直线PQ//平面A 1BC 1C. 正方体被平面MNP 截得的截面为正六边形D. 点Q 的轨迹长度为2π12. 已知△ABC 中,AB =AC =√2,BC =2,D 是边BC 的中点,动点P 满足PD =1,AP ⃗⃗⃗⃗⃗ =x AB ⃗⃗⃗⃗⃗ +y AC⃗⃗⃗⃗⃗ ,则( )A. x+y的值可以等于2B. x−y的值可以等于2C. 2x+y的值可以等于−1D. x+2y的值可以等于313. 记△ABC的内角A,B,C的对边分别为a,b,c,若sinA=sinB=3sinC,则a+b=______,ccosA=______.14. 已知圆锥的表面积为3π,且它的侧面展开图是一个半圆,则它的母线长为______ ;该圆锥的体积为______ .15. f(x)=sin(x+θ)⋅cosx为奇函数,那么θ的一个取值为______.16. 在长方体ABCD−A1B1C1D1中,AB=2,BC=CC1=1;点E,F分别为AB、CD中点;那么长方体ABCD−A1B1C1D1外接球表面积为______;三棱锥的D1−BEF外接球的体积为______.17. 已知平面向量a⃗,b⃗ ,c⃗,满足a⃗=(1,−√3),|b⃗ |=2,|c⃗|=1.(1)若a⃗与b⃗ 共线,求向量b⃗ 的坐标;(2)若(2a⃗+c⃗ )⊥(a⃗−3c⃗ ),求向量a⃗,c⃗的夹角.18. 正棱锥S−ABCD的底面边长为4,高为1.求:(1)棱锥的侧棱长和侧面的高;(2)棱锥的表面积与体积.19. 已知函数f(x)=asin(π2x +φ)(a >0,0<φ<π)的图象如图,其中A ,B 分别为最高点和最低点.C ,D 为零点,M(0,√3),S △ABD =4. (1)求f(x)的解析式;(2)求f(0)+f(1)+f(2)+…+f(2022)的值.20. 如图所示,在直三棱柱ABC −A 1B 1C 1中,D 是AB 的中点.(1)证明:BC 1//平面A 1CD ;(2)设AA 1=AC =CB =2,AB =2√2,求几何体BDC −A 1B 1C 1的体积.21. 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c 且2S =−√3BA ⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ ,作AB ⊥AD ,使得如图所示的四边形ABCD 满足∠ACD =π3,AD =√3.(1)求B;(2)求BC的取值范围.22. 已知向量m⃗⃗⃗ =(sinx,1),n⃗=(√3cosx,−1).令函数f(x)=(m⃗⃗⃗ +n⃗ )⋅m⃗⃗⃗ .2(Ⅰ)求函数f(x)的最大值;(Ⅰ)△ABC中,内角A,B,C的对边分别为a,b,c,∠ACB的角平分线交AB于D.其中,函数f(C)恰好为函数f(x)的最大值,且此时CD=f(C),求3a+b的最小值.答案和解析1.【答案】C【解析】解:复数z满足iz=2+4i,则有z=2+4ii =(2+4i)i−1=4−2i,故在复平面内,z对应的点的坐标是(4,−2),故选C.由题意可得z=2+4ii,再利用两个复数代数形式的乘除法法则化为4−2i,从而求得z对应的点的坐标.本题主要考查两个复数代数形式的乘除法,虚数单位i的幂运算性质,复数与复平面内对应点之间的关系,属于基础题.2.【答案】C【解析】解:对于A,棱柱的侧棱都相等,但侧面不一定是全等的平行四边形,A错误;对于B,用一个平行于底面的平面去截棱锥,棱锥底面与截面之间的部分才是棱台,B错误;对于C,四面体的任何一个面都可以作为棱锥的底面,C正确;对于D,棱台的侧棱延长后交于一点,但侧面不一定是等腰梯形,D错误.故选:C.棱柱的侧面不一定是全等的平行四边形,A错误;用平行于底面的平面去截棱锥,才满足,B错误;棱台的侧面不一定是等腰梯形,D错误,C正确.本题考查棱柱、棱锥、棱台的结构特征,属于基础题.3.【答案】B【解析】【分析】本题考查三角函数的化简求值,熟练掌握两角差的余弦公式,诱导公式是解题的关键,考查运算求解能力,属于基础题.结合诱导公式与两角差的余弦公式,即可得解.【解答】解:sin77∘cos43∘+sin13∘cos47∘=cos13∘cos43∘+sin13∘sin43∘=cos(13∘−43∘)=cos(−30∘)=√32.故本题选B.4.【答案】B【解析】解:将函数y =sin(2x +π4)图象上的所有点的横坐标变为原来的0.5倍(纵坐标不变),可得y =sin(4x +π4)的图象;然后再向右平移π6个单位长度,则所得图象的函数解析式是y =sin(4x −4π6+π4)=sin(4x −5π12), 故选:B.由题意,利用函数y =Asin(ωx +φ)的图象变换规律,得出结论. 本题主要考查函数y =Asin(ωx +φ)的图象变换规律,属于基础题.5.【答案】A【解析】解:选项A ,当α=β=0时,sin(α+β)=0,sinα+sinβ=0,即选项A 正确; 选项B ,当α=β=π4时,等式两边均没有意义,即选项B 错误;选项C ,取α=2π+π6,β=π3,满足α,β为第一象限角,且α>β,所以sinα=12,sinβ=√32,此时sinα<sinβ,即选项C 错误; 选项D ,若sinα+cosα=√32,即√2sin(α+π4)=√32,所以sin(α+π4)=√64,显然α不只是第一象限角,即选项D 错误. 故选:A.选项A ,取特殊值,α=β=0,代入运算,可判断; 选项B ,取特殊值,当α=β=π4时,等式两边均没有意义; 选项C ,取α=2π+π6,β=π3,代入运算,可判断;选项D ,由辅助角公式,可得sin(α+π4)=√64,显然α不只是第一象限角.本题考查三角函数中的综合问题,熟练掌握特殊角的三角函数值,辅助角公式是解题的关键,考查逻辑推理能力和运算能力,属于基础题.6.【答案】D【解析】解:如图正四面体ABCD 中,H 是△BCD 的中心,则AH 是高,AH ⊥DH ,正四面体棱长为a ,则S △BCD =√34a 2,DH =23×√32a =√33a,AH =a −(√33a)=√63a , V =13×√34a 2×√63a =√212a 3,S =4S △BCD =√3a 2,所以12√2V−√3S+5a a=12√2×√212a 3−√3×√3a 2+5aa =2a 2−3a +5,由4≤2a 2−3a +5≤7,又a >12,因此解得1≤a ≤2. 故选:D.求出正四面体的体积和表面积,计算出12√2V−√3S+5aa,然后解相应不等式可得. 本题考查了正四面体的体积和表面积,属于中档题.7.【答案】C【解析】解:在△ABC 中,∵AB =4,BC =3,∠ABC =60∘, ∴由余弦定理得AC =√42+32−2×4×3×12=√13, 由正弦定理,得BD =ACsin∠ABC=√13sin60∘=2√393, 在Rt △ABD 和Rt △BCD 中,AD =√BD 2−AB 2=√523−16=2√33, CD =√BD 2−BC 2=√523−9=5√33, ∵∠ADC =180∘−∠ABC =120∘,∴△ACD 的面积为S =12×2√33×5√33×√32=5√36. 故选:C.先在△ABC 中利用余弦定理求出边AC ,再利用正弦定理求出直径BD ,进而利用直角三角形求出AD ,CD ,再利用三角形的面积公式进行求解.本题考查三角形的面积的求法,考查余弦定理等基础知识,考查推理能力与计算能力,属于基础题.8.【答案】B【解析】解:设AB ⃗⃗⃗⃗⃗ =a ⃗ ,AC ⃗⃗⃗⃗⃗ =b ⃗ , ∵D 为BC 的中点,∴AD ⃗⃗⃗⃗⃗⃗ =12(a ⃗ +b ⃗ ), ∵点E 满足AE ⃗⃗⃗⃗⃗ =4EB ⃗⃗⃗⃗⃗ ,∴AE ⃗⃗⃗⃗⃗ =45AB ⃗⃗⃗⃗⃗ =45a ⃗ , ∴CE ⃗⃗⃗⃗⃗ =AE ⃗⃗⃗⃗⃗ −AC ⃗⃗⃗⃗⃗ =45AB ⃗⃗⃗⃗⃗ −b ⃗ =45a ⃗ −b ⃗ ,∴|AD ⃗⃗⃗⃗⃗⃗ |2=14(a ⃗ 2+2a ⃗ ⋅b ⃗ +b ⃗ 2)=14(25+2×5×4×12+16)=614,|CE ⃗⃗⃗⃗⃗ |2=(45a ⃗ −b ⃗ )2=1625a ⃗ 2−2×45a ⃗ ⋅b ⃗ +b ⃗ 2=16−16+16=16, AD ⃗⃗⃗⃗⃗⃗ ⋅CE ⃗⃗⃗⃗⃗ =12(a ⃗ +b ⃗ )⋅(45a ⃗ −b ⃗ )=25a ⃗ 2−110a ⃗ ⋅b ⃗ −12b ⃗ 2=1, ∴|AD ⃗⃗⃗⃗⃗⃗ |=√612,|CE ⃗⃗⃗⃗⃗ |=4, ∴cos∠DPE =AD ⃗⃗⃗⃗⃗⃗ ⋅CE ⃗⃗⃗⃗⃗⃗ |AD ⃗⃗⃗⃗⃗⃗ |⋅|CE⃗⃗⃗⃗⃗⃗ |=√612⋅4=√61122. 故选:B.设AB ⃗⃗⃗⃗⃗ =a ⃗ ,AC ⃗⃗⃗⃗⃗ =b ⃗ ,可得AD ⃗⃗⃗⃗⃗⃗ =12(a ⃗ +b ⃗ ),CE ⃗⃗⃗⃗⃗ =45a ⃗ −b ⃗ ,利用向量法可求cos∠DPE. 本题考查向量法在解三角形的应用,属中档题.9.【答案】BCD【解析】解:对于A ,由复数模的运算性质可知,|z 1z 2|=|z 1|⋅|z 2|,即|z|=|z 1|⋅|z 2|,故选项A 正确;对于B ,由复数的定义可得当z 1⋅z 2∈R 时,z 1+z 2不一定属于R ,如z 1=i ,z 2=i ,z 1⋅z 2=−1∈R ,z 1+z 2=2i ∉R ,故选项B 错误;对于C ,若z 1+z 2∈R ,可举例z 1=i ,z 2=−i ,则z 1+z 2=0∈R ,但z 1⋅z 2∉R ,故选项C 错误; 对于D ,若|z 1⋅z 2|=|z 1|⋅|z 2|=1,可举例z 1=−i ,z 2=−i ,但z 1=z 2≠1z 2,故选项D 错误. 故选:BCD.利用复数模的运算性质判断选项A ,由复数的定义可判断B ,由特殊例子判断选项C ,D. 本题考查了复数的综合应用,涉及了复数模的运算性质、虚数的定义、复数的几何意义,属于基础题.10.【答案】AC【解析】解:f(x)=sin2x1+cos2x =2sinxcosx2cos 2x =tanx ,(x ≠kπ+π2,k ∈Z),其值域为R ,故A 正确; 在(π,2π)上,f(3π2)不存在,B 错误;显然f(kπ)=0,k ∈Z ,零点为x =kπ,k ∈Z 有无数个,C 正确;在定义域内每一个区间(kπ−π2,kπ+π2),k ∈Z 上,函数都是增函数,无减区间,D 错误. 故选:AC.利用二倍角公式,同角关系化简函数式,再根据正切函数性质即可判断得解.本题考查了二倍角公式,同角三角函数基本关系式在三角函数化简中的应用,考查了正切函数性质,属于基础题.11.【答案】BCD【解析】解:连接AC1,BC1,取BC1中点H,连接MH,易得AC1//MH,则AC1MN不平行,A错误;如图,取棱D1A1,A1A,BC的中点E,F,G,易得MF//NP,M∈平面MNP,则MF⊂面MNP,同理可得EF,EP,GM,GN⊂平面MNP,即正六边形EFMGNP为正方体被平面MNP截得的截面,C正确;由C选项知:平面MNP即平面EFMGNP,易得FM//A1B,又FM⊄平面A1BC1,A1B⊂平面A1BC1,则FM//平面A1BC1,同理可得NG//平面A1BC1,又NG//PM,则PM//平面A1BC1,PM∩FM=M,则平面EFMGNP//平面A1BC1,又PQ⊂平面EFMGNP,则直线PQ//平面A1BC1,B正确;连接DB1,易得DB1与平面EFMGNP交于正方体的体心O,连接DB,易得DB⊥MG,又B1B⊥平面ABCD,MG⊂平面ABCD,则B1B⊥MG,又DB,BB1⊂平面DBB1,DB∩BB1=B,则MG⊥平面DBB1,DB1⊂平面DBB1,则MG⊥DB1,同理可得GN⊥DB1,又MG,GN⊂平面MNP,MG∩GN=G,则DB1⊥平面MNP,OQ⊂平面MNP,则DB1⊥OQ,又DO=12DB1=12×√4+4+4=√3,则OQ=√DQ2−DO2=1,即点Q的轨迹为以O为圆心1为半径的圆,故点Q 的轨迹长度为2π,D 正确. 故选:BCD.取BC 1中点H ,由AC 1//MH 即可判断A 选项;取棱D 1A 1,A 1A ,BC 的中点E ,F ,G ,由EF ,EP ,GM ,GN ⊂平面MNP 即可判断C 选项;先判断平面EFMGNP//平面A 1BC 1,由PQ ⊂平面EFMGNP 即可判断B 选项;连接DB 1,先判断DB 1⊥平面MNP ,进而求得点Q 的轨迹为以O 为圆心1为半径的圆即可判断D 选项.本题考查线面平行,考查学生的推理能力,属于中档题.12.【答案】AD【解析】解:连接AD ,∵AB =AC ,D 是边BC 的中点,∴AD ⊥BC , 以D 为坐标原点,BC ,AD 所在直线分别为x 轴和y 轴,建立平面直角坐标系∵AB 2+AC 2=BC 2,∴AB ⊥AC ,∴AD =12BC =1,∴A(0,1),B(−1,0),C(1,0), ∵PD =1,∴点P 的轨迹为以D 为圆心,1为半径的圆, ∴设点P 的坐标为(cosθ,sinθ)(θ∈R), ∵AP ⃗⃗⃗⃗⃗ =x AB ⃗⃗⃗⃗⃗ +y AC⃗⃗⃗⃗⃗ , ∴(cosθ,sinθ−1)=x(−1,−1)+y(1,−1), ∴{cosθ=−x +y sinθ−1=−x −y , ∴{x =1−sinθ−cosθ2y =1−sinθ+cosθ2, A .x +y =1−sinθ−cosθ2+1−sinθ+cosθ2=1−sinθ∵−1≤sinθ≤1,∴0≤1−sinθ≤2,即0≤x +y ≤2,故A 正确; B .x −y =1−sinθ−cosθ2−1−sinθ+cosθ2=−cosθ,∵−1≤cosθ≤1,∴−1≤−cosθ≤1,即−1≤x −y ≤1,即−1≤x −y ≤1, ∴x −y 的值不可以为2, 故B 错误C .2x +y =1−sinθ−cosθ+1−sinθ+cosθ2=32−32sinθ−12cosθ=32−√102sin(θ+φ),其中cosφ=3√1010,sinφ=√1010,且φ为锐角, ∵−1≤sin(θ+φ)≤1,32−√102≤32−√102sin(θ+φ)≤32+√102,即32−√102≤2x +y ≤32+√102, ∵32−√102+1=5−√102>0,3105−V10∴32−√102>−1,∴2x +y 的值不可以等于−1, 故C 错误, D .x +2y =1−sinθ−cosθ2+1−sinθ+cosθ=32−32sinθ+12cosθ=32−√102sin(θ−φ),其中cosφ=3√1010,sinφ=√1010,且φ为锐角, ∵−1≤sin(θ−φ)≤1, ∴32−√102≤32−√102sin(θ−φ)≤32+√102,即32−√102≤x +2y ≤32+√102,∵32−√102<3<32+√102,∴x +2y 的值可以等于3,故D 正确, 故选:AD.以点D 为原点、边BC 为x 轴建立平面直角坐标系,写出相关点坐标,设出P(cosθ,sinθ),利用平面向量的坐标运算得到{x =1−sinθ−cosθ2y =1−sinθ+cosθ2,再结合角的范围逐一验证各选项. 本题考查了平面向量的基本定理,属于中档题.13.【答案】616【解析】解:由正弦定理及sinA =sinB =3sinC ,得a =b =3c ,所以a+bc =6, 由余弦定理知,cosA =b 2+c 2−a 22bc=9c 2+c 2−9c 22⋅3c⋅c=16.故答案为:6;16.利用正弦定理化角为边,可得a=b=3c,从而知a+bc的值,再利用余弦定理,可得cosA的值.本题考查解三角形,熟练掌握正弦定理,余弦定理是解题的关键,考查运算求解能力,属于基础题.14.【答案】2√33π【解析】解:设圆锥的底面半径为r,圆锥的母线长为l,由πl=2πr,解得l=2r,又S=πr2+πr⋅2r=3πr2=3π,所以r2=1,解得r=1;所以圆锥的母线长为l=2r=2,圆锥的高为ℎ=√l2−r2=√22−12=√3,所以圆锥的体积为V=13πr2ℎ=13π×12×√3=√33π.故答案为:2,√3π3.根据圆锥的结构特征,求出底面圆半径和母线长、高,即可计算圆锥的体积.本题考查了圆锥的结构特征与表面积、体积的计算问题,是基础题.15.【答案】0(答案不唯一)【解析】解:因为f(x)为奇函数,则f(0)=sinθ=0,θ=kπ,k∈Z,当θ=kπ,k∈Z时,k为偶数时,f(x)=sinxcosx=12sin2x,是奇函数k为奇数时,f(x)=−sinxcosx=−12sin2x,是奇函数,所以θ的一个值为0.故答案为:0(答案不唯一).由奇函数的性质f(0)=0,求出θ,代入检验后可得结论.本题主要考查函数奇偶性的性质,三角函数的性质,考查运算求解能力,属于基础题.16.【答案】6π11√11π6【解析】解:长方体对角线长为l=√22+12+12=√6,所以长方体外接球半径为R=l2=√62,表面积为S=4π×(√622)=6π;如图,G,H,I,J分别是A1D1,AD,BC,B1C1中点,则GHIJ是矩形,平面GHIJ//平面CDD1C1,E,F分别是AB,CD中点,则EF//AD,而AD⊥平面CDD1C1,所以EF⊥平面CDD1C1,所以EF⊥平面GHIJ,而EF⊂平面D1EF,EF⊂平面BEF,所以平面D1EF⊥平面GHIJ,平面BEF⊥平面GHIJ,由EF⊥平面CDD1C1,D1F⊂平面CDD1C1,得EF⊥D1F,而EF⊥EB,设平面GHIJ与D1E,BF,EF的交点分别为N,M,Q,则N,M,Q分别是D1E,BF,EF的中点,所以N,M分别是ΔD1EF和△EFB的外心,在平面GHIJ内过N作PN⊥NQ,过M作PM⊥QM交PN于点P,由EF⊥平面CDD1C1,得EF⊥PNEF⊥PM,而NQ∩EF=Q,NQ,EF⊂平面D1EF,所以PN⊥平面D1EF,同理PM⊥平面BEF,所以P是三棱锥D1−BEF的外接球球心,四边形PMQN是圆内接四边形,由长方体性质知∠NQH=∠D1FD=π4,所以∠NQM=3π4,NQ=12D1F=√22,MQ=12,MN=√1 2+14−2×√22×12×cos3π4=√52,由PM⊥平面BEF,BM⊂平面BEF,得PM⊥BM,PQ=MNsin∠NQM =√52sin3π4=√102,PM=√PQ2−QM2=32,BM=12BF=√22,所以PB=√PM2+BM2=√112,所以三棱锥的D1−BEF外接球的体积为V=4π3×(√1132)=11√116π.故答案为:6π;11√116π.求出长方体的对角线即为长方体外接球的直径,由此可得球表面积,设G,H,I,J分别是A1D1,AD,BC,B1C1中点,可证明EF⊥平面GHIJ,设平面GHIJ与D1E,BF,EF的交点分别为N,M,Q,在平面GHIJ内过N作PN⊥NQ,过M作PM⊥QM交PN于点P,证得P是三棱锥D1−BEF的外接球球心,在四边形PMQN中求得四边形外接圆直径,然后求出PN,再求出三棱锥的D1−BEF 外接球的半径后可计算体积.本题考查了长方体外接球的表面积和三棱锥外接球的体积计算,属于中档题.17.【答案】解:(1)设b⃗ =(x,y), 由题意得−√3x −y =0,x 2+y 2=4, 解得x =12,y =−√32或x =−12,y =√32,所以b ⃗ =(12,−√32)或(−12,√32);(2)若(2a ⃗ +c ⃗ )⊥(a ⃗ −3c ⃗ ),则(2a ⃗ +c ⃗ )⋅(a ⃗ −3c ⃗ )=2a ⃗ 2−5a ⃗ ⋅c ⃗ −3c ⃗ 2=0, 所以8−5a ⃗ ⋅c ⃗ −3=0, 所以a ⃗ ⋅c ⃗ =1, 设向量a ⃗ ,c ⃗ 的夹角θ, 所以cosθ=a⃗ ⋅c ⃗ |a⃗ ||c ⃗ |=12×1=12,由θ∈[0,π],得θ=π3.【解析】(1)由已知结合向量共线定理的坐标表示可求; (2)由已知结合向量数量积的性质的坐标表示可求.本题主要考查了向量共线定理及向量数量积性质的坐标表示的应用,属于基础题.18.【答案】解:(1)设SO 为正四棱锥S −ABCD 的高,则SO =1,作OM ⊥BC ,则M 为BC 中点,连结OM ,OB ,则SO ⊥OB ,SO ⊥OM ,BC =4,BM =2,则OM =2,OB =2√2, 在Rt △SOD 中,SB =√SO 2+OB 2=√1+8=3, 在Rt △SOM 中,SM =√5, ∴棱锥的侧棱长为3,侧面的高为√5.(2)棱锥的表面积:S =S 正方形ABCD +4S △SBC =4×4+4×(12×4×√5)=16+8√5 几何体的体积为:13×4×4×1=163 【解析】(1)直接利用公式计算; (2)直接利用公式计算;本题考查了几何体的表面积、体积,属于中档题.19.【答案】解:(1)∵f(x)=asin(π2x +φ),∴周期T =2ππ2=4,∴CD =T 2=2,∴S△ABD=12×CD×(y A−y B)=12×2×2a=4,∴a=2,∴f(x)=2sin(π2x+φ),又M(0,√3),∴f(0)=2sinφ=√3,∴sinφ=√32,又M为上升点,且0<φ<π,∴φ=π3,∴f(x)=2sin(π2x+π3);(2)由(1)知f(x)的周期为4,又2023=4×505+3,∴f(0)+f(1)+f(2)+…+f(2022)=[f(0)+f(1)+f(2)+f(3)]×505+f(0)+f(1)+f(2)=(√3+1−√3−1)×505+(√3+1−√3)=1.【解析】本题考查了由y=Asin(ωx+φ)的部分图象确定其解析式,三角函数的图形与性质,由三角函数的周期性求和,考查了方程思想与化归转化思想,属于中档题.(1)根据三角函数的周期,振幅,三角形面积,y轴交点建立方程即可求解;(2)通过函数的周期性即可求解.20.【答案】证明:(1)连接AC1交A1C于E,连接ED,如图,则E是AC1中点,又D是AB中点,所以ED//BC1,又ED⊂平面A1CD,BC1⊄平面A1CD,所以BC1//平面A1CD;解:(2)因为AC =BC =2,AB =2√2,所以AC ⊥BC , 所以S △ABC =12×2×2=2,S △ACD =12S △ABC =1, V BCD−A 1B 1C 1=V ABC−A 1B 1C 1−V A 1−ACD =2×2−13×1×2=103. 【解析】(1)连接AC 1交A 1C 于E ,连接ED ,证明ED//BC 1后得证线面平行; (2)由直三棱柱ABC −A 1B 1C 1的体积减去三棱锥A 1−ACD 的体积可得. 本题考查了线面平行的证明和几何体的体积计算,属于中档题.21.【答案】解:(1)由2S =−√3BA ⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ ,可得2×12acsinB =−√3accosB , 即sinB =−√3cosB ,可得tanB =−√3, 因为B ∈(0,π),所以B =2π3.(2)设∠BAC =θ,则∠CAD =π2−θ,∠CDA =θ+π6, 在△ACD 中,由正弦定理得ACsin∠ADC =ADsin∠ACD , 可得AC =ADsin∠ADCsin∠ACD=√3⋅sin(θ+π6)sin π3=2sin(θ+π6),在△ABC 中,由正弦定理得ACsinB =BCsinθ,∴BC =√3+π6)sinθ=√3(√32sin 2θ+12sinθcosθ)=√3−√3cos2θ)+1 =2√33sin(2θ−π3)+1,因为0<θ<π3,可得−π3<2θ−π3<π3,当2θ−π3=π3时,即θ=π3,可得2√33sin π3+1=2, 当2θ−π3=−π3时,即θ=0,可得2√33sin(−π3)+1=0, 所以BC 的取值范围是(0,2).【解析】(1)利用三角形的面积公式,向量的数量积运算化简即可.(2)利用正弦定理,三角恒等变换得到BC =2√33sin(2θ−π3)+1,再利用正弦函数的图象与性质求解即可.本题考查了正弦定理的应用,三角恒等变换,正弦函数的图象与性质,属于中档题.22.【答案】解:(Ⅰ)∵m →=(sinx,1),n →=(√3cosx,−12),∴m ⃗⃗⃗ +n ⃗ =(sinx +√3cosx,12),∴f(x)=sinx(sinx+√3cosx)+1 2=sin2x+√3sinxcosx+1 2=1−cos2x2+√32sin2x+12=sin(2x−π6)+1,∴f(x)的最大值为2;(Ⅰ)由f(C)恰好为函数f(x)的最大值可得f(C)=sin(2C−π6)+1=2,即sin(2C−π6)=1,∵0<C<π,解得C=π3,则CD=f(C)=2,在△ACD中,由CDsinA =ADsin12C,可得AD=1sinA,在△BCD中,由CDsinB =BDsin12C,可得BD=1sinB,∴c=1sinA +1sinB,在△ABC中,asinA =bsinB=csinC=1sinA+1sinB√32=2√33(1sinA+1sinB),则可得a=2√33(1+sinAsinB),b=2√33(sinBsinA+1),则3a+b=2√3(1+sinAsinB )+2√33(sinBsinA+1)=2√3⋅sinAsinB+2√33⋅sinBsinA+8√33,∵sinA>0,sinB>0,∴3a+b≥22√3⋅sinAsinB ⋅2√33⋅sinBsinA+8√33=4+8√33,当且仅当√3sinA=sinB等号成立,故3a+b的最小值为4+8√33.【解析】(Ⅰ)根据数量积运算结合降幂公式以及辅助角公式化简f(x),根据正弦函数的值域可得结果;(Ⅰ)根据条件求得c,C,由正弦定理表示a,b,利用基本不等式求解.本题考查了正弦型函数的最值问题以及正弦定理、基本不等式的应用,属于中档题.。
2021-2022学年安徽省滁州市定远县高一年级下册学期5月月考数学试题【含答案】

2021-2022学年安徽省滁州市定远县高一下学期5月月考数学试题一、单选题1.若复数()2100(10)i z x x =-+-为纯虚数,则实数x 的值为( )A .10-B .10C .100D .10-或10【答案】A【分析】根据复数为纯虚数知虚部不为0,实部为0求解即可. 【详解】z 为纯虚数, 21000x ∴-=同时100x -≠10x ∴=-,故选:A2.某学校共有老、中、青职工200人,其中有老年职工60人,中年职工人数与青年职工人数相等.现采用分层抽样的方法抽取部分职工进行调查,已知抽取的老年职工有12人,则抽取的青年职工应有( ) A .12人 B .14人 C .16人 D .20人【答案】B【分析】利用分层抽样的性质求解. 【详解】由题意知: 抽取的青年职工应有:1220060()14602-⨯=人 . 故选:B.3.在ABC 中,,3,43A AB AC π===,则BC 边上的高为( )A .2BC .D 【答案】B【分析】利用余弦定理可求BC ,利用等积可求BC 边上的高.【详解】由余弦定理可得22234234cos133BC π=+-⨯⨯⨯=,故BC =设BC 边上的高为h ,故113422h ⨯=⨯⨯h =故选:B.4.我国东汉末数学家赵夾在《周髀算经》中利用一副“弦图”给出了勾股定理的证明,后人称其为“赵爽弦图”,它是由四个全等的直角三角形与一个小正方形拼成的一个大正方形,如图所示.在“赵爽弦图”中,若BC a =,BA b =,3BE EF =,则BF =( )A .1292525a b + B .16122525a b + C .4355a b +D .3455a b +【答案】B【分析】根据给定图形,利用平面向量的加法法则列式求解作答.【详解】因“弦图”是由四个全等的直角三角形与一个小正方形拼成的一个大正方形,且BC a =,BA b =,3BE EF =,则34BF BC CF BC EA =+=+3()4BC EB BA =++33()44BC BF BA =+-+93164BC BF BA =-+,解得16122525BF BC BA =+,所以16122525a b BF =+. 故选:B5.在ABC 中,150,15ABC BAC ∠=︒∠=︒,则向量BA 在向量BC 上的投影向量为( ) A .12BCB3C .12BC -D .3BC 【答案】D【分析】根据投影向量的定义求解即可. 【详解】由题意:||||BA BC = BA ∴在BC 方向上的投影向量为:3||cos ,cos150||BCBA BA BC BC BC →→→→→→→⋅<>⋅=︒⋅=.6.已知直线a ,b ,平面α,β,b αβ=,//a α,a b ⊥,那么“a β⊥”是“αβ⊥”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】C【分析】过直线a 作平面γ,交平面α于直线a ',//a α,//a a '∴,a b '∴⊥,由a β⊥可推出αβ⊥,由αβ⊥可推出a β⊥,故“a β⊥”是“αβ⊥”的充要条件. 【详解】解:若a β⊥,过直线a 作平面γ,交平面α于直线a ',//a α,//a a '∴, 又a β⊥,a β'∴⊥, 又a α'⊆,αβ∴⊥, 若αβ⊥,过直线a 作平面γ,交平面α于直线a ',//a α,//a a '∴, a b ⊥,a b '∴⊥,又αβ⊥,b αβ=,a β'∴⊥,a β∴⊥,故“a β⊥”是“αβ⊥”的充要条件, 故选:C .7.如图所示的是用斜二测画法画出的△AOB 的直观图(图中虚线分别与x '轴,y '轴平行),则原图形△AOB 的周长是( )A .654B .654C .174D .4174【答案】B【分析】根据所给斜二测画法的直观图,判断原三角形为等腰三角形且高为16,底为4即可求解.【详解】由直观图可知,原图形△AOB 是等腰三角形,且底边上的高为16,由勾股定理可得,△AOB 的周长为44=. 故选:B8.高铁、扫码支付、共享单车、网购被称为中国的“新四大发明”,为评估共享单车的使用情况,选了n 座城市作实验基地,这n 座城市共享单车的使用量(单位:人次/天)分别为1x ,2x ,,n x ,下面给出的指标中可以用来评估共享单车使用量的稳定程度的是( ) A .1x ,2x ,,n x 的平均数 B .1x ,2x ,,n x 的标准差 C .1x ,2x ,,n x 的众数D .1x ,2x ,,n x 的中位数【答案】B【分析】利用平均数,标准差,众数,中位数的定义和意义直接求解.【详解】解:平均数是表示一组数据集中趋势的量数,它是反映数据集中趋势的一项指标,故A 不可以用来评估共享单车使用量的稳定程度,故A 选项错误,标准差能反映一个数据集的离散程度,故B 可以用来评估共享单车使用量的稳定程度,故B 选项正确,众数表示一组数据中出现次数最多的数,故C 不可以用来评估共享单车使用量的稳定程度,故C 选项错误,中位数将数据分成前半部分和后半部分,用来代表一组数据的“中等水平”,故D 不可以用来评估共享单车使用量的稳定程度,故D 选项错误. 故选:B .二、多选题9.甲、乙两人进行飞镖游戏,甲的10次成绩分别为8,6,7,7,8,10,10,9,7,8,乙的10次成绩的平均数为8,方差为0.4,则( ) A .甲的10次成绩的极差为4 B .甲的10次成绩的75%分位数为8 C .甲和乙的20次成绩的平均数为8 D .乙比甲的成绩更稳定【答案】ACD【分析】根据给定数据,计算极差、75%分位数、平均数、方差判断各选项作答. 【详解】甲的极差为1064-=,A 正确;将甲的10次成绩由小到大排列为: 6,7,7,7,8,8,8,9,10,10,而1075%7.5⨯=,所以甲的10次成绩的75%分位数为9,B 不正确;甲的10次成绩的平均数为8,而乙的10次成绩的平均数为8,则甲和乙的20次成绩的平均数为108108820⨯+⨯=,C 正确;甲的10次成绩的方差222221[(68)3(78)3(88)(98)2(108)] 1.610-+⨯-+⨯-+-+⨯-=, 显然1.60.4>,乙比甲的成绩更稳定,D 正确. 故选:ACD10.在ABC 中,2A π=,2AB AC ==,下述四个结论中正确的是( )A .若G 为ABC 的重心,则1331AG AB AC =+ B .若P 为BC 边上的一个动点,则()AP AB AC ⋅+为定值2C .若M ,N 为BC 边上的两个动点,且MN AM AN ⋅的最小值为32D .已知P 为ABC 内一点,若1BP =,且AP AB AC λμ=+,则λ+的最大值为2 【答案】AC【分析】A.以A 为坐标原点,分别以AB ,AC 所在直线为x ,y 轴建立平面直角坐标系,由G 为ABC 的重心,结合向量的数乘运算判断;B.设()01BP tBC t =≤≤,把()AP AB AC ⋅+用含t 的代数式表示判断;C.不妨设M 靠近B ,,0BM x x =≤,求得M ,N 的坐标,得到AM AN ⋅关于x 的函数,利用二次函数求值判断;D. 由AP AB AC λμ=+结合BP =1,得到()22114λμ-+=,再令111sin ,cos ,,2242ππλθμθθ⎛⎫-==∈ ⎪⎝⎭,转化为)1sin 1cos 126πλθθθ⎛⎫=-+=++ ⎪⎝⎭,利用三角函数的性质求解判断.【详解】如图,以A 为坐标原点,分别以AB ,AC 所在直线为x ,y 轴建立平面直角坐标系,则()()()()()0,0,2,0,0,2,2,0,0,2A B C AB AC ==,因为G 为ABC 的重心,所以22,33G ⎛⎫⎪⎝⎭,则22,33AG ⎛⎫= ⎪⎝⎭,所以 112222,00,,333333AB AC ⎛⎫⎛⎫⎛⎫+=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以1331AG AB AC =+,故A 正确;设()01BP tBC t =≤≤,则()1AP AB BP AB tBC t AC t AB =+=+=+-,则()()()()1AP AB AC t AC t AB AB AC ⋅+=+-⋅+,()()()22114414t AC AB t AC t AB t AB AC t t =⋅++-+-⋅=+-=,故B 错误; 不妨设M 靠近B ,,02BM x x =≤,得)2222222,2221,1M N x x ⎛⎫⎛⎫⎛⎫=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 则2222221122AM AN x x ⎛⎫⎛⎫⎛⎫⋅=⋅⋅=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,当2x =时,AM AN ⋅的最小值为32:故C 正确;由AP AB AC λμ=+,且P 为ABC 内一点,BP =1,则()()2214141BP AP AB AB AC λμλμ=-=-+=-+,即()22114λμ-+=, 令111sin ,cos ,,2242ππλθμθθ⎛⎫-==∈ ⎪⎝⎭,则()133sin 1cos 126πλμθθθ⎛⎫+=-+=++ ⎪⎝⎭,因为,42ππθ⎛⎫∈ ⎪⎝⎭,则52,6123πππθ⎛⎫+∈⎪⎝⎭,所以162cos 62πθ⎛-⎛⎫+∈- ⎪ ⎝⎭⎝⎭, 所以3λμ+的范围是162,12⎛- ⎝⎭,故D 错误. 故选:AC11.已知ABC 中,sin sin cos B C A =,tan 37A =,点M 在线段BC 上,AM =2,∠BAM =∠CAM ,则下列说法正确的是( ) A .△ABC 是直角三角形 B .37sin 8A =C .BM =6CMD .△ABM 的面积为37【答案】ABD【分析】根据内角和公式化简sin sin cos B C A =由此判断A ,再由tan 37A =结合同角关系求sin A 由此判断B ,结合三角形面积公式判断C ,D.【详解】因为sin sin cos B C A =,故()sin sin cos A C C A +=,即sin cos cos sin sin cos A C A C C A +=,则sin cos 0A C =,因为sin 0A ≠,则cos C =0,2C π=,故ABC 是直角三角形,故A 正确;因为22sin tan 37,cos sin cos 1,A A A A A ⎧==⎪⎨⎪+=⎩,0,2A π⎛⎫∈ ⎪⎝⎭,解得37sin ,81cos ,8A A ⎧=⎪⎪⎨⎪=⎪⎩故B 正确;11sin 2211sin 22ACM ABM CM AC AM AC CAM S S BM AC AB AM BAM ⋅⋅⋅∠==⋅⋅⋅∠△△,则1cos 8CM AC A BM AB ===, 故C 错误;212cos 18CAM ∠-=,3cos cos 4CAM BAM ∠==∠,解得32AC =,AB =12,在△ABM 中,7sin 4BAM ∠=,所以711sin 21237224ABM S AM AB BAM =⋅⋅∠=⨯⨯⨯=△,故D 正确,故选:ABD .12.如图,正方形ABCD 中,E F 、分别是AB BC 、的中点将,,ADE CDF BEF ∆分别沿DE DF EF 、、折起,使、、A B C 重合于点P .则下列结论正确的是A .PD EF ⊥B .平面PDE PDF ⊥平面C .二面角P EFD --的余弦值为13D .点P 在平面DEF 上的投影是DEF ∆的外心 【答案】ABC【分析】对于A 选项,只需取EF 中点H ,证明EF ⊥平面PDH ;对于B 选项,知,,PE PF PD 三线两两垂直,可知正确;对于C 选项,通过余弦定理计算可判断;对于D 选项,由于PE PF PD =≠,可判断正误.【详解】对于A 选项,作出图形,取EF 中点H ,连接PH ,DH ,又原图知BEF ∆和DEF ∆为等腰三角形,故PH EF ⊥,DH EF ⊥,所以EF ⊥平面PDH ,所以PD EF ⊥,故A 正确;根据折起前后,可知,,PE PF PD 三线两两垂直,于是可证平面PDE PDF ⊥平面,故B 正确;根据A 选项可知 PHD ∠为二面角P EF D --的平面角,设正方形边长为2,因此1PE PF ==,22PH =,2322222DH =-=,222PD DF PF =-=,由余弦定理得:2221cos 23PH HD PD PHD PH HD +-∠==⋅,故C 正确;由于PE PF PD =≠,故点P 在平面DEF 上的投影不是DEF ∆的外心,即D 错误;故答案为ABC.【点睛】本题主要考查异面直线垂直,面面垂直,二面角的计算,投影等相关概念,综合性强,意在考查学生的分析能力,计算能力及空间想象能力,难度较大.三、填空题13.若复数i(,)z x y x y =+∈R ,且满足i 1z -=,则点(,)x y 所围成的图形面积为__________. 【答案】π【分析】在复平面中,1||2z z -表示复数12z ,z 对应点12Z ,Z 之间的距离. 【详解】由i 1z -=可知(,)Z x y 到(0,1)的距离为1, 即点Z 的轨迹为以(0,1)为圆心,半径为1的圆, 点(,)x y 所围成的图形面积为π. 故答案为:π.14.在某个位置测得一旗杆的仰角为θ,对着旗杆在平行地面上前进60米后测得旗杆仰角为原来的2倍,继续在平行地面上前进203米后,测得旗杆的仰角为原来的4倍,则该旗杆的高度为______米.【答案】30【分析】在EBC 中,由余弦定理求得1cos 2ECB ∠=-,得到60ECD ∠=,结合sin 60DE EC =,即可求解.【详解】如图所示,在EBC 中,60,203EB AB BC EC ====,由余弦定理得222(203)(203)601cos 22203203ECB +-∠==-⨯⨯, 可得120ECB ∠=,60ECD ∠=, 所以3sin 60203302DE EC ==⨯=. 故答案为:30.15.如图,一块边长为4的正方形纸片上有四块阴影部分,将这些阴影部分裁下来,然后用余下的四个全等的等腰三角形和一个正方形做成一个正四棱锥,则该四棱锥的体积与表面积之比为______.【答案】16【分析】设正方形纸片为1111D C B A ,其内的小正方形为ABCD ,取11D C ,AD 的中点分别为,H G ,连接1,D G DH ,对称性可知1DH =,从而求出1DG 的长,从而得到正四棱锥中的斜高,从而可求出其高,得到体积与表面积. 【详解】如图,设正方形纸片为1111D C B A ,其内的小正方形为ABCD ,做成的正四棱锥为P ABCD - 取11D C ,AD 的中点分别为,H G ,连接1,D G DH由题意,112,4BD A D ==,由对称性可知1DH =,12D H =所以15DD =22211232522D G DD DG ⎛⎫=-=-== ⎪⎝⎭即在正四棱锥P ABCD -中,3222PG ==,又122OG AB ==所以22292222PO PG OG ⎛⎫=-=-= ⎪⎝⎭所以正四棱锥P ABCD -的体积为211422333ABCD V S PO =⨯=⨯⨯=, 表面积 2232(2)814222S AD PG AD =⨯⋅+==⋅,所以41386V S ==,故答案为:1616.某工厂利用随机数表对生产的600个零件进行抽样测试,先将600个零件进行编号,编号分别为001,002,…,599,600从中抽取60个样本,如下提供随机数表的第4行到 第6行: 32 21 18 34 29 78 64 54 07 32 52 42 06 44 38 12 23 43 56 77 35 78 90 56 42 84 42 12 53 31 34 57 86 07 36 25 30 07 32 86 23 45 78 89 07 23 68 96 08 04 32 56 78 08 43 67 89 53 55 77 34 89 94 83 75 22 53 55 78 32 45 77 89 23 45 若从表中第6行第6列开始向右依次读取数据,则得到的第6个样本编号_____ 【答案】578【分析】根据题意按既定的方法向右读,直到取到第六个样本为止,即可得其编号.【详解】根据题意第六行第六列的数是8,从8开始向右读,得到一个三位数808,由于808>600,将它去掉,继续向右读,得到436,436<600说明它在总体内,将它取出,继续向右读,得到789,789>600,将它去掉,再向右读,得到535,535<600,将它取出,按此方法向右读,直到取到第六个样本为止,获得6个样本的编号依次为:436,535,577,348,522,578,因此第6个样本编号为578. 故答案为:578.【点睛】本题考查随机数表法,属于基础题.四、解答题17.已知复数()21i z a =-,243i z =-,其中a 是实数.(1)若12i z z =,求实数a 的值;(2)若12z z 是纯虚数,a 是正实数,求231003111122224444z z z z z z z z ⎛⎫⎛⎫⎛⎫+++⋅⋅⋅+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.【答案】(1)2- (2)1-【分析】(1)利用复数的乘法运算及复数相等的概念求解; (2)利用12z z 为纯虚数求a ,从而得124i z z =-,然后通过复数的周期性进行求解即可.【详解】(1)∵()21i z a =-,243i z =-,12i z z =∴()22i i 12i 34a a a ==---+从而21324a a ⎧-=⎨-=⎩,解得2a =-,所以实数a 的值为2-.(2)依题意得:()()()()()2212i i 43i 43i 43i 43i a a z z --+==--+ ()()()()2222223222i i 43i 48i 4i 3i 6i 3i 16943i aa a a a a -++-++-+==---()()22464383i25a a a a +-+--=因为12z z 是纯虚数,所以:2246403830a a a a ⎧+-=⎨--≠⎩,从而2a =-或12a =;又因为a 是正实数,所以12a =. 当12a =时,2113()24i i z =-=--,所以12434i i 43i z z --==--, 因为1i i =,2i 1=-,3i i =-,41i =,……,41i i n +=,42i 1n +=-,43i i n +=-,4i 1n =,(n N ∈)所以231003111122224444z z z z z z z z ⎛⎫⎛⎫⎛⎫+++⋅⋅⋅+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2341003(i)(i)(i)(i)i ()=-+-+-+-+⋅⋅⋅+-5678100110021003(i 1i 1)(i)(i)(i)(i)(i)(i)(i)⎡⎤⎡⎤=--+++-+-+-+-+⋅⋅⋅+-+-+-⎣⎦⎣⎦00(i 1i)=++⋅⋅⋅+--+1=-所以2310031111222244441z z z z z z z z ⎛⎫⎛⎫⎛⎫+++⋅⋅⋅+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.18.在平面直角坐标系中,O 为坐标原点,向量()1,1OA =,()2,3OB =-,()6,OC k =-, (1)当29k时,试判断A ,B ,C 三点是否共线,写出理由;(2)若A ,B ,C 三点构成直角三角形,求实数k 的值 【答案】(1)共线,理由见解析(2)34-或5-【分析】(1)利用向量共线的条件进行运算求解即可; (2)分三种情况分别计算数量积为0时,实数k 的值即可. 【详解】(1)因为()()()2,31,11,4AB OB OA =-=--=-,()()()6,291,17,28AC OC OA =-=--=-,所以7AC AB =-,且有公共点A ,故A ,B ,C 三点共线.(2)由(1)知,()1,4AB =-,()()()6,1,17,1AC OC OA k k =-=--=--,()()()6,2,38,3BC OC OB k k =-=---=-+,若90A ∠=︒,则0AB AC ⋅=,即()()17410k ⨯---=,34k =-.若90B ,则0BA BC ⋅=,即()()()18430k -⨯-++=,5k =-若90C ∠=︒,则0CA CB ⋅=,即()()()()78130k k -⨯-+-+=,22530k k ++=,无实根. 故实数k 的值为34-或5-.19.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c sin cos C c A =,3a =. (1)求A 大小;(2)若BC ,求ABC 的面积. 【答案】(1)π6A =【分析】(1)由正弦定理化边为角,化简求解;(2)由余弦定理列方程求bc ,再由三角形面积公式求面积.【详解】(1sin cos C c A =,sin sin cos A C C A =,因为sin 0C ≠,所以tan A ()0,πA ∈,所以π6A =,(2)设BC 边上的中线为AD ,在ABC 中,由余弦定理得:2222cos a b c bc A =+-,即2293b c bc =+-①.在ADC △和ADB 中,cos cos 0ADC ADB ∠+∠=,所以222222022AD CD b AD BD c AD CD AD BD+-+-+=⨯⨯,即()22222=AD CD b c ++化简2215b c +=, 代入①式得23bc =,所以ABC 的面积1113sin 232222S bc A ==⋅⋅=20.如图,在水平放置的直径与高相等的圆柱内,放入两个半径相等的小球(球A 和球)B ,圆柱的底面直径为22+,向圆柱内注满水,水面刚好淹没小球.B(1)求球A 的体积;(2)求圆柱的侧面积与球B 的表面积之比. 【答案】(1)4π3322+【分析】(1)根据圆柱的轴截面分析即可;(2)直接利用球表面积、圆柱的侧面积公式计算即可.【详解】(1)设圆柱的底面半径为R ,小球的半径为r ,且r R <, 由圆柱与球的性质知2222(2)(22)(22)AB r R r R r ==-+-,即22420r Rr R -+=,r R <,()()222222 1.2r R +∴=-=-⨯= ∴球A 的体积为344ππ.33V r ==(2)球B 的表面积214π4πS r ==,圆柱的侧面积22π24π(642)πS R R R =⋅==+2, ∴圆柱的侧面积与球B 的表面积之比为322.2+21.由于2020年1月份国内疫情爆发,餐饮业受到重大影响,目前各地的复工复产工作在逐步推进,居民生活也逐步恢复正常.李克强总理在考察山东烟台一处老旧小区时提到,地摊经济、小店经济是就业岗位的重要来源,是人间的烟火,和“高大上”一样,也是中国的商机.某商场经营者王某准备在商场门前“摆地摊”,经营“冷饮与小吃”生意.已知该商场门前是一块扇形区域,拟对这块扇形空地AOB 进行改造.如图所示,平行四边形OMPN 区域为顾客的休息区域,阴影区域为“摆地摊”区域,点P 在弧AB 上,点M 和点N 分别在线段OA 和线段OB 上,且90OA =米,3AOB π∠=.记POB θ∠=.(1)当4πθ=时,求OM ON ⋅;(2)请写出顾客的休息区域OMPN 的面积S 关于θ的函数关系式,并求当θ为何值时,S 取得最大值. 【答案】(1)()135031;(2)S 270032135036πθ⎛⎫=+- ⎪⎝⎭π0θ3;当6πθ=时,S 取得最大值.【分析】(1)在△OPM 中由正弦定理求得,PM OM ,即可由数量积的定义求得结果;(2)在△OPM 中由正弦定理用θ表示,PM OM ,结合三角形的面积公式,即可求得结果,再根据三角函数的性质,即可求得取得最大值时对应的θ.【详解】(1)根据题意,在△OPM 中,2,,1234MOP PMO MPO πππ∠=∠=∠=,又90OP =, 故由正弦定理sin sin sin OP PM OMPMO MOP MPO==∠∠∠==解得45PM ON ==⎭,OM = 故OM ON⋅)1cos 45135012OM ON AOB =⨯⨯∠=⨯=⎭.即OM ON⋅)13501=.(2)由题可知,在△PMO 中,290,,,33OP PMO MPO MOP ππθθ=∠=∠=∠=-, 则由正弦定理sin sin sin OP OM PMPMO MPO MOP ==∠∠∠sin sin 3OM PMπθθ==⎛⎫- ⎪⎝⎭,故可得,3OM PM πθθ⎛⎫==- ⎪⎝⎭,故1sin 23PMOSPMO MP MO πθθ⎛⎫=∠⨯⨯=-⨯ ⎪⎝⎭21sin cos sin 32πθθθθθ⎫⎛⎫=-=-⎪ ⎪⎪⎝⎭⎝⎭112cos 244θθ⎫=+-⎪⎪⎝⎭11sin 2264πθ⎡⎤⎛⎫=+- ⎪⎢⎥⎝⎭⎣⎦26πθ⎛⎫=+- ⎪⎝⎭(0)3πθ<<即22)63PMOS S ππθθ⎛⎫==+-<< ⎪⎝⎭.当6πθ=时,sin 216πθ⎛⎫+= ⎪⎝⎭,此时S 取得最大值.22.在正方体1111ABCD A B C D -中,棱长2AB =,M ,N ,P 分别是1C C ,11B C ,11C D 的中点.(1)直线11A C 交PN 于点E ,直线1AC 交平面MNP 于点F ,求证:M ,E ,F 三点共线. (2)求三棱锥D MNP -的体积. 【答案】(1)证明见解析 (2)12【分析】(1)本意利用点线面位置关系的额相关知识,先证平面11AAC C 平面PMN ME =,再证F ∈平面PMN ,F ∈平面11AAC C ;(2)利用转换顶点处理即D MNP N MDP V V --=.【详解】(1)证明:11AC PN E =, 11E AC ∴∈,E PN ∈,则E ∈平面11AAC C ,E ∈平面MPN 又1M CC ∈,M ∴∈平面11AAC C ,又M ∈平面PMN , ∴平面11AAC C 平面PMN ME =,1AC 平面MPN F =,F ∴∈平面PMN ,F ∈平面11AAC C ,∴点F 在直线ME 上,则M ,E ,F 三点共线.(2)解:113D MNP N MDP MDPV V S NC --==⋅,又1113222111212222MDPS=⨯-⨯⨯-⨯⨯-⨯⨯=,。
2023-2024学年安徽省县中联盟高一(下)月考数学试卷(5月份)(含解析)

2023-2024学年安徽省县中联盟高一(下)月考数学试卷(5月份)一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知复数z 满足z =(z +2)⋅i (其中i 是虚数单位),则|z |=( )A. 1B. 2C. 2 2D. 22.函数y =tan(π4x−π2)的部分图象如图所示,则(OA +OB )⋅AB 的值为( )A. −4B. 4C. −8D. 83.已知某圆台体积为52π,其上下底面圆半径分别为2和5,则其母线长为( )A. 103 B.4 C.5 D. 2534.在△ABC 中,a =3,A =60°,B =75°,则△ABC 中最小的边长为( )A. 22 B. 62 C. 2 D. 65.已知向量a ,b 满足|a |=2,|b |=1,|a +2b |=2a ⋅b ,则向量a ,b 的夹角为( )A. 0 B. 2π3 C. 0或π3 D. 0或2π36.学校组织学生去工厂参加社会实践活动,任务是利用一块正方形的铁皮制作簸箕,方法如下:取正方形ABCD 边AB 的中点M ,沿MC 、MD 折叠,将MA 、MB 用胶水粘起来,使得点A 、B 重合于点E ,这样就做成了一个簸箕E−MCD ,如果这个簸箕的容量为576 3cm 3,则原正方形铁皮的边长是多少( )A. 12cmB. 24cmC. 12 3cmD. 24 3cm7.如图,△ABC是边长为2的正三角形,直线AD、BE、CF围成一个正三角形DEF,且DF=2FA,则AB⋅EF=( )A. −813B. 813C. −1213D. 12138.已知正方体ABCD−A1B1C1D1的体对角线BD1垂直于平面α,直线l与平面α所成角为60°,在正方体ABCD−A1B1C1D1绕体对角线BD1旋转的过程中,记BC与直线l所成的最小角为θ,则cosθ=( )A. 3−66B. 3+66C. 32−36D. 32+36二、多选题:本题共3小题,共18分。
2021-2022学年山东省济南市长清中学高一年级下册学期5月月考数学试题【含答案】

2021-2022学年山东省济南市长清中学高一下学期5月月考数学试题一、单选题1.甲、乙两支曲棍球队在去年的国际比赛中,甲队的平均每场进球数为,全年比赛进球个数的3.2标准差为3;乙队的平均每场进球数为,全年比赛进球个数的标准差为.下列说法正确的个1.80.3数为( )①甲队的技术比乙队好; ②乙队发挥比甲队稳定;③甲队的表现时好时坏.A .0B .3C .2D .1【答案】B【分析】根据平均数、方差的知识,对四个说法逐一分析,由此得出正确选项.【详解】∵甲队平均数大于乙队的平均数,∴甲队的技术比乙队好,又∵甲队的标准差大于乙队的标准差,∴乙队发挥比甲队稳定,甲队的表现时好时坏,故①②③都对.故选:B【点睛】本题主要考查平均数、方差在实际生活中的应用,属于基础题.2.在25件同类产品中,有2件次品,从中任取3件产品,其中不可能事件为( )A .3件都是正品B .至少有1件次品C .3件都是次品D .至少有1件正品【答案】C【分析】根据随机事件、不可能事件、必然事件即可得出结果.【详解】25件产品中只有2件次品,所以不可能取出3件都是次品.故选:C3.长方体同一顶点上的三条棱长分别为2,2,3,则长方体的体积与表面积分别为( )A .12,32B .12,24C .22,12D .12,11【答案】A【分析】根据长方体的体积公式和表面积公式可得正确的选项.【详解】长方体的体积为,表面积为,22312⨯⨯=()222+23+2332⨯⨯⨯=故选:A.4.饕餮纹是青铜器上常见的花纹之一,最早见于长江中下游地区的良渚文化陶器和玉器上,盛行于商代至西周早期.将青铜器中的饕餮纹的一部分画到方格纸上,如图所示,每个小方格的边长为一个单位长度,有一点从点出发,每次向右或向下跳一个单位长度,且向右或向下跳是等可能P A 的,那么点经过3次跳动后恰好是沿着饕餮纹的路线到达点的概率为( )P BA .B .C .D .116181412【答案】B【分析】利用古典概型的概率求解.【详解】解:点从点出发,每次向右或向下跳一个单位长度,跳3次,P A 则样本空间{(右,右,右),(右,右,下),(右,下,右),(下,右,右),(右,下,下),Ω=(下,右,下),(下,下,右),(下,下,下)},记“3次跳动后,恰好是沿着饕餮纹的路线到达点B ”为事件,则{(下,下,右)},由古典C C =概型的概率公式可知.()18P C =故选:B .5.连掷两次骰子分别得到点数m ,n ,则向量与向量的夹角的概率是( )(,)m n (1,1)-2πθ>A .B .C .D .1213712512【答案】D【分析】确定的可能组合数,由题设列举出的可能组合,即可求概率.(,)m n n m <【详解】由题设,向量的可能组合有36种,(,)m n 要使向量与向量的夹角,则,即,(,)m n (1,1)-2πθ>(1,1)(,)0n m n m ⋅-=-<n m <满足条件的情况如下:时,,2m ={1}n ∈时,,3m ={1,2}n ∈时,,4m ={1,2,3}n ∈时,,5m ={1,2,3,4}n ∈时,,6m ={1,2,3,4,5}n ∈综上,共有15种,故向量与向量的夹角的概率是.(,)m n (1,1)-2πθ>1553612=故选:D6.某工厂利用随机数表对生产的50个零件进行抽样测试,先将50个零件进行编号,编号分别为01,02,…,50,从中抽取5个样本,下面提供随机数表的第1行到第2行:66674037146405711105650995866876832037905716031163149084452175738805905223594310若从表中第1行第9列开始向右依次读取数据,则得到的第4个样本编号是( )A .10B .09C .71D .20【答案】B【分析】按照题意依次读出前4个数即可.【详解】从随机数表第1行的第9列数字开始由左向右每次连续读取2个数字,删除超出范围及重复的编号,符合条件的编号有14,05,11,09,所以选出来的第4个个体的编号为09,故选:B7.某学习小组在一次数学测验中,得100分的有1人,得95分的有1人,得90分的有2人,得85分的有4人,得80分和75分的各1人,则该小组数学成绩的平均数、众数、中位数分别为A .85,85,85B .87,85,86C .87,85,85D .87,85,90【答案】C【详解】由题意可知,学习小组在一次数学测验中,得100分的有1人,得95分的有1人,得90分的有2人,得85分的有4人,得80分和75分的各有1人,则该小组数学成绩的平均数,成绩排列为75,80,85,85,85,85,90,90,95,100,可得众数为1009590285480758710++⨯+⨯++=85,中位数,因此选C8585852+=8.用斜二测画法画出边长为2的正方形的直观图,则直观图的面积为( )A B .C .4D .【答案】A【分析】画出直观图,求出底和高,进而求出面积.【详解】如图,,,,过点C 作CD ⊥x 轴于点D ,则所以直观2OA =1OC =45COA ∠=︒CD =图是底为2、的平行四边形.OABC故选:A.二、多选题9.已知甲、乙两名同学在高三的6次数学测试的成绩统计如图,则下列说法正确的是( )A .若甲、乙两组数据的平均数分别为,,则1x 2x 12x x >B .若甲、乙两组数据的方差分别为,,则12s 22s 2212s s >C .甲成绩的极差小于乙成绩的极差D .甲成绩比乙成绩稳定【答案】ACD【分析】根据折线图中的数据,结合平均数的求法、方差的求法及其意义、极差的概念,应用数形结合的方法即可判断各项的正误.【详解】由图知,甲同学除第二次考试成绩略低于乙同学,其他次考试都高于乙同学,知,12x x >A 正确;甲同学的成绩比乙同学稳定,故,所以B 错误,D 正确;极差为数据样本的最大值2212s s >与最小值的差,甲成绩的极差小于乙成绩的极差,所以C 正确.故选:ACD .10.一组数据,,…,的平均数是3,方差为4,关于数据,,…,,1x 2x n x 131x -231x -31n x -下列说法正确的是( )A .平均数是3B .平均数是8C .方差是11D .方差是36【答案】BD【分析】利用平均数和方差的线性关系直接求解.【详解】设:,,,…,的平均数为,方差为,则,.1x 2x 3x n x x 2s 3x =24s =所以,,…,的平均数为,131x -231x -31n x -313318x -=⨯-=方差为.22233436s =⨯= 故选:BD.11.如图,是水平放置的的直观图,A B C ''' ABC 2,A B A C B C ''=''=''=中,有( )ABCA .B .AC BC =2AB =C .D .AC =ABC S =△【答案】BD【分析】将直观图还原为原平面图形即可求解.A B C ''' ABC 【详解】解:在直观图中,过作于A B C ''' C 'C D A B ''''⊥D ¢2,A B A C B C ''=''=''=,∴1,2A D C D ''''===又,所以,,,45C O D '''∠=2O D ''=1O A ''=O C ''=所以利用斜二测画法将直观图还原为原平面图形,如图A B C ''' ABC,故选项B 正确;1,2OC OA AB ===又A 、C 错误;AC AC ====D 正确;11222ABC S AB OC =⨯⨯=⨯⨯= 故选:BD.12.从甲袋中摸出一个红球的概率是,从乙袋中摸出一个红球的概率是,从两袋各摸出一个球,1412下列结论正确的是( )A .2个球都是红球的概率为B .2个球中恰有一个红球的概率为1812C .至少有1个红球的概率为D .2个球不都是红球的概率为3878【答案】ABD【分析】A 选项直接乘法公式计算;B 选项分甲袋红球和乙袋红球两种情况;C 、D 选项先计算对立事件概率.【详解】对于A ,,正确;对于B ,,正确;对于C ,111428P =⨯=1131142422P =⨯+⨯=,错误;对于D ,,正确.3151428P =-⨯=1171428P =-⨯=故选:ABD.三、填空题13.同时抛三枚均匀的硬币,则事件“恰有2个正面朝上”的概率为________.【答案】##380.375【分析】由古典概型的概率公式求解,【详解】设正面为1,反面为0,则同时抛三枚均匀的硬币的结果有000,001,010,011,100,101,110,111共8种,其中恰有2个正面朝上的结果有3种,故所求概率为 38故答案为:3814.某歌手电视大奖赛中,七位评委对某选手打出如下分数:,则其百7.9,8.1,8.4,8.5,8.5,8.7,9.950分位数为________.【答案】8.5【分析】由题意,数据按照从小到大的顺序排列,分析得百分位数即为这组数据的中位数,所50以找第个数据.48.5【详解】由题意可知,共有个数据并且已经按照从小到大的顺序排列,其百分位数即为这组数750据的中位数,所以其百分位数是第个数据为.5048.5故答案为:8.515.《九章算术》第三章“衰分”中有如下问题:“今有甲持钱五百六十,乙持钱三百五十,丙持钱一百八十,凡三人俱出关,关税百钱,欲以钱数多少衰出之,问各几何?”其意为:“今有甲带了560钱,乙带了350钱,丙带了180钱,三人一起出关,共需要交关税100钱,依照钱的多少按比例出钱”,则丙应出 ____________钱.(所得结果四舍五入,保留整数)【答案】17【分析】利用分层抽样找到丙所带钱数占三人所带钱总数的比例即可.【详解】依照钱的多少按比例出钱,则丙应出:钱.18056100=1617560+350+180109⨯≈故答案为:1716.在三棱锥中,点Р在底面ABC 内的射影为Q ,若,则点Q 定是-P ABC PA PB PC ==的______心.ABC 【答案】外【分析】由可得,故是的外心.PA PB PC ==QA QB QC ==Q ABC 【详解】解:如图,∵点在底面ABC 内的射影为,∴平面P Q PQ ⊥ABC 又∵平面、平面、平面,QA ⊂ABC QB ⊂ABC QC ⊂ABC∴、、.PQ QA ⊥PQ QB ⊥PQ QC ⊥在和中,,∴,∴Rt PQA Rt PQB PA PB PQ PQ =⎧⎨=⎩PQA PQB ≅ QA QB =同理可得:,故QA QC =QA QB QC ==故是的外心.Q ABC 故答案为:外.四、解答题17.一只口袋内装有大小相同的5只球,其中3只白球,2只黑球,从中一次摸出2只球.(1)共有多少个样本点?(2)摸出的2只球都是白球的概率是多少?【答案】(1)10个;(2) .310【分析】(1)分别记白球为1,2,3号,黑球为4,5号,即可枚举出基本事件;(2)根据古典概型公式即可得到结果.【详解】(1)分别记白球为1,2,3号,黑球为4,5号,从中摸出2只球,有如下样本点(摸到1,2号球用(1,2)表示):(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5).因此,共有10个样本点;(2)上述10个样本点发生的可能性相同,且只有3个样本点是摸到两只白球(记为事件A ),即(1,2),(1,3),(2,3),故P (A )=.310故摸出2只球都是白球的概率为.31018.《九章算术》卷5《商功》记载一个问题“今有圆堡墙(dǎo ),周四丈八尺,高一丈一尺,文积几何?”意思是:今有圆柱形土筑小城堡,底面周长为4丈8尺,高1丈1尺,问它的体积是多少立方尺?(注:,1丈=10尺)3π≈【答案】(立方尺)2112【分析】根据圆柱底面周长求出城堡的底面半径,结合圆柱的体积公式计算即可.【详解】设圆柱形城堡的底面圆半径为,r 则,解得尺,248r π=4882r π==又城堡的高尺,11h =所以它的体积立方尺.211642112V r h ππ==⨯=19.国家射箭女队的某优秀队员射箭一次,击中环数的概率统计如表:命中环数10环9环8环7环概率0.300.320.200.10若该射箭队员射箭一次.求:(1)射中9环或10环的概率;(2)至少射中8环的概率.【答案】(1)0.62(2)0.82【分析】由事件间的关系结合互斥事件概率加法公式即可计算所求事件概率.【详解】(1)设射中9环或10环的概率为,则;1P 10.300.320.62P =+=(2)设至少射中8环的概率为,则.2P 20.300.320.200.82P =++=20.已知四棱台的上、下底面分别是边长为4和8的正方形,侧面是腰长为8的等腰梯形,求该四棱台的表面积.【答案】80+【解析】首先求出四棱台上、下底面面积与侧面面积,然后求出表面积即可.【详解】如图,在四棱台中,1111ABCD A B C D -过作,垂足为,1B 1B F BC ⊥F 在中,,,1Rt B FB 1(84)22BF =⨯-=18B B =故,1B F ==所以111(84)2BB C C S =⨯+⨯=梯形故四棱台的侧面积,4S =⨯=侧所以四棱台的表面积448880S =⨯+⨯=+表【点睛】本题考查了四棱台的表面积,属于基础题.21.某中学要从高一年级甲乙两个班级中选择一个班参加电视台组织的“环保知识竞赛”,该校对甲乙两班的参赛选手(每班7人)进行了一次环保知识测试,他们取得的成绩(满分100分)的茎叶图如图所示,其中甲班学生的平均分是85,乙班学生成绩的中位数是85.(1)求,的值;x y (2)根据茎叶图,求甲乙两班同学方差的大小,并从统计学角度分析,该校应选择甲班还是乙班参赛.【答案】(1),;(2)乙班成绩比较稳定,故应选乙班参加.9x =5y =【分析】(1)利用茎叶图,根据甲班7名学生成绩的平均分是85,乙班7名学生成绩的中位数是85.先求出,,x y (2)求出乙班平均分,再求出甲班7名学生成绩方差和乙班名学生成绩的方差,由此能求出结果.【详解】解:(1)甲班的平均分为:;1(75788080859296)857x +++++++=解得,9x =乙班7名学生成绩的中位数是85,,5y ∴=(2)乙班平均分为:;1(75808085909095)857++++++=甲班7名学生成绩方差,2222222211360(107540711)77S =++++++=乙班名学生成绩的方差,2222222221300(105505510)77S =++++++=两个班平均分相同,,2221S S <乙班成绩比较稳定,故应选乙班参加.∴【点睛】本题考查茎叶图的应用,解题时要认真审题,属于基础题.22.某家水果店的店长为了解本店苹果的日销售情况,记录了近期连续120天苹果的日销售量(单位:),并绘制频率分布直方图如下:kg(1)请根据频率分布直方图估计该水果店苹果日销售量的众数和平均数;(同一组中的数据以这组数据所在区间中点的值作代表)(2)一次进货太多,水果会变得不新鲜;进货太少,又不能满足顾客的需求.店长希望每天的苹果尽量新鲜,又能80%地满足顾客的需求(在10天中,大约有8天可以满足顾客的需求).请问每天应该进多少千克苹果?(精确到整数位)【答案】(1)众数为为85,平均数为;(2)每天应该进98千克苹果.89.75【分析】(1)在图中找最高的矩形对应的值即为众数,利用平均数公式求平均数;(2)由题意分析需要找概率为0.8对应的数,类比在频率分布直方图中找中位数的方法即可求解.【详解】(1)如图示:区间频率最大,所以众数为85,[)80,90平均数为:()650.0025750.01850.04950.0351050.011150.002510x =⨯+⨯+⨯+⨯+⨯+⨯⨯89.75.=(2)日销售量[60,90)的频率为,日销量[60,100)的频率为,0.5250.8<0.8750.8>故所求的量位于[)90,100.由得0.80.0250.10.40.275,---=0.2759098,0.035+≈故每天应该进98千克苹果.【点睛】从频率分布直方图可以估计出的几个数据:(1)众数:频率分布直方图中最高矩形的底边中点的横坐标;(2)平均数:频率分布直方图每组数值的中间值乘以频率后相加;(3)中位数:把频率分布直方图分成两个面积相等部分的平行于y轴的直线横坐标.。
2021-2022学年高一下学期第一次月考数学试题含答案 (2)

(2)问从种植起,第几年树木生长最快?
22.对于定义在D上的函数f(x),如果存在实数x0,使得f(x0)=x0,那么称x0是函数f(x)的一个不动点.已知f(x)=ax2+1.
(1)当a=-2时,求f(x)的不动点;
(2)若函数f(x)有两个不动点x1,x2,且x1<2<x2.
【答案】(1) ;(2) .
19.已知函数 .
(Ⅰ)求函数 的定义域,并判断函数 的奇偶性;
(Ⅱ)求解关于 的不等式 .
【19题答案】
【答案】(Ⅰ)定义域为 ,函数 既不是奇函数,也不是偶函数;(Ⅱ) .
20.已知函数 .
(1)求函数 的最小正周期;
(2)求函数 在区间 上 单调递增区间.
【20题答案】
A. B.
C. D.
【5题答案】
【答案】D
6. “ ”是“ ”成立的()
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件
【6题答案】
【答案】B
7.函数 的部分图象如图所示.将 图象上所有的点向右平移 个单位长度,所得图象的函数解析式是()
A. B.
C. D.
【7题答案】
① 在区间 上是单调的;
②当定义域是 时, 的值域也是 ,则称 是函数 的一个“黄金区间”.
如果 可是函数 的一个“黄金区间“,则 的最大值为()
A. B.1C. D.2
二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分.
9.若 为第二象限角,则下列结论正确的是()
A B. C. D.
【9题答案】
第一次月考试题-2021-2022学年高一数学(人教A版2019必修第二册)含解析

2021-2022学年高一下册数学月考试题考试范围(第六章和第七章)本试卷共4页,22小题,满分150分,考试用时120分钟。
注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。
用2B 铅笔将试卷类型(B)填涂在答题卡相应位置上,将条形码横贴在答题卡右上角“条形码粘贴处”。
2.作答选择题时,选出每小题答案后,用28铅笔在答题卡上对应题目选项的答案信息点涂黑:如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上,3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案:不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保持答题卡的整洁,考试结束后,将试卷和答题卡一井交回。
一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(2022·广东南沙·高二期末)若向量(),2a m = ,()7,2b m =- ,a b ⊥ ,则m =()A .49B .49-C .45D .45-2.(2022·广东高州·二模)设()12i 1i +=+x y (i 是虚数单位,x ∈R ,y R ∈),则i x y +=()A .B C .2D3.(2022·广东·广州市协和中学高三阶段练习)若非零向量a 、b 满足a b + ,且()a b b -⊥,则a 与b的夹角为()A .6πB .4πC .34πD .56π4.(2021·广东·仲元中学高一期中)在ABC 中,23A π=,a =,则bc =()A .12B .3C .1D .25.(2021·广东中山·模拟预测)在平行四边形ABCD 中,E 为AC 的三等分点(靠近点A ),连BE 并延长,交AD 于H ,则EH=()A .1143AD AB -B .1153AD AB-C .1163AD AB -D .1164AD AB -6.(2022·广东·模拟预测)复数1i z a b =+在复平面内对应的点为1Z ,将点1Z 绕坐标原点逆时针旋转一定的角度θ,得到点2Z ,2Z 对应的复数为2z ,则2z =().A .()cos sin cos sin ib a a b θθθθ++-B .()cos sin cos sin ib a a b θθθθ+--C .()cos sin cos sin i a b b a θθθθ-++D .()cos sin cos sin ia b b a θθθθ--+7.(2021·广东肇庆·模拟预测)已知2,3a b == ,4a b -= ,若对任意实数t ,21(0)ka tb k +>>恒成立,则k 的取值范围是()A .B .(0,3C .)+∞D .)+∞8.(2021·广东·高三阶段练习)2021年7月份河南郑州地区发生水灾,灾后需要对市区所有街道进行消毒处理.下面是消毒装备的示意图,MN 为路面,PQ 为消毒设备的高,O Q 为喷杆,PQ MN ⊥,34PQO π∠=,O 处是喷洒消毒水的喷头,且喷头的喷射角3AOB π∠=,已知2PQ =,OQ =宽度AB 的最小值为()AB .CD .二、选择题:本题共4小题,每小题5分,共20分。
2021-2022学年安徽省阜阳市太和县第一中学高一数学理月考试题含解析

2021-2022学年安徽省阜阳市太和县第一中学高一数学理月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知全集U={1,2,3,4,5,6},集合A={1,3,5,6},则?U A等于( )A.{1,3,5} B.{2,4,6} C.{2,4} D.{1,3,5,6}参考答案:C【考点】补集及其运算.【专题】集合思想;综合法;集合.【分析】根据补集的定义,求出A在全集U中的补集即可.【解答】解:∵全集U={1,2,3,4,5,6},集合A={1,3,5,6},∴?U A={2,4}.故选:C.【点评】本题考查了补集的定义与应用问题,是基础题目.2. 若,,则等于( )A. B. C. D.参考答案:D3. 已知为实数,且,则下列不等式一定成立的是().A. B. C. D.参考答案:C分析:用特殊值法,令,,,,代入到选项中逐一排除即可得到正确答案.. 详解:令,,,选项A,,,,A错误;选项B,,,,B错误;选项C,,,,根据不等式的加法性质,C正确.;选项D,,,,D错误.故选C.4. 已知,则()A.B.C.D.参考答案:A,,.5. 下边程序框图的算法思路源于我国数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的a,b分别为14,18,则输出的a=()A.0B.2C.4D.14参考答案:B6. 已知函数f(+1)=x+1,则函数f(x)的解析式为()A.f(x)=x2 B.f(x)=x2+1(x≥1)C.f(x)=x2﹣2x+2(x≥1)D.f(x)=x2﹣2x(x≥1)参考答案:C【考点】函数解析式的求解及常用方法.【专题】计算题.【分析】通过换元:令,将已知条件中的x都换为t,得到关于t的函数解析式,再将t换为x即可.【解答】解:令则x=(t﹣1)2(t≥1)∴f(t)=(t﹣1)2+1=t2﹣2t+2∴f(x)=x2﹣2x+2(x≥1)故选C【点评】已知f(ax+b)的解析式来求f(x)的解析式,一般通过换元的方法或配凑的方法.7. 设S n是等差数列{a n}的前n项和,若,则()A. B. C. D.参考答案:D【分析】根据等差数列片断和的性质得出、、、成等差数列,并将和都用表示,可得出的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021-2022年高一下学期5月月考数学含解析考生注意:1、试卷所有答案都必须写在答题卷上。
2、答题卷与试卷在试题编号上是一一对应的,答题时应特别注意,不能错位。
3、考试时间为120分钟,试卷满分为150分。
一、选择题:(本大题共有10 题,每题5分,共50分)1. 下列语句中,是赋值语句的为()A. m+n=3B. 3=iC. i=i²+1D.i=j=3解:根据题意,A:左侧为代数式,故不是赋值语句B:左侧为数字,故不是赋值语句C:赋值语句,把i2+1的值赋给i.D:为用用两个等号连接的式子,故不是赋值语句故选C.2. 已知a1,a2∈(0,1),记M=a1a2,N=a1+a2-1,则M与N的大小关系是()A.M>NB. M<NC. M=ND. 无法确定解:由M-N=a1a2-a1-a2+1=(a1-1)(a2-1)>0,故M>N,故选B.3. 甲、乙两名同学在5次体育测试中的成绩统计如茎叶图所示,若甲、乙两人的平均成绩分别是X甲,X乙,则下列结论正确的是()A.X甲<X乙;乙比甲成绩稳定B.X甲>X乙;甲比乙成绩稳定C.X甲<X乙;甲比乙成绩稳定D.X甲>X乙;乙比甲成绩稳定解:由茎叶图可知,甲的成绩分别为:72,77,78,86,92,平均成绩为:81;乙的成绩分别为:78,82,88,91,95,平均成绩为:86.8,则易知X甲<X乙;从茎叶图上可以看出乙的成绩比较集中,分数分布呈单峰,乙比甲成绩稳定.故选A.4. 将两个数a=5,b=12交换为a=12,b=5,下面语句正确的一组是()A. B. C. D.解:先把b的值赋给中间变量c,这样c=12,再把a的值赋给变量b,这样b=5,把c的值赋给变量a,这样a=12.故选:D5. 将参加夏令营的500名学生编号为:001,002,…,500. 采用系统抽样的方法抽取一个容量为50的样本,且样本中含有一个号码为003的学生,这500名学生分住在三个营区,从001到200在第一营区,从201到355在第二营区,从356到500在第三营区,三个营区被抽中的人数分别为()A. 20,15,15B. 20,16,14C. 12,14,16D. 21,15,14解:系统抽样的分段间隔为=10,在随机抽样中,首次抽到003号,以后每隔10个号抽到一个人,则分别是003、013、023、033构成以3为首项,10为公差的等差数列,故可分别求出在001到200中有20人,在201至355号中共有16人,则356到500中有14人.故选:B.6. 如图给出的是计算+++…+的值的一个框图,其中菱形判断框内应填入的条件是()A. i>10B. i<10C. i>11D. i<11解:∵S=+++…+,并由流程图中S=S+循环的初值为1,终值为10,步长为1,所以经过10次循环就能算出S=+++…+的值,故i≤10,应不满足条件,继续循环所以i>10,应满足条件,退出循环判断框中为:“i>10?”.故选A.7.设a、b是正实数,给定不等式:①>;②a>|a-b|-b;③a2+b2>4ab-3b2;④ab+>2,上述不等式中恒成立的序号为()A. ①③B. ①④C. ②③D. ②④解:∵a、b是正实数,∴①a+b≥2⇒1≥⇒≥.当且仅当a=b时取等号,∴①不恒成立;②a+b>|a-b|⇒a>|a-b|-b恒成立;③a2+b2-4ab+3b2=(a-2b)2≥0,当a=2b时,取等号,例如:a=1,b=2时,左边=5,右边=4×1×2-3×22=-4∴③不恒成立;④ab+≥=2>2恒成立.答案:D8.已知x>0,y>0,x,a,b,y成等差数列,x,c,d,y成等比数列,则a+b2 cd的最小值是( ).A.0 B.1 C.2 D.4解析由题知a+b=x+y,cd=xy,x>0,y>0,则a+b2cd=x+y2xy≥2xy2xy=4,当且仅当x=y时取等号.答案D9. 在△ABC中,三边a、b、c成等比数列,角B所对的边为b,则cos2B+2cosB 的最小值为()A. B.-1 C. D.1解:∵a、b、c,成等比数列,∴b2=ac,∴cosB==≥=.∴cos2B+2cosB=2cos2B+2cosB-1=2(cosB+)2-,∴当cosB=时,cos2B+2cosB取最小值2-=.故选C.10. 给出数列,,,,,,…,,,…,,…,在这个数列中,第50个值等于1的项的序号是()A.4900B.4901C.5000D.5001解:值等于1的项只有,,,…所以第50个值等于1的应该是那么它前面一定有这么多个项:分子分母和为2的有1个:分子分母和为3的有2个:,分子分母和为4的有3个:,,…分子分母和为99的有98个:,,…,分子分母和为100的有49个:,,…,,…,.所以它前面共有(1+2+3+4+…+98)+49=4900所以它是第4901项.故选B.二、填空题:(本大题共有5 题,每题5分,共25分)解:点(,)在回归直线上,计算得=2,=4.5;代入得a=2.6;故答案为2.6.12. 已知函数f(x)=,则不等式f(x)≥x2的解集是解:①当x≤0时;f(x)=x+2,∵f(x)≥x2,∴x+2≥x2,x2-x-2≤0,解得,-1≤x≤2,∴-1≤x≤0;②当x>0时;f(x)=-x+2,∴-x+2≥x2,解得,-2≤x≤1,∴0≤x≤1,综上①②知不等式f(x)≥x2的解集是:[-1,1].13. 如果运行下面程序之后输出y的值是9,则输入x的值是输入xIf x<0 Theny=(x+1)*(x+1)Elsey=(x-1)*(x-1)End if输出yEnd解:根据条件语句可知是计算y=当x<0,时(x+1)(x+1)=9,解得:x=-4当x≥0,时(x-1)(x-1)=9,解得:x=4答案:-4或414. 在△ABC中,角A、B、C所对的边分别为a、b、C、若(b-c)cosA=acosC,则cosA=解:由正弦定理,知由(b-c)cosA=acosC可得(sinB-sinC)cosA=sinAcosC,∴sinBcosA=sinAcosC+sinCcosA=sin(A+C)=sinB,∴cosA=.故答案为:15. 设a+b=2,b>0,则+ 的最小值为解:∵a+b=2,∴=1,∴+=++,∵b>0,|a|>0,∴+≥1(当且仅当b2=4a2时取等号),∴+≥+1,故当a<0时,+的最小值为.故答案为:.三、解答题(本大题共有6 题,共75 分)16. 已知关于x的不等式x2-4x-m<0的解集为非空集{x|n<x<5} (1)求实数m和n的值(2)求关于x的不等式log(-nx2+3x+2-m)>0的解集.a解:(1)由题意得:n和5是方程x2-4x-m=0的两个根(2分)(3分)(1分)x在定义域内单调递增(2)1°当a>1时,函数y=loga由log(-nx2+3x+2-m)>0a得x2+3x-3>1(2分)即 x2+3x-4>0x>1 或 x<-4(1分)2°当0<a<1时,函数 y=logx在定义域内单调递减a(-nx2+3x+2-m)>0由:loga得:(2分)即4132132122xx x-<<⎧⎪⎨---+<>⎪⎩或(1分)(1分)∴当a>1时原不等式的解集为:(-∞,-4)∪(1,+∞),当0<a<1时原不等式的解集为:321321(4,,1)22---+-)((1分)17. 某校高一学生共有500人,为了了解学生的历史学习情况,随机抽取了50名学生,对他们一年来4次考试的历史平均成绩进行统计,得到频率分布直方图如图所示,后三组频数成等比数列.(1)求第五、六组的频数,补全频率分布直方图;(2)若每组数据用该组区间中点值作为代表(例如区间[70,80)的中点值是75),试估计该校高一学生历史成绩的平均分;(3)估计该校高一学生历史成绩在70~100分范围内的人数.解:(1)设第五、六组的频数分别为x,y由题设得,第四组的频数是0.024×10×50=12则x2=12y,又x+y=50-(0.012+0.016+0.03+0.024)×10×50即x+y=9∴x=6,y=3补全频率分布直方图(2)该校高一学生历史成绩的平均分=10(45×0.012+55×0.016+65×0.03+75×0.024+85×0.012+95×0.006)=67.6(3)该校高一学生历史成绩在70~100分范围内的人数:500×(0.024+0.012+0.006)×10=21018. 根据如图所示的程序框图,将输出的x,y依次记为x1,x2,…,xxx,y1,y2…yxx,(1)求出数列{xn },{yn}(n≤xx)的通项公式;(2)求数列{xn +yn}(n≤xx)的前n项的和Sn.解:(1)由程序框图可得到数列{xn}是首项为2,BD BC B=cos20. 某森林出现火灾,火势正以每分钟100 m2的速度顺风蔓延,消防站接到警报立即派消防员前去,在火灾发生后五分钟到达救火现场,已知消防队员在现场平均每人每分钟灭火50 m2,所消耗的灭火材料、劳务津贴等费用为每人每分钟125元,另附加每次救火所耗损的车辆、器械和装备等费用平均每人100元,而烧毁1 m2森林损失费为60元,问应该派多少消防员前去救火,才能使总损失最少?解:设派x名消防员前去救火,用t分钟将火扑灭,总损失为y元,则t==,y=灭火材料、劳务津贴+车辆、器械、装备费+森林损失费=125tx+100x+60(500+100t)=125x•+100x+30000+y=1250•+100(x-2+2)+30000+=31450+100(x-2)+≥31450+2=36450,当且仅当100(x-2)=,即x=27时,y有最小值36450.答:应该派27名消防员前去救火,才能使总损失最少,最少损失为36450元.21. 各项为正数的数列{an }满足=4Sn−2an−1(n∈N*),其中Sn为{an}前n项和.(1)求a1,a2的值;(2)求数列{an}的通项公式;(3)是否存在正整数m、n,使得向量=(2an+2,m)与向量=(−an+5,3+an)垂直?说明理由.解:(1)当n=1时,=4S1−2a1−1,化简得(a1−1)2=0,解之得a1=1当n=2时,=4S2−2a2−1=4(a1+a2)-2a2-1将a1=1代入化简,得a22−2a2−3=0,解之得a2=3或-1(舍负)综上,a1、a2的值分别为a1=1、a2=3;(2)由=4Sn −2an−1…①,=4Sn+1−2an+1−1…②②-①,得−=4an+1−2an+1+2an=2(an+1+an)移项,提公因式得(an+1+an)(an+1-an-2)=0∵数列{an}的各项为正数,∴an+1+an>0,可得an+1-an-2=0因此,an+1-an=2,得数列{an}构成以1为首项,公差d=2的等差数列∴数列{an }的通项公式为an=1+2(n-1)=2n-1;(3)∵向量=(2an+2,m)与向量=(-an+5,3+an)∴结合(2)求出的通项公式,得=(2(2n+3),m),=(-(2n+9),2n+2)若向量⊥,则•=-2(2n+3)(2n+9)+m(2n+2)=0化简得m=4(n+1)+16+∵m、n是正整数,∴当且仅当n+1=7,即n=6时,m=45,可使⊥符合题意综上所述,存在正整数m=45、n=6,能使向量=(2an+2,m)与向量=(-an+5,3+an)垂直.38228 9554 镔27150 6A0E 樎G22685 589D 墝35996 8C9C 貜40184 9CF8 鳸r28043 6D8B 涋27066 69BA 榺37866 93EA 鏪37420 922C 鈬Y33486 82CE 苎/。