平面向量与解析几何的综合运用

合集下载

高中数学 第二章 平面向量 2.4 向量的应用 2.4.1 向量在几何中的应用 2.4.2 向量在物

高中数学 第二章 平面向量 2.4 向量的应用 2.4.1 向量在几何中的应用 2.4.2 向量在物

2.4 向量的应用2.4.1 向量在几何中的应用 2.4.2 向量在物理中的应用1.向量在平面几何中的应用(1)证明线段相等,转化为证明向量的长度相等,求线段的长,转化为求向量的长度; (2)证明线段、直线平行,转化为证明向量共线;(3)证明线段、直线垂直,转化为证明向量的数量积为零; (4)平面几何中与角相关的问题,转化为向量的夹角问题;(5)对于与长方形、正方形、直角三角形等平面几何图形有关的问题,通常以相互垂直的两边所在的直线分别为x 轴和y 轴,建立平面直角坐标系,通过代数(坐标)运算解决平面几何问题.【自主测试1-1】在四边形ABCD 中,若AB →=13CD →,则四边形ABCD 是( )A .平行四边形B .梯形C .菱形D .矩形解析:由AB →=13CD →⇒AB ∥CD ,且AB ≠CD ,故四边形ABCD 为梯形,故选B .答案:B【自主测试1-2】在△ABC 中,已知|AB →|=|AC →|=4,且AB →·AC →=8,则这个三角形的形状是__________.解析:∵AB →·AC →=|AB →||AC →|cos ∠BAC=8,∴4×4×cos ∠BAC=8,∴∠BAC=60°.又|AB →|=|AC →|,∴△ABC 为等边三角形. 答案:等边三角形2.向量在解析几何中的应用(1)设直线l 的倾斜角为α,斜率为k ,A (x 1,y 1)∈l ,P (x ,y )∈l ,向量a =(m ,n )平行于l ,则k =y -y 1x -x 1=n m =tan α;反之,若直线l 的斜率k =nm,则向量(m ,n )一定与该直线平行.(2)向量(1,k )与直线l :y =kx +b 平行.(3)与a =(m ,n )平行且过点P (x 0,y 0)的直线方程为n (x -x 0)-m (y -y 0)=0. (4)过点P (x 0,y 0),且与向量a =(m ,n )垂直的直线方程为m (x -x 0)+n (y -y 0)=0. 【自主测试2-1】已知直线l :mx +2y +6=0,向量(1-m,1)与l 平行,则实数m 的值为( )A .-1B .1C .2D .-1或2 答案:D【自主测试2-2】过点A (3,-2)且垂直于向量n =(5,-3)的直线方程是__________. 答案:5x -3y -21=0 3.向量在物理中的应用(1)力是具有大小、方向和作用点的向量,它与自由向量有所不同.大小和方向相同的两个力,如果作用点不同,那么它们是不相等的.但是,在不计作用点的情况下,可用向量求和的平行四边形法则求作用于同一点的两个力的合力.(2)速度是具有大小和方向的向量,因而可用三角形法则和平行四边形法则求两个速度的合速度.【自主测试3】已知两个力F 1,F 2的夹角为90°,它们的合力大小为10 N ,合力与F 1的夹角为60°,则F 1的大小为( )A .5 3 NB .5 NC .10 ND .52N 答案:B1.用向量的方法证明直线平行、直线垂直、线段相等及点共线等问题的基本方法 剖析:(1)要证两线段AB =CD ,可转化为证明|AB →|=|CD →|或AB →2=CD →2; (2)要证两线段AB ∥CD ,只要证明存在一实数λ≠0,使AB →=λCD →成立; (3)要证两线段AB ⊥CD ,可转化为证明AB →·CD →=0;(4)要证A ,B ,C 三点共线,只要证明存在一实数λ≠0,使AB →=λAC →,或若O 为平面上任一点,则只需要证明存在实数λ,μ(其中λ+μ=1),使OC →=λOA →+μOB →.2.对直线Ax +By +C =0的方向向量的理解剖析:(1)设P 1(x 1,y 1),P 2(x 2,y 2)为直线上不重合的两点,则P 1P 2→=(x 2-x 1,y 2-y 1)及与其共线的向量λP 1P 2→均为直线的方向向量.显然当x 1≠x 2时,向量⎝ ⎛⎭⎪⎫1,y 2-y 1x 2-x 1与P1P 2→共线,因此向量⎝ ⎛⎭⎪⎫1,-A B =1B(B ,-A )为直线l 的方向向量,由共线向量的特征可知(B ,-A )为直线l 的方向向量.(2)结合法向量的定义可知,向量(A ,B )与(B ,-A )垂直,从而向量(A ,B )为直线l 的法向量.3.教材中的“探索与研究”利用向量与向量平行、垂直的条件,再次研究两条直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0平行和垂直的条件,以及如何求出两条直线夹角θ的余弦.结论:l 1∥l 2(或重合)⇔A 1B 2-A 2B 1=0. l 1⊥l 2⇔A 1A 2+B 1B 2=0.cos θ=|A 1A 2+B 1B 2|A 21+B 21A 22+B 22.剖析:直线l 1:A 1x +B 1y +C 1=0的方向向量为n 1=(-B 1,A 1),直线l 2:A 2x +B 2y +C 2=0的方向向量为n 2=(-B 2,A 2).若l 1∥l 2,则n 1∥n 2,从而有-B 1A 2=-A 1B 2,即A 1B 2-A 2B 1=0. 若l 1⊥l 2,则n 1·n 2=0,从而有B 1B 2+A 1A 2=0. 所以直线l 1∥l 2⇔A 1B 2-A 2B 1=0, 直线l 1⊥l 2⇔A 1A 2+B 1B 2=0. 由于n 1·n 2=A 1A 2+B 1B 2, |n 1|=A 21+B 21,|n 2|=A 22+B 22, 所以cos 〈n 1,n 2〉=A 1A 2+B 1B 2A 21+B 21A 22+B 22. 所以直线l 1与l 2夹角θ的余弦值为cos θ=|cos 〈n 1,n 2〉|=|A 1A 2+B 1B 2|A 21+B 21A 22+B 22.题型一 向量在平面几何中的应用【例题1】已知正方形ABCD 中,E ,F 分别是CD ,AD 的中点,BE ,CF 交于点P . 求证:(1)BE ⊥CF ;(2)AP =AB .分析:建系→确定点A ,B ,C ,E ,F ,P 的坐标→证BE →·CF →=0及|AP →|=|AB →|→还原为几何问题证明:建立如图所示平面直角坐标系,设AB =2,则有A (0,0),B (2,0),C (2,2),E (1,2),F (0,1).(1)BE →=(-1,2),CF →=(-2,-1). ∵BE →·CF →=(-1)×(-2)+2×(-1)=0, ∴BE →⊥CF →,即BE ⊥CF . (2)设点P 的坐标为(x ,y ), 则FP →=(x ,y -1),CF →=(-2,-1), ∵FP →∥CF →,∴-x =-2(y -1),即x =2y -2, 同理,由BP →∥BE →得y =-2x +4,由⎩⎪⎨⎪⎧x =2y -2,y =-2x +4,得⎩⎪⎨⎪⎧x =65,y =85.∴点P 坐标为⎝ ⎛⎭⎪⎫65,85.则|AP →|=⎝ ⎛⎭⎪⎫652+⎝ ⎛⎭⎪⎫852=2=|AB →|,即AP =AB . 反思由于向量集数形于一身,用它来研究问题时可以实现形象思维与抽象思维的有机结合,因而向量法是研究几何问题的一个有效的工具,解题时一定注意用数形结合的思想.〖互动探究〗正方形OABC 的边长为1,点D ,E 分别为AB ,BC 的中点,求cos ∠DOE . 解:建立平面直角坐标系如图,则向量OE →=⎝ ⎛⎭⎪⎫12,1,OD →=⎝ ⎛⎭⎪⎫1,12,∴OD →·OE →=12×1+1×12=1.又|OD →|=|OE →|=52,∴cos ∠DOE =OD →·OE →|OD →||OE →|=152×52=45.题型二 向量在解析几何中的应用 【例题2】过点A (-2,1),求: (1)与向量a =(3,1)平行的直线方程; (2)与向量b =(-1,2)垂直的直线方程.分析:在直线上任取一点P (x ,y ),则AP →=(x +2,y -1).根据AP →∥a 和AP →⊥b 解题即可.解:设所求直线上任意一点P 的坐标为(x ,y ). ∵A (-2,1),∴AP →=(x +2,y -1).(1)由题意,知AP →∥a ,则(x +2)×1-3(y -1)=0, 即x -3y +5=0.故所求直线方程为x -3y +5=0.(2)由题意,知AP →⊥b ,则(x +2)×(-1)+(y -1)×2=0, 即x -2y +4=0,故所求直线方程为x-2y+4=0.反思已知直线l的方程Ax+By+C=0(A2+B2≠0),则向量(A,B)与直线l垂直,即向量(A,B)为直线l的法向量;向量(-B,A)与l平行,故过点P(x0,y0)与直线l平行的直线方程为A(x-x0)+B(y-y0)=0.【例题3】已知△ABC的三个顶点A(0,-4),B(4,0),C(-6,2),点D,E,F分别为边BC,CA,AB的中点.(1)求直线DE,EF,FD的方程;(2)求AB边上的高线CH所在的直线方程.分析:(1)利用向量共线的坐标表示求解;(2)利用向量垂直的坐标表示求解.解:(1)由已知,得点D(-1,1),E(-3,-1),F(2,-2).设M(x,y)是直线DE上任意一点,则DM∥DE.又DM=(x+1,y-1),DE=(-2,-2),所以(-2)×(x+1)-(-2)(y-1)=0,即x-y+2=0为直线DE的方程.同理可求,直线EF,FD的方程分别为x+5y+8=0,x+y=0.(2)设点N(x,y)是CH所在直线上的任意一点,则CN⊥AB.所以CN·AB=0.又CN=(x+6,y-2),AB=(4,4),所以4(x+6)+4(y-2)=0,即x+y+4=0为所求直线CH的方程.反思(1)利用向量法来解决解析几何问题,首先要将线段看成向量,再把坐标利用向量法则进行运算.(2)要掌握向量的常用知识:①共线;②垂直;③模;④夹角;⑤向量相等,则对应坐标相等.题型三向量在物理中的应用【例题4】一条河的两岸互相平行,河的宽度为d=500 m,一艘船从A处出发航行到河正对岸的B处,船的航行速度为|ν1|=10 km/h,水流速度为|ν2|=4 km/h.(1)试求ν1与ν2的夹角(精确到1°)及船垂直到达对岸所用的时间(精确到0.1 min); (2)要使船到达对岸所用时间最少,ν1与ν2的夹角应为多少?分析:船(相对于河岸)的航行路线不能与河岸垂直.原因是船的实际航行速度是船本身(相对于河水)的速度与水流速度的合速度.解:(1)依题意,要使船垂直到达对岸,就要使ν1与ν2的合速度的方向正好垂直于对岸,所以|ν|=ν21-ν22=100-16≈9.2(km/h),ν1与ν的夹角α满足sin α=0.4,α≈24°,故ν1与ν2的夹角θ=114°;船垂直到达对岸所用的时间t =d |ν|=0.59.2≈0.054 3(h)≈3.3 min. (2)设ν1与ν2的夹角为θ(如下图).ν1与ν2在竖直方向上的分速度的和为|ν1|·sin θ,而船到达对岸时,在竖直方向上行驶的路程为d =0.5 km ,从而所用的时间t =0.510sin θ.显然,当θ=90°时,t 最小,即船头始终向着对岸时,所用的时间最少,为t =0.510=0.05(h).反思注意“速度”是一个向量,既有大小又有方向.结合具体问题,在理解向量知识和应用两方面下功夫.将物理量之间的关系抽象成数学模型,然后通过对这个数学模型的研究解释相关物理现象.题型四 易错辨析【例题5】在直角坐标系中,O 为坐标原点,A ,B ,C 三点满足OC →=13OA →+23OB →.(1)求证:A ,B ,C 三点共线;(2)已知A (1,cos x ),B (1+sin x ,cos x ),x ∈⎣⎢⎡⎦⎥⎤0,π2,f (x )=OA →·OC →-⎝ ⎛⎭⎪⎫2m 2+23|AB→|的最小值为12,求实数m 的值.错解:(1)∵AB →=OB →-OA →,AC →=OC →-OA →=13OA →+23OB →-OA →=23OB →-23OA →=23AB →,∴AC →∥AB →,∴A ,B ,C 三点共线.(2)∵A (1,cos x ),B (1+sin x ,cos x ), ∴OC →=⎝ ⎛⎭⎪⎫1+23sin x ,cos x ,AB →=(sin x,0),从而|AB →|=|sin x |.故f (x )=-(sin x +m 2)2+m 4+2.又sin x ∈[-1,1],∴当sin x =1时,f (x )有最小值, 即-(1+m 2)2+m 4+2=12,解得m =±12.错因分析:错解中忽略了题目中x 的取值范围,造成正弦值的范围扩大. 正解:(1)∵AB →=OB →-OA →,AC →=OC →-OA →=13OA →+23OB →-OA →=23OB →-23OA →=23AB →,∴AC →∥AB →,∴A ,B ,C 三点共线.(2)∵A (1,cos x ),B (1+sin x ,cos x ), ∴OC →=⎝ ⎛⎭⎪⎫1+23sin x ,cos x ,AB →=(sin x,0),故|AB →|=sin x ,从而f (x )=-(sin x +m 2)2+m 4+2.又当x ∈⎣⎢⎡⎦⎥⎤0,π2时,sin x ∈[0,1],∴当sin x =1时,f (x )有最小值, 即-(1+m 2)2+m 4+2=12,化简得m 2=14,解得m =±12.1.若向量n 与直线l 垂直,则称向量n 为直线l 的法向量,则直线x +2y +3=0的一个法向量为( )A .(1,2)B .(1,-2)C .(2,1)D .(2,-1)解析:可以确定已知直线l 的斜率k =-12,所以直线的方向向量a =⎝ ⎛⎭⎪⎫1,-12.由a ·n =0,可知应选A .答案:A2.已知A (2,1),B (3,2),C (-1,4),则△ABC 是( ) A .等边三角形 B .锐角三角形 C .直角三角形 D .钝角三角形 答案:C3.过点A (2,3)且垂直于向量a =(2,1)的直线方程是( ) A .2x +y -7=0 B .2x +y +7=0 C .x -2y +4=0 D .x -2y -4=0 答案:A4.在重600 N 的物体上系两根绳子,与铅垂线的夹角分别为30°,60°,重物平衡时,两根绳子拉力的大小分别为( )A .3003N,3003NB .150 N,150 NC .3003N,300 ND .300 N,3003N解析:如图,作矩形OACB ,使∠AOC =30°,∠BOC =60°. 在△OAC 中,∠ACO =∠BOC =60°,∠OAC =90°,所以|OA |=|OC |cos 30°=3003N , |AC |=|OC |sin 30°=300 N , |OB |=|AC |=300 N. 答案:C5.通过点A (3,2)且与直线l :4x -3y +9=0平行的直线方程为__________. 答案:4x -3y -6=06.已知两个粒子a ,b 从同一点发射出来,在某一时刻,它们的位移分别为v a =(4,3),v b =(3,4),则v a 在v b 上的正射影为__________.解析:由题知v a 与v b 的夹角θ的余弦值为 cos θ=12+125×5=2425.所以v a 在v b 上的正射影为|v a |cos θ=5×2425=245.答案:2457.平面上不共线的三点A ,B ,C 使得AB +BC 所在的直线和AB -BC 所在的直线恰好互相垂直,则△ABC 必为__________三角形.解析:如图所示,作ABCD ,易知AB +BC =AC ,AB -BC =AB -AD =DB .依题意,知BD 与AC 互相垂直,故ABCD 为菱形,从而△ABC 为等腰三角形,且∠ABC 为顶角.答案:等腰 8.如图所示,已知ABCD 是菱形,AC 和BD 是它的两条对角线,求证:AC ⊥BD .证明:证法一:∵AC =AB +AD ,BD =AD -AB ,∴AC ·BD =(AB +AD )·(AD -AB )=|AD |2-|AB |2=0.∴AC ⊥BD . ∴AC ⊥BD .证法二:以BC所在的直线为x轴,点B为原点建立平面直角坐标系.设B(0,0),A(a,b),C(c,0),则由|AB|=|BC|,得a2+b2=c2.∵AC=BC-BA=(c-a,-b),BD=BA+BC=(a+c,b),∴AC·BD=c2-a2-b2=0.∴AC⊥BD,∴AC⊥BD.。

平面向量的解析几何应用

平面向量的解析几何应用

平面向量的解析几何应用平面向量是解析几何中一个重要的概念,它在几何学中有着广泛的应用。

本文将介绍平面向量的基本概念及其在解析几何中的应用。

一、平面向量的基本概念平面向量是指在平面内用有向线段表示的量。

它具有大小和方向两个重要的特征。

平面向量常用字母加上箭头进行表示,例如向量a用符号→a表示。

平面向量有一系列常用的运算,包括加法、减法、数乘和点乘等。

其中,向量的加法和减法可以通过平行四边形法则进行计算,数乘则是将向量与一个标量相乘,点乘则是两个向量相乘并求和的运算。

二、平面向量的坐标表示平面向量也可以用坐标进行表示。

通常情况下,我们将平面上的一个点的坐标表示为(x, y),那么该点对应的平面向量可以表示为(→a) = (x, y)。

在平面直角坐标系中,平面向量还可以用分量表示。

例如,向量→a可以表示为(→a) = a1i + a2j,其中a1和a2分别是向量在x轴和y 轴上的分量,i和j分别是x轴和y轴的单位向量。

三、1. 向量的位移平面向量的位移是指描述一个点从一个位置移动到另一个位置的向量。

我们可以利用平面向量的减法来计算两个点之间的位移向量。

2. 向量的共线与共面如果两个向量的方向相同或相反,则它们是共线的;如果三个向量在同一平面上,则它们是共面的。

通过判断向量的共线关系和共面关系,我们可以解决许多几何问题,例如判断三点是否共线等。

3. 向量的垂直关系两个向量垂直的条件是它们的点积等于零。

通过应用向量的点乘运算,我们可以判断两个向量是否垂直。

4. 向量的投影平面向量的投影指的是将一个向量投影到另一个向量上的过程。

通过计算向量的投影,我们可以解决直角三角形的问题,例如计算角度、长度等。

5. 三角形的面积三角形的面积可以通过平面向量的叉乘运算来计算。

通过计算三个顶点所对应的向量的叉乘,我们可以得到三角形的面积。

6. 直线和平面的关系平面向量可以用来描述直线和平面的关系。

例如,我们可以用平面向量表示直线的方向,利用向量运算来判断两个直线是否平行或垂直,以及直线和平面的交点等。

高考数学多知识点融合

高考数学多知识点融合

高考数学多知识点融合高考数学作为高中学生升学的重要考试科目之一,要求考生掌握多种数学知识点,并且能够熟练地将这些知识点进行融合应用。

本文将从几个常见的数学知识点出发,探讨如何在学习和应试中将它们进行有效融合。

一、函数与三角函数的融合函数和三角函数是高考数学中的重要知识点之一。

在解决实际问题时,常常需要结合函数和三角函数的特点进行建模。

例如,在解决船只航行问题时,可以利用三角函数来描述船只的行进方向和航速,再结合函数来表示船只的路径。

这样的融合可以将抽象的概念与实际问题相结合,使得学习更加生动有趣。

二、概率与统计的融合概率与统计是高考数学中另一个重要的知识点。

在实际生活中,我们经常会遇到需要统计和分析数据的情况,这时候就需要运用概率与统计的知识进行处理。

例如,在市场调查中,我们可以利用概率与统计的方法来分析某种产品的受欢迎程度,从而为生产和销售提供参考依据。

概率与统计的融合可以使得我们更好地了解和应用数据,提高问题解决的准确性和效率。

三、数列与数学归纳法的融合数列和数学归纳法是高考数学中的经典知识点。

数列的概念和性质以及数学归纳法的原理在解决数学问题时经常被用到。

例如,在推导数学公式时,可以通过观察数列的规律来猜测公式,然后再用数学归纳法来证明。

这种融合可以培养学生的逻辑思维和推理能力,提高解决问题的能力。

四、解析几何与平面向量的融合解析几何和平面向量是高考数学中的复杂知识点,但它们在解决几何问题的过程中经常会相互融合。

例如,在求解平面上两条直线的交点时,可以利用解析几何的方法得到直线的方程,然后再运用平面向量的知识求解交点坐标。

这样的融合可以将几何问题转化为代数问题进行求解,提高问题解决的灵活性和效率。

总之,高考数学要求考生能够熟练地掌握多种知识点,并且能够将这些知识点进行融合应用。

通过将函数与三角函数、概率与统计、数列与数学归纳法以及解析几何与平面向量进行融合,可以提高学生的数学综合能力和解题能力。

高中数学解题中平面向量方法的应用分析

高中数学解题中平面向量方法的应用分析

高中数学解题中平面向量方法的应用分析
高中数学解题中,平面向量方法是一种常用的解题方法。

它主要应用于平面几何、线
性代数和解析几何等领域。

下面将从几个方面分析平面向量方法在高中数学解题中的应
用。

在平面几何中,平面向量方法可以用于解决平面上的点、线、面的位置关系问题。


过引入向量的概念和运算法则,可以用向量的加减、数量积等操作来表示和计算线段、向
量的长度、夹角、平行关系等几何性质。

可以用向量来证明平行线之间的距离相等、求解
点在直线上的投影等问题。

在线性代数中,平面向量方法可以用于求解线性方程组。

通过将线性方程组写成矩阵
乘法的形式,并用向量表示未知数,可以将求解线性方程组的问题转化为求解向量的线性
组合的问题。

利用向量的性质和运算法则,可以通过增广矩阵的行变换来求解未知数的值。

可以用向量法解决线性方程组的解的存在唯一性以及解的求法等问题。

平面向量方法还可以用于解决高等数学中的微分和积分问题。

通过将函数表示为向量
函数,可以简化微分和积分的运算过程。

可以用向量函数求导来计算曲线的切线和法线,
用向量函数积分来计算曲线的弧长和面积等问题。

平面向量在解析几何中的应用

平面向量在解析几何中的应用

平面向量在解析几何中的应用平面向量在解析几何中有什么应用?向量法的概念是一个数学家发现的,发现过程很有趣。

向量法可以说是比较好地把向量与三角形、四边形、多边形结合起来的方法。

也就是说,在平面上进行立体几何中的平面图形的分析时,不能够再像做三角形或四边形那样,要用向量的知识来分析问题了。

我们还必须要在向量法的基础上再进行讨论。

在向量法中,分析立体几何中的一些特殊的向量时,它们的值是比较容易确定的,并且只需要写出向量的方向和大小,然后用向量法计算。

我们还经常利用向量法来判断一些曲线上点的坐标,如果知道了向量的方向,也就找到了点的坐标。

向量法在立体几何和解析几何中也广泛存在,如果我们没有掌握这种方法,那么对一些公式或结论的理解将会出错。

在立体几何中,如果立体几何中的所有向量都已经知道了其方向和大小,并且知道其他所有向量之间的关系,那么这个立体几何中的所有结论就都可以推导出来了。

又如,在平面几何中,如果一个向量和另外两个向量在平面内不相交,那么它们的关系就只是垂直于平面的平行线,但当知道这个向量的方向和大小时,我们就可以进行讨论了。

第二种说法:因为向量是表示物体位置的重要工具。

它在立体几何中显得尤为重要。

因为这个几何中的向量可以用三维空间中的点的坐标来表示。

而在解析几何中也广泛存在,如果没有这种方法,就没有办法准确地解决一些与向量有关的问题。

在解析几何中,一般情况下,一条直线可以有无数条方向。

比如有,在解析几何中一条直线可以有无数条方向。

比如有x、 y两个方向,它们的夹角为0。

在解析几何中,我们还可以对向量法进行总结,如果是三维空间的立体几何,那么在这个立体几何中的所有向量都是共面的,并且一组向量的方向是唯一的。

如果是二维的平面几何,则一组向量的方向是唯一的,并且一组向量的方向是共面的。

我们还可以通过坐标和向量来求解一些问题,通过观察三个点a、 b、 c之间的关系,可以得到向量a、 b、c的长度,并且通过坐标来表示。

高考数学平面向量及其综合运用 人教版

高考数学平面向量及其综合运用 人教版

高考数学平面向量及其综合运用 人教版复习要点:Ⅰ、平面向量知识结构表Ⅱ、内容概述1、向量的概念向量有三种表示法:①有向线段,②a 或AB ,③坐标a =(x , y )。

注意:共线向量与相等向量的联系与区别。

2、向量的运算加法、减法、数乘向量和向量的数量积。

如:11221212(,)(,)a b x y x y x x y y =⋅=+注意:几何运算与坐标运算 3、平面向量的定理及相关性质(1)两个非零向量平行的充要条件: a ∥b ⇔ a =λb (λ∈R)设a =(x1,y1),b = (x2,y2) 则a ∥b ⇔ x1y2-x2y1=0(2)两个非零向量垂直的充要条件: a ⊥b ⇔ a·b =0 设a =(x1,y1),b =(x2,y2)则a ⊥b ⇔ x1·x2+y1·y2=0(3)平面向量基本定理:如果有e1,e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1,λ2使 a =λ1e1+λ2e2.(4)三点共线定理:平面上三点A 、B 、C 共线的充要条件是:存在实数α、β,使OC OB OA βα+=,其中α+β=1,O 为平面内的任一点。

4、 常用公式及结论a 、向量模的公式:设a =(x,y ),则︱a ︱=22y x +b 、两点间的距离公式:21P P =212212)()(y y x x -+- [P1(x1,y1),P2(x2,y2)]c 、线段的定比分点坐标公式:向量向量的概念向量的运算向量的运用向量的加、减法实数与向量的积 向量的数量积 两个向量平行的充要条件两个向量垂直的充要条件定比分点公式平移公式 在物理学中的应用 在几何中的应用d 、中点坐标公式: 或)(21OB OA OM +=其中M (x0 ,y0)是线段AB 中点。

e 、两向量的夹角公式:cos θ=222221212121y x y x y y x x ba ba +⋅++=⋅⋅其中0°≤θ≤180°,a=(x1,y1),b =(x2,y2)f 、图形平移公式:若点P(x,y)按向量a =(h,k)平移至P '(x ',y '), 则g 、有关向量模的常用结论: ① aa a ⋅=2② 22222bb a a )b a (b a +⋅±=±=± ③ba b a ≤⋅,a b a b a b-≤±≤+④222||||2||2||a b a b a b ++-=+ 范例及其点评(一)平面向量学科内综合运用深刻理解平面向量的相关概念与性质,熟练掌握向量的各种运算,熟悉常用公式及结论,理解并掌握两向量共线、垂直的充要条件。

平面向量在解析几何中的应用

平面向量在解析几何中的应用

平面向量在解析几何中的应用0 引言高三数学复习课教学,是高中数学教学的重要课型.平面向量是高中数学的新增内容,也是新高考的一个亮点.作为高三教学一线的教师,如何引导学生在高三数学复习过程中抓住根本,合理利用时间,提高学习效率,是高三数学复习课必须追求的目标.因此,结合自己高三数学教学的实际情况,进行了《平面向量在解析几何中的应用》高三复习课,以求在教与学的过程中提高学生学习向量的兴趣,让学生树立并应用向量的意识.1 背景向量知识、向量观点在数学、物理等学科的很多分支有着广泛的应用,它具有代数形式和几何形式的“双重身份”,能融数形与一体,能与中学数学教学内容的的许多主干知识综合,形成知识交汇点.而在高中数学体系中,解析几何占有着很重要的地位,有些问题用常规方法去解决往往运算比较繁杂,不妨运用向量作形与数的转化,则会大大简化过程.结合我校开展的构建研究系性学习教学模式研究的课题,开设本节《平面向量在解析几何中的应用》高三专题复习课,通过问题的探究、合作解决,旨在进一步探索研究系性学习教学模式,使学生树立并增强应用向量的意识.正因为如此,本节课这样设计:1)教育家赞可夫说“要以知识本身吸引学生学习,使学生感到认识新事物的乐趣,体验克服困难的喜悦”;教育心理学认为:思维是从提出问题开始的;美国心理学家贾德通过实验证明“学习迁移的发生应有一个先决条件,就是学生需掌握原理,形成类比,才能让迁移到具体的类似学习中.”因此首先通过两个旧问题的引入解决,让学生体会向量的工具性特点,体会向量解题的优越性.2)通过问题的探究解决,由此让学生发现,用向量法的最大优点是思路清晰,过程简洁,有意想不到的神奇效果.著名教育家布鲁纳说过:学习的最好刺激是对所学材料的兴趣,简单的重复将会引起学生大脑疲劳,学习兴趣衰退.这充分揭示方法求变的重要性,如果我们能重视向量的教学,必然能引导学生拓展思路,减轻负担.2 问题例1.利用向量知识来推导点到直线的距离公式.已知点P坐标(x■,y■),直线l的方程为Ax+By+C=0,P到直线l的距离是d,则d=■.证明:当B≠0时,在直线l上任取一点,不妨取P■(0,-■),直线l的法向量■=(A,B),由向量的射影长知识得点P到直线l的距离等于向量■在向量■方向上的射影长度d,■=(x■,y■+■),∴d=■·■=(x■,y■+■)·■=■当B=0时,可直接有图形证明(略).点评:比较传统证明方法,避免了复杂的构图过程,应用向量来证,简单易懂,充分体现了向量的工具性和优越性.例2.(2009浙江文)已知椭圆■+■=1(a>b>0)的左焦点为F,右顶点为A,点B在椭圆上,且BF⊥x轴,直线AB交y轴于点P.若■=2■,则椭圆的离心率是()A.■B.■C.■D.■解析:对于椭圆,因为■=2■,则OA=2OF,∴a=2c,∴e=■选D.点评:对于对解析几何中与平面向量结合的考查,既体现了几何与向量的交汇,也体现了数形结合的巧妙应用解决与角有关的一类问题,总可以从数量积入手.例3.已知定点A(-1,0)和B(1,0),P是圆(x-3)2+(y-4)2=4上的一动点,求PA■+PB■的最大值和最小值.图1解:设已知圆的圆心为C,由已知可得:■=(-1,0),■=(1,0),∴■+■=0,■·■=-1又由中点公式得■+■=2■所以■■+■■=(■+■)■-2■·■=(2■)■-2(■-■)·(■-■)=4■■-2■·■-2■■+2■·(■+■)=2■■+2又因为■={3,4}点P在圆(x-3)2+(y-4)2=4上,所以■=5,■=2,且■=■+■所以■-■≤■=■+■≤■+■即3≤■≤7 故20≤■■+■■=2■■+2≤100所以PA■+PB■的最大值为100,最小值为20.点评:有些解几问题虽然没有直接用向量作为已知条件出现,但如果运用向量知识来解决,也会显得自然、简便,而且易入手.3 反思由于向量具有几何形式和代数形式的“双重身份”,使向量与解析几何之间有着密切联系,而新课程高考则突出了对向量与解析几何结合考查,这就要求我们在平时的解析几何教学与复习中,应抓住时机,有效地渗透向量有关知识,树立应用向量的意识.那么如何树立应用向量的意识,从本节课案例得到以下启发:第一,如何树立应用向量的意识,在教学中应先从学生熟悉的平面几何问题入手,让学生体会向量的工具性.第二,如何树立应用向量的意识,应充分挖掘课本素材,在教学中从推导有关公式、定理,例题讲解入手,让学生去品位、去领悟,在公式、定理的探索、形成中逐渐体会向量的工具性,逐渐形成应用向量的意识.第三,如何树立应用向量的意识,在教学中还应注重引导学生善于运用一些问题的结论,加以引申,使之成为解题方法,体会向量解题的优越性.最后,如何树立应用向量的意识,在教学中还应注重引导学生善于运用向量方法解题,逐步树立运用向量知识解题的意识.。

平面向量与解析几何

平面向量与解析几何

平面向量与解析几何平面向量是解析几何中的重要概念,它们在研究平面几何问题时具有广泛而深入的应用。

本文将介绍平面向量的定义、运算规则以及与解析几何的关系。

一、平面向量的定义平面向量是具有大小和方向的有向线段,用符号表示。

设向量A的起点为点P,终点为点Q,记作A=→PQ。

平面向量还可以用坐标表示。

设A的坐标为(x1, y1),起点在原点O,则A=→OP=(x1, y1)。

二、平面向量的运算1. 向量的加法向量的加法满足平行四边形法则。

设有向量A=→PQ,向量B=→RS,则A+B=→QS。

2. 向量的数乘向量的数乘是指将向量的长度放大或缩小。

设有向量A=→PQ,k为实数,则kA=→P'Q',其中P'为向量A的起点,Q'为向量A的终点,且P'Q'的长度为k倍于PQ的长度。

3. 内积运算内积也称点积,表示两个向量的数量积。

设向量A=→PQ,向量B=→RS,A的坐标为(x1, y1),B的坐标为(x2, y2),则A·B=x1x2+y1y2。

4. 外积运算外积也称叉积,表示两个向量的向量积。

设向量A=→PQ,向量B=→RS,A的坐标为(x1, y1),B的坐标为(x2, y2),则A×B=(0,0, x1y2-x2y1)。

三、平面向量与解析几何的关系通过平面向量的运算,我们可以研究解析几何中的一些常见问题。

1. 直线的方程设有点A(x1, y1)和点B(x2, y2),则点A和点B构成的直线的方程可以表示为:(y-y1)/(x-x1)=(y2-y1)/(x2-x1)。

2. 两条直线的关系设直线L1的方程为(a1x+b1y+c1=0),直线L2的方程为(a2x+b2y+c2=0),则L1与L2平行的条件是a1/a2=b1/b2,L1与L2垂直的条件是a1a2+b1b2=0。

3. 两个向量的夹角设有向量A=→PQ,向量B=→RS,夹角θ的余弦可以由它们的内积表示为:cosθ=(A·B)/(|A||B|)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
设,由已知得
在椭圆上,
即①
由(1)知
又,代入①得
故为定值,定值为1、
例2(天津卷)椭圆得中心就是原点O,它得短轴长为,相应于焦点F(c,0)(c>0)得准线l与x轴相交于点A,过点A得直线与椭圆相交于P、Q两点。
(Ⅰ)求椭圆得方程及离心率;
(Ⅱ)若,求直线PQ得方程;
(Ⅲ)设,过点P且平行于准线l得直线与椭圆相交于另一点M,证明:
平面向量与解析几何得结合通常涉及到夹角、平行、垂直、共线、轨迹等问题得处理,解决此类问题基本思路就是将几何问题坐标化、符号化、数量化,从而将推理转化为运算;或者考虑向量运算得几何意义,利用其几何意义解决有关问题。主要包括以下三种题型:
1、运用向量共线得充要条件处理解几中有关平行、共线等问题
运用向量共线得充要条件来处理解几中有关平行、共线等问题思路清晰,易于操作,比用斜率或定比分点公式研究这类问题要简捷得多。
例3、 (重庆卷)设p>0就是一常数,过点Q(2p,0)得直线与抛物线y2=2px交于相异两点A、B,以线段AB为直径作圆H(H为圆心),试证明抛物线顶点在圆H得圆周上;并求圆H得面积最小时直线AB得方程。
[分析]要证点Oห้องสมุดไป่ตู้圆H上,只要证OA⊥OB,可转化为向量运算·=0,用向量运算得方法证明.(见图1)
[分析]本题主要考查向量得运算(几何形式或坐标形式)及直线得方程,把向量联系起来,使问题立意更新,情景更好,内容更丰富。
[解法1]设C(x,y),则(x, y)=(3, )+(-, 3)=(3-,+3),
∴x=3-,
y=+3.
x=4-1,
y=-2+3.
消去参数,得点C得轨迹方程为x+2y-5=0.
[解法2]利用向量得几何运算,考虑定比分点公式得向量形式,结合条件知:A,B,C三点共线,故点C得轨迹方程即为直线AB得方程x+2y-5=0,故本题应选D.
另外,中学课本上函数单调性得概念与高等数学(数学分析)上函数单调性得概念不一致。数学分析上函数单调性得概念有严格单调与不严格单调之分。
问题⑷:单调区间应写成开区间还就是写成闭区间?
答:若端点属于定义域,则写成开区间或闭区间都可以。若端点不属于定义域,则只能写成开区间。
问题⑸:“曲线在点P处得切线”与“曲线过点P得切线”有区别吗?
[简解](Ⅰ)椭圆方程为,离心率(Ⅱ)略、
(Ⅲ) [证明]设P(x1,y1),Q (x2,y2),又A(3,0),由已知得方程组:
;
注意λ>1,消去x1、y1与y2得
因F(2,0), M(x1,-y1),


所以、
2、运用向量得数量积处理解几中有关长度、角度、垂直等问题;运用向量得数量积,可以把有关得长度、角度、垂直等几何关系迅速转化为数量关系,从而“计算”出所要求得结果。
答:不一定,缺少一个条件(可导函数)。
反例:函数在处有极小值,而不存在。
正确得命题就是:若为可导函数f(x)得极值点,则=0
问题⑵:若=0,则函数f(x)在处一定有极值吗?
答:不一定。
反例:函数有=0,而f(x)在处没有极值。
正确得命题就是:若=0,且函数f(x)在处两侧得导数值符号相反,则函数f(x)在处有极值、
问题⑶:在区间上得可导函数f(x),>0就是函数f(x)在该区间上为增函数得充要条件吗?
答:不一定。反例:函数 在上为增函数,而=0。
正确得命题就是:(函数单调性得充分条件)在区间上,>0就是f(x)在该区间上为增函数得充分而不必要条件、
(函数单调性得必要条件)函数f(x)在某区间上可导,且单调递增,则在该区间内0。
由前已证,OH应就是圆H得半径,且==
从而当k=0时,圆H得半径最小,亦使圆H得面积最小。
此时,直线AB得方程为:x=2p、
3、运用平面向量综合知识,探求动点轨迹方程,还可再进一步探求曲线得性质。
例4.(全国新课程卷)平面直角坐标系中,O为坐标原点,已知两点A(3,1),B(-1, 3),若点C满足,其中,∈R且+=1,则点C得轨迹方程为()、
[解答]由题意,直线AB不能就是水平线,故可设直线方程为:ky=x-2p
又设A(xA,yA),B(xB,yB),则其坐标满足
ky=x-2p
y2=2px
由此得
xA+xB=4p+k(yA+yB)=(4+2k2)p,xAxB==4P2
因此·=xAxB+yAyB=0,即OA⊥OB
故O必在圆H得圆周上。
又由题意圆心H(xH,yH)就是AB得中点,故
例1、(全国卷Ⅰ))已知椭圆得中心为坐标原点O,焦点在轴上,斜率为1且过椭圆右焦点F得直线交椭圆于A、B两点,与共线。
(Ⅰ)求椭圆得离心率;
(Ⅱ)设M为椭圆上任意一点,且,证明为定值。
解:设椭圆方程为
则直线AB得方程为,代入,化简得

令A(),B),则
由与共线,得
又,
即,所以,
故离心率
(II)证明:(1)知,所以椭圆可化为
从上述几例可以瞧出,只要对于解析几何中图形得位置关系与数量关系进行认真分析,充分挖掘问题得向量背景,注意运用曲线参数方程得点化作用,就完全有可能获得一个漂亮得向量解法。
随着新教材得逐步推广、使用,今后高考对新增内容得考查会逐渐加大,综合性会更强。作为新课程新增内容之一得向量具有数形兼备得特点,成为了作为联系众多知识得桥梁。因此,向量与三角、解析几何、立体几何得交汇就是当今高考命题得必然趋势,所以必须非常重视对向量得复习与演练,直至达到深刻理解、运用熟练得境地。
平面向量与解析几何得综合运用
数学组 施冬芳
由于向量既能体现“形”得直观位置特征,又具有“数”得良好运算性质,就是数形结合与转换得桥梁与纽带。而解析几何也具有数形结合与转换得特征,所以在向量与解析几何知识得交汇处设计试题,已逐渐成为高考命题得一个新得亮点。近几年全国各地得高考试题中,向量与解析结合得综合问题时有出现。但从最近教学情况来瞧,学生对这一类问题得掌握不到位,在试卷上经常出现进退两难得境地,因此,就这一问题做一归纳总结与反思。
对“导数得应用”得教学反思
数学组施冬芳
新教材引进导数之后,无疑为中学数学注入了新得活力,它在函数得单调性、极值、最值等方面有着广泛得应用,还可以证明不等式,求曲线得切线方程等等。导数得应用一直就是高考试题得重点与热点之一。本文对几类常见问题进行剖析与探究。
问题⑴:若为函数f(x)得极值点,则= 0吗?
相关文档
最新文档