2013立体几何理科总复习杨老师专题讲座共五讲20121223

合集下载

高考立体几何专题复习公开课获奖课件

高考立体几何专题复习公开课获奖课件
(7)假如一种平面与另一种平面垂线平行, 则这两个平面互相垂直
第20页
面面垂直鉴定
假如一种平面通过另一种平面一条 垂线,则这两个平面互相垂直
推论:假如一种平面与另一种平面垂线 平行,则这两个平面互相垂直
第21页
面面垂直性质
假如两个平面垂直,则在一种平面内垂直 于它们交线直线垂直于另一种平面
推论:假如两个相交平面都与另一种平面 垂直,则这两个平面交线 l 垂直于另一种 平面
(3)推论:
假如一种平面内两条相交直线与另一种平面两条 相交直线分别平行,那么这两个平面平行。
第10页
(4)运用线面垂直:
假如两个平面分别垂直于同一条直线,那么这两 个平面平行。
(5)运用面面平行:
假如两个平面都平行于第三个平面,那么这两个 平面平行。
(6)运用距离:
假如一种平面上所有点到另一种平面距离相等, 那么这两个平面平行。
α
a
直线与平 面所成角
βA Pm
αB
二面角
00<θ≤900
00≤ θ≤900
00≤θ ≤1800
空间角计算环节:一作、二证、三算
第34页
空间中角解法小结
1、异面直线所成角措施 (1)平移法(2)补形法
2、直线与平面所成角措施
关键:抓垂足、斜足,找斜线在平面内射影。
3、二面角
找二面角棱,进而找棱两条垂线
第6页
(4)运用垂直
假如一条直线和一种平面分别与另一种平面垂 直,且直线不在这个平面内,则这条直线和这 个平面平行。
(5)运用平行 假如一条直线与两个平行平面中一种平 行且不在另一种平面内,则这条直线与 另一种平面平行。
(6)运用距离

2012版高考数学3-2-1精品系列专题09立体几何理(教师版1)

2012版高考数学3-2-1精品系列专题09立体几何理(教师版1)

关性质与判定定理 . 理解以下判定定理 . ◆如果平面外一条直线与此平面内的一条直线
平行,那么该直线与此平面平行 . ◆如果一个平面内的两条相交直线与另一个平面都平行,
那么这两个平面平行 . ◆如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与
此平面垂直 . ◆如果一个平面经过另一个平面的垂线, 那么这两个平面互相垂直 . 理解以下性
因为 AA1 平面 ABCD ,BD 平面 ABCD ,所以 BD AA1 ,
2012 版高考数学 3-2-1 精品系列专题 09 立体几何 理 (教师版 1)
【考点定位】 2012 考纲解读和近几年考点分布 2012 考纲解读 考纲原文:
(1)空间几何体 ① 认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征 描述现实生活中简单物体的结构 . ② 能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱 等的简易组合) 的三视图, 能识别上述的三视图所表示的立体模型, 会用斜二测法画出它们 的直观图 . ③ 会用平行投影与中心投影两种方法, 画出简单空间图形的三视图与直观图, 了 解空间图形的不同表示形式 . ④ 会画某些建筑物的视图与直观图 (在不影响图形特征的基础 上,尺寸、线条等不作严格要求) . ⑤ 了解球、棱柱、棱锥、台的表面积和体积的计算公式 (不要求记忆公式) .
( D) EF与 GH 的交点 M 一定在直线 AC 上
解 :依题意,可得 EH∥ BD, FG∥ BD,故 EH∥ FG,由公理 2 可知,
1 FG 2
E、F、G、H 共面,因为 EH= BD, = ,故 EH≠ FG,所以, EFGH
2 BD 3
是梯形, EF与 GH 必相交,设交点为 M ,因为点 M 在 EF 上,故点 M 在

立体几何与空间向量之 空间点、直线、平面之间的位置关系课件-2025届高三数学一轮复习

立体几何与空间向量之 空间点、直线、平面之间的位置关系课件-2025届高三数学一轮复习
(3) DE , BF , CC 1三线交于一点. [解析] 因为 EF ∥ BD 且 EF < BD ,所以 DE 与 BF 相交,设交点为 M ,则由 M ∈ DE , DE ⊂平面 D 1 DCC 1,得 M ∈平面 D 1 DCC 1,同理, M ∈平面 B 1 BCC 1. 又平面 D 1 DCC 1∩平面 B 1 BCC 1= CC 1,所以 M ∈ CC 1. 所以 DE , BF , CC 1三线交于一点.
(2)若 A 1 C 交平面 DBFE 于点 R ,则 P , Q , R 三点共线. [解析] 记 A 1, C , C 1三点确定的平面为平面α,平面 BDEF 为平面β.因为 Q ∈ A 1 C 1,所以 Q ∈α.又 Q ∈ EF ,所以 Q ∈β,所以 Q 是α与β的公共点.同理, P 是α与β的公共点,所以α∩β= PQ . 又 A 1 C ∩β= R ,所以 R ∈ A 1 C , R ∈α,且 R ∈β,则 R ∈ PQ ,故 P , Q , R 三点共线.
B. AC
C. AD1
D. B1C
[解析] 对于A,如图1,当点 P 为 A 1 C 1的中点时,连接 B 1 D 1, BD ,则 P 在 B 1 D 1 上, BP ⊂平面 BDD 1 B 1,又 DD 1⊂平面 BDD 1 B 1,所以 BP 与 DD 1共面,故A错误;
图1
对于B,如图2,连接 AC ,易知 AC ⊂平面 ACC 1 A 1, BP ⊄平面 ACC 1 A 1,且 BP ∩ 平面 ACC 1 A 1= P , P 不在 AC 上,所以 BP 与 AC 为异面直线,故B正确;当点 P 与 点 C 1重合时,连接 AD 1, B 1 C (图略),由正方体的性质,易知 BP ∥ AD 1, BP 与 B 1 C 相交,故C,D错误.故选B.

2013高考新课标数学考点总复习 考点6 善于观察,精妙转化,做好立体几何不再是难事

2013高考新课标数学考点总复习 考点6 善于观察,精妙转化,做好立体几何不再是难事

2013高考新课标数学考点总复习一.专题综述理科的立体几何由三部分组成,一是空间几何体,二是空间点、直线、平面的位置关系,三是立体几何中的向量方法.高考在命制立体几何试题中,对这三个部分的要求和考查方式是不同的.在空间几何体部分,主要是以空间几何体的三视图为主展开,考查空间几何体三视图的识别判断、考查通过三视图给出的空间几何体的表面积和体积的计算等问题,试题的题型主要是选择题或者填空题,在难度上也进行了一定的控制,尽管各地有所不同,但基本上都是中等难度或者较易的试题;在空间点、直线、平面的位置关系部分,主要以解答题的方法进行考查,考查的重点是空间线面平行关系和垂直关系的证明,而且一般是这个解答题的第一问;对立体几何中的向量方法部分,主要以解答题的方式进行考查,而且偏重在第二问或者第三问中使用这个方法,考查的重点是使用空间向量的方法进行空间角和距离等问题的计算,把立体几何问题转化为空间向量的运算问题.二.考纲解读1.空间几何体:该部分要牢牢抓住各种空间几何体的结构特征,通过对各种空间几何体结构特征的了解,认识各种空间几何体的三视图和直观图,通过三视图和直观图判断空间几何体的结构,在此基础上掌握好空间几何体的表面积和体积的计算方法.2.空间点、直线、平面的位置关系:该部分的基础是平面的性质、空间直线与直线的位置关系,重点是空间线面平行和垂直关系的判定和性质,面面平行和垂直关系的判定和性质.在复习中要牢牢掌握四个公理和八个定理及其应用,重点掌握好平行关系和垂直关系的证明方法.3.空间向量与立体几何:由于有平面向量的基础,空间向量部分重点掌握好空间向量基本定理和共面向量定理,在此基础上把复习的重心放在如何把立体几何问题转化为空间向量问题的方法,并注重运算能力的训练.三.2013年高考命题趋向1.以选择题或者填空题的形式考查空间几何体的三视图以及表面积和体积的计算.对空间几何体的三视图的考查有难度加大的趋势,通过这个试题考查考生的空间想象能力;空间几何体的表面积和体积计算以三视图为基本载体,交汇考查三视图的知识和面积、体积计算,试题难度中等.2.以解答题的方式考查空间线面位置关系的证明,在解答题中的一部分考查使用空间向量方法求解空间的角和距离,以求解空间角为主,特别是二面角.四.高频考点解读考点一三视图的辨别与应用例1[2011·课标全国卷]在一个几何体的三视图中,正视图和俯视图所示,则相应的侧视图可以为()【答案】D【解析】由正视图和俯视图知几何体的直观图是由一个半圆锥和一个三棱锥组合而成的,,故侧视图选D.例2[2011·山东卷]右图是长和宽分别相等的两个矩形.给定下列三个命题:①存在三棱柱,其正(主)视图、俯视图如右图;②存在四棱柱,其正(主)视图、俯视图如右图;③存在圆柱,其正(主)视图、俯视图如右图.其中真命题的个数是( ).A.3 B.2 C.1 D.0【答案】A.【解析】对于①,可以是放倒的三棱柱;②可以是长方体;③可以是放倒了的圆柱.故选择A.另解:①②③均是正确的,只需①底面是等腰直角三角形的直四棱柱,让其直角三角形直角边对应的一个侧面平卧;②直四棱柱的两个侧面是正方形或一正四棱柱平躺;③圆柱平躺即可使得三个命题为真,答案选A.【解析】由正视图可排除A,C;由侧视图可判断该该几何体的直观图是B.【解题技巧点睛】对于简单几何体的组合体的三视图,首先要确定正视、侧视、俯视的方向,其次要注意组合体由哪些几何体组成,弄清它们的组成方式,特别应注意它们的交线的位置.考点二求几何体的体积例4[2011·陕西卷] 某几何体的三视图如图1-2所示,则它的体积是( )A .8-2π3B .8-π3C .8-2π D.2π3【答案】A【解析】 分析图中所给的三视图可知,对应空间几何图形,应该是一个棱长为2的正方体中间挖去一个半径为1,高为2的圆锥,则对应体积为:V =2×2×2-13π×12×2=8-23π.例5 [2011·课标全国卷] 已知两个圆锥有公共底面,且两圆锥的顶点和底面的圆周都在同一个球面上,若圆锥底面面积是这个球面面积的316,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为________.【答案】13【解析】 如图,设球的半径为R ,圆锥底面半径为r ,则球面面积为4πR 2,圆锥底面面积为πr 2,由题意πr 2=1216πR 2,所以r =32R ,所以OO 1=OA 2-O 1A 2=R 2-34R 2=12R ,所以SO 1=R +12R =32R , S 1O 1=R -12R =12R ,所以S 1O 1SO 1=R23R 2=13.例6[2011·安徽卷] 如图,ABEDFC 为多面体,平面ABED 与平面ACFD 垂直,点O 在线段AD 上,OA =1,OD =2,△OAB ,△OAC ,△ODE ,△ODF 都是正三角形. (1)证明直线BC ∥EF ;(2)求棱锥F -OBED 的体积. 【解答】 (1)(综合法)证明:设G 是线段DA 与线段EB 延长线的交点,由于△OAB 与△ODE 都是正三角形,OA =1,OD =2,所以OB 綊12DE ,OG =OD =2.同理,设G ′是线段DA 与线段FC 延长线的交点,有OC 綊12DF ,OG ′=OD =2,又由于G 和G ′都在线段DA 的延长线上,所以G 与G ′重合.在△GED 和△GFD 中,由OB 綊12DE 和OC 綊12DF ,可知B ,C 分别是GE 和GF 的中点,所以BC 是△GEF 的中位线,故BC ∥EF . (向量法)过点F 作FQ ⊥AD ,交AD 于点Q ,连QE .由平面ABED ⊥平面ADFC ,知FQ ⊥平面ABED .以Q 为坐标原点,QE →为x 轴正向,QD →为y 轴正向,QF →为z 轴正向,建立如图所示空间直角坐标系.由条件知E (3,0,0),F (0,0,3),B ⎝⎛⎭⎫32,-32,0,C ⎝⎛⎭⎫0,-32,32. 则有BC →=⎝⎛⎭⎫-32,0,32,EF →=(-3,0,3).所以EF →=2BC →,即得BC ∥EF .(2)由OB =1,OE =2,∠EOB =60°,知S △EOB =32.而△OED 是边长为2的正三角形,故S △OED = 3.所以S 四边形OBED =S △EOB +S △OED =332.过点F 作FQ ⊥AD ,交AD 于点Q ,由平面ABED ⊥平面ACFD 知,FQ 就是四棱锥F-OBED 的高,且FQ =3,所以V F -OBED =13FQ ·S 四边形OBED =32.【解题技巧点睛】当给出的几何体比较复杂,有关的计算公式无法运用,或者虽然几何体并不复杂,但条件中的已知元素彼此离散时,我们可采用“割”、“补”的技巧,化复杂几何体为简单几何体(柱、锥、台),或化离散为集中,给解题提供便利. (1)几何体的“分割”:几何体的分割即将已知的几何体按照结论的要求,分割成若干个易求体积的几何体,进而求之. (2)几何体的“补形”:与分割一样,有时为了计算方便,可将几何体补成易求体积的几何体,如长方体、正方体等.另外补台成锥是常见的解决台体侧面积与体积的方法,由台体的定义,我们在有些情况下,可以将台体补成锥体研究体积.(3)有关柱、锥、台、球的面积和体积的计算,应以公式为基础,充分利用几何体中的直角三角形、直角梯形求有关的几何元素.考点三 求几何体的表面积【答案】C【解析】 由三视图可知本题所给的是一个底面为等腰梯形的放倒的直四棱柱(如图所示),所以该直四棱柱的表面积为S =2×12×(2+4)×4+4×4+2×4+2×1+16×4=48+817.例8[2011·陕西卷] 如图,在△ABC 中,∠ABC =45°,∠BAC =90°,AD 是BC 上的高,沿AD 把△ABD 折起,使∠BDC =90°.(1)证明:平面ADB ⊥平面BDC ;(2)若BD =1,求三棱锥D -ABC 的表面积. 【解答】 (1)∵折起前AD 是BC 边上的高,∴当△ABD 折起后,AD ⊥DC ,AD ⊥DB .又DB ∩DC =D . ∴AD ⊥平面BDC . ∵AD 平面ABD ,∴平面ABD ⊥平面BDC .(2)由(1)知,DA ⊥DB ,DB ⊥DC ,DC ⊥DA , DB =DA =DC =1. ∴AB =BC =CA = 2.从而S △DAB =S △DBC =S △DCA =12×1×1=12.S △ABC =12×2×2×sin60°=32.∴表面积S =12×3+32=3+32.【解题技巧点睛】以三视图为载体考查几何体的表面积,关键是能够对给出的三视图进行恰当的分析,从三视图中发现几何体中各元素间的位置关系及数量关系.考点四 平行与垂直例9[2011·辽宁卷] 如图,四棱锥S -ABCD 的底面为正方形,SD ⊥底面ABCD ,则下列结论中不正确...的是( ) A .AC ⊥SBB .AB ∥平面SCDC .SA 与平面SBD 所成的角等于SC 与平面SBD 所成的角 D .AB 与SC 所成的角等于DC 与SA 所成的角 【答案】D 【解析】 ①由SD ⊥底面ABCD ,得SD ⊥AC ,又由于在正方形ABCD 中,BD ⊥AC ,SD ∩BD =D ,所以AC ⊥平面SBD ,故AC ⊥SB ,即A 正确.②由于AB ∥CD ,AB ⊄平面SCD ,CD ⊂平面SCD ,所以AB ∥平面SCD ,即B 正确.③设AC ,BD 交点为O ,连结SO ,则由①知AC ⊥平面SBD ,则由直线与平面成角定义知SA 与平面SBD 所成的角为∠ASO ,SC 与平面SBD 所成的角为∠CSO .由于△ADS ≌△CDS ,所以SA =SC ,所以△SAC 为等腰三角形,又由于O 是AC 的中点,所以∠ASO =∠CSO ,即C 正确.④因为AD ∥CD ,所以AB 与SC 所成的角为∠SCD ,DC 与SA 所成的角为∠SAB ,∠SCD 与∠SAB 不相等,故D 项不正确.例10 [2011·课标全国卷] 如图,四棱锥P -ABCD 中,底面ABCD 为平行四边形,∠DAB =60°,AB =2AD ,PD ⊥底面ABCD . (1)证明:P A ⊥BD ;(2)设PD =AD =1,求棱锥D -PBC 的高. 【解答】 (1)证明:因为∠DAB =60°,AB =2AD ,由余弦定理得BD =3AD ,从而BD 2+AD 2=AB 2,故BD ⊥AD . 又PD ⊥底面ABCD ,可得BD ⊥PD ,所以BD ⊥平面P AD ,故P A ⊥BD . (2)如图,作DE ⊥PB ,垂足为E . 已知PD ⊥底面ABCD ,则PD ⊥BC .由(1)知BD ⊥AD ,又BC ∥AD ,所以BC ⊥BD . 故BC ⊥平面PBD ,BC ⊥DE . 则DE ⊥平面PBC .由题设知PD =1,则BD =3,PB =2.根据DE ·PB =PD ·BD 得DE =32.即棱锥D -PBC 的高为32.例11[2011·山东卷] 如图,在四棱台ABCD -A 1B 1C 1D 1中,D 1D ⊥平面ABCD ,底面ABCD 是平行四边形,AB =2AD ,AD =A 1B 1,∠BAD =60°.(1)证明:AA 1⊥BD ;(2)证明:CC1∥平面A 1BD . 证明:(1)证法一:因为D 1D ⊥平面ABCD ,且BD ⊂平面ABCD , 所以D 1D ⊥BD .又因为AB =2AD ,∠BAD =60°, 在△ABD 中,由余弦定理得 BD 2=AD 2+AB 2-2AD ·AB cos60°=3AD 2. 所以AD 2+BD 2=AB 2, 所以AD ⊥BD . 又AD ∩D 1D =D ,所以BD ⊥平面ADD 1A 1. 又AA 1⊂平面ADD 1A 1, 所以AA 1⊥BD . 证法二:因为D 1D ⊥平面ABCD ,且BD ⊂平面ABCD , 所以BD ⊥D 1D .取AB 的中点G ,连接DG .在△ABD 中,由AB =2AD 得AG =AD , 又∠BAD =60°,所以△ADG 为等边三角形. 因此GD =GB .故∠DBG =∠GDB , 又∠AGD =60°, 所以∠GDB =30°,故∠ADB =∠ADG +∠GDB =60°+30°=90°,所以BD ⊥AD . 又AD ∩D 1D =D ,所以BD ⊥平面ADD 1A 1, 又AA 1⊂平面ADD 1A 1, 所以AA 1⊥BD . (2)连接AC ,A 1C 1.设AC ∩BD =E ,连接EA 1.因为四边形ABCD 为平行四边形,所以EC =12AC ,由棱台定义及AB =2AD =2A 1B 1知, A 1C 1∥EC 且A 1C 1=EC ,所以四边形A 1ECC 1为平行四边形. 因此CC 1∥EA 1,又因为EA 1⊂平面A 1BD ,CC 1⊄平面A 1BD , 所以CC 1∥平面A 1BD .【解题技巧点睛】在立体几何的平行关系问题中,“中点”是经常使用的一个特殊点,无论是试题本身的已知条件,还是在具体的解题中,通过找“中点”,连“中点”,即可出现平行线,而线线平行是平行关系的根本.在垂直关系的证明中,线线垂直是问题的核心,可以根据已知的平面图形通过计算的方式证明线线垂直,也可以根据已知的垂直关系证明线线垂直,其中要特别重视两个平面垂直的性质定理,这个定理已知的是两个平面垂直,结论是线面垂直.考点五 与球相关的问题例12 [2011·课标全国卷] 已知矩形ABCD 的顶点都在半径为4的球O 的球面上,且AB =6,BC =23,则棱锥O -ABCD 的体积为________.【答案】83【解析】 如图,由题意知,截面圆的直径为62+(23)2=48=43, 所以四棱锥的高||OO 1=OA 2-O 1A 2=16-12=2,所以其体积V =13S 矩形ABCD ·||OO 1=13×6×23×2=8 3. 例13[2011·辽宁卷] 已知球的直径SC =4,A ,B 是该球球面上的两点,AB =3,∠ASC =∠BSC =30°,则棱锥S -ABC 的体积为( ) A .3 3 B .2 3 C. 3 D .1 【答案】C【解析】 如图,过A 作AD 垂直SC 于D ,连接BD . 由于SC 是球的直径,所以∠SAC =∠SBC =90°,又∠ASC =∠BSC =30°,又SC 为公共边,所以△SAC ≌△SBC .由于AD ⊥ SC ,所以BD ⊥SC .由此得SC ⊥平面ABD .所以V S -ABC =V S -ABD +V C -ABD =13S △ABD ·SC .由于在直角三角形△SAC 中∠ASC =30°,SC =4,所以AC =2,SA =23,由于AD =SA ·CA SC = 3.同理在直角三角形△BSC 中也有BD =SB ·CBSC= 3.又AB =3,所以△ABD 为正三角形,所以V S -ABC =13S △ABD ·SC =13×12×(3)2·sin60°×4=3,所以选C.【解题技巧点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.球与旋转体的组合,通常作它们的轴截面进行解题,球与多面体的组合,通过多面体的一条侧棱和球心,或“切点”、“接点”作出截面图考点六 异面直线所成的角例14[2011·天津卷] 如图所示,在三棱柱ABC -A 1B 1C 1中,H 是正方形AA 1B 1B 的中心,AA 1=22,C 1H ⊥平面AA 1B 1B ,且C 1H = 5.(1)求异面直线AC 与A 1B 1所成角的余弦值; (2)求二面角A -A 1C 1-B 1的正弦值;(3)设N 为棱B 1C 1的中点,点M 在平面AA 1B 1B 内,且MN ⊥平面A 1B 1C 1,求线段BM 的长.【解答】 方法一:如图所示,建立空间直角坐标系,点B 为坐标原点.依题意得A (22,0,0),B (0,0,0),C (2,-2,5),A 1(22,22,0),B 1(0,22,0),C 1(2,2,5).(1)易得AC →=(-2,-2,5),A 1B 1→=(-22,0,0),于是cos 〈AC →,A 1B 1→〉=AC →·A 1B 1→|AC →||A 1B 1→|=43×22=23.所以异面直线AC 与A 1B 1所成角的余弦值为23.(2)易知AA 1→=(0,22,0),A 1C 1→=(-2,-2,5).设平面AA 1C 1的法向量m =(x ,y ,z ),则⎩⎪⎨⎪⎧m ·A 1C 1→=0,m ·AA 1→=0.即⎩⎨⎧-2x -2y +5z =0,22y =0.不妨令x =5,可得m =(5,0,2).同样地,设平面A 1B 1C 1的法向量n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·A 1C 1→=0,n ·A 1B 1→=0.即⎩⎨⎧-2x -2y +5z =0,-22x =0.不妨令y =5,可得n =(0,5,2).于是cos 〈m ,n 〉=m·n|m|·|n|=27·7=27,从而sin 〈m ,n 〉=357.所以二面角A -A 1C 1-B 1的正弦值为357.(3)由N 为棱B 1C 1的中点,得N ⎝⎛⎭⎫22,322,52. 设M (a ,b,0),则MN →=⎝⎛⎭⎫22-a ,322-b ,52. 由MN ⊥平面A 1B 1C 1,得⎩⎪⎨⎪⎧MN →·A 1B 1→=0,MN →·A 1C 1→=0.即⎩⎪⎨⎪⎧⎝⎛⎭⎫22-a ·(-22)=0,⎝⎛⎭⎫22-a ·(-2)+⎝⎛⎭⎫322-b ·(-2)+52·5=0.解得⎩⎨⎧a =22,b =24,故M ⎝⎛⎭⎫22,24,0.因此BM →=⎝⎛⎭⎫22,24,0,所以线段BM 的长|BM →|=104.方法二:(1)由于AC ∥A 1C 1.故∠C 1A 1B 1是异面直线AC 与A 1B 1所成的角.因为C 1H ⊥平面AA 1B 1B ,又H 为正方形AA 1B 1B 的中心,AA 1=22,C 1H =5,可得A 1C 1=B 1C 1=3.因此cos ∠C 1A 1B 1=A 1C 21+A 1B 21-B 1C 212A 1C 1·A 1B 1=23.所以异面直线AC 与A 1B 1所成角的余弦值为23.(2)连接AC 1,易知AC 1=B 1C 1.又由于AA 1=B 1A 1,A 1C 1=A 1C 1,所以△AC 1A 1≌△B 1C 1A 1.过点A 作AR ⊥A 1C 1于点R ,连接B 1R ,于是B 1R ⊥A 1C 1.故∠ARB 1为二面角A -A 1C 1-B 1的平面角.在Rt △A 1RB 1中,B 1R =A 1B 1·sin ∠RA 1B 1=22·1-⎝⎛⎭⎫232=2143.连接AB 1,在△ARB 1中,AB 1=4,AR =B 1R ,cos ∠ARB 1=AR 2+B 1R 2-AB 212AR ·B 1R =-27,从而sin ∠ARB 1=357.所以二面角A -A 1C 1-B 1的正弦值为357.(3)因为MN ⊥平面A 1B 1C 1,所以MN ⊥A 1B 1,取HB 1中点D ,连接ND .由于N 是棱B 1C 1中点,所以ND ∥C 1H 且ND =12C 1H =52.又C 1H ⊥平面AA 1B 1B ,所以ND ⊥平面AA 1B 1B .故ND⊥A 1B 1.又MN ∩ND =N ,所以A 1B 1⊥平面MND .连接MD 并延长交A 1B 1于点E ,则ME ⊥A 1B 1.故ME ∥AA 1.由DE AA 1=B 1E B 1A 1=B 1D B 1A =14,得DE =B 1E =22,延长EM 交AB 于点F ,可得BF =B 1E =22.连接NE .在Rt △ENM 中,ND ⊥ME .故ND 2=DE ·DM .所以DM =ND 2DE =524.可得FM =24.连接BM ,在Rt △BFM 中.BM =FM 2+BF 2=104.【解题技巧点睛】异面直线所成的角是近几年高考考查的重点,常以客观题出现,也经常在解答题的某一问中出现,方法灵活,难度不大.主要通过平移把空间问题转化为平面问题,或通过向量的坐标运算求异面直线所成的角,以此来考查空间想象能力和思维能力,利用几何法或向量法解决立体几何问题的能力.考点七 线面角例15[2011·天津卷] 如图,在四棱锥P -ABCD 中,底面ABCD 为平行四边形,∠ADC =45°,AD =AC =1,O 为AC 的中点,PO ⊥平面ABCD ,PO =2,M 为PD 的中点. (1)证明PB ∥平面ACM ; (2)证明AD ⊥平面P AC ;(3)求直线AM 与平面ABCD 所成角的正切值.【解答】 (1)证明:连接BD ,MO .在平行四边形ABCD 中,因为O 为AC 的中点,所以O 为BD 的中点.又M 为PD 的中点,所以PB ∥MO .因为PB ⊄平面ACM ,MO ⊂平面ACM ,所以PB ∥平面ACM .(2)证明:因为∠ADC =45°,且AD =AC =1,所以∠DAC =90°,即AD ⊥AC .又PO ⊥平面ABCD ,AD ⊂平面ABCD ,所以PO ⊥AD .而AC ∩PO =O ,所以AD ⊥平面P AC .(3)取DO 中点N ,连接MN ,AN .因为M 为PD 的中点,所以MN ∥PO ,且MN =12PO =1.由PO ⊥平面ABCD ,得MN ⊥平面ABCD ,所以∠MAN 是直线AM 与平面ABCD 所成的角.在Rt △DAO 中,AD =1,AO =12,所以DO =52.从而AN =12DO =54.在Rt △ANM 中,tan ∠MAN =MN AN =154=455,即直线AM 与平面ABCD 所成角的正切值为455.【解题技巧点睛】求线面角,解题时要明确线面角的范围,利用转化思想,将其转化为一个平面内的角,通过解三角形来解决.求解的关键是作出垂线,即从斜线上选取异于斜足的一点作平面的垂线.有时也可采用间接法和空间向量法,借助公式直接求解.考点八 二面角(理)例16[2011·课标全国卷] 如图,四棱锥P -ABCD 中,底面ABCD 为平行四边形,∠DAB =60°,AB =2AD ,PD ⊥底面ABCD .(1)证明:P A ⊥BD ;(2)若PD =AD ,求二面角A -PB -C 的余弦值.【解答】 (1)因为∠DAB =60°,AB =2AD ,由余弦定理得BD =3AD ,从而BD 2+AD 2=AB 2,故BD ⊥AD . 又PD ⊥底面ABCD ,可得BD ⊥PD , 所以BD ⊥平面P AD .故P A ⊥BD .(2)如图,以D 为坐标原点,AD 的长为单位长,DA 、DB 、DP 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系D -xyz ,则A (1,0,0),B (0,3,0),C (-1,3,0),P (0,0,1), AB →=(-1,3,0),PB →=(0,3,-1),BC →=(-1,0,0). 设平面P AB 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·AB →=0,n ·PB →=0,即⎩⎨⎧-x +3y =0,3y -z =0.因此可取n =(3,1,3).设平面PBC 的法向量为m ,则⎩⎪⎨⎪⎧m ·PB →=0,m ·BC →=0,可取m =(0,-1,-3).cos 〈m ,n 〉=-427=-277.故二面角A -PB -C 的余弦值为-277.例17[2011·广东卷] 如图,在锥体P -ABCD 中,ABCD 是边长为1的菱形,且∠DAB =60°,P A =PD =2,PB =2,E ,F 分别是BC ,PC 的中点. (1)证明:AD ⊥平面DEF ;(2)求二面角P -AD -B 的余弦值.【解答】 法一:(1)证明:设AD 中点为G ,连接PG ,BG ,BD .因P A =PD ,有PG ⊥AD ,在△ABD 中,AB =AD =1,∠DAB =60°,有△ABD 为等边三角形,因此BG ⊥AD ,BG ∩PG =G ,所以AD ⊥平面PBG ,所以AD ⊥PB ,AD ⊥GB .又PB ∥EF ,得AD ⊥EF ,而DE ∥GB 得AD ⊥DE ,又FE ∩DE =E ,所以AD ⊥平面DEF . (2)∵PG ⊥AD ,BG ⊥AD ,∴∠PGB 为二面角P -AD -B 的平面角.在Rt △P AG 中,PG 2=P A 2-AG 2=74,在Rt △ABG 中,BG =AB ·sin60°=32,∴cos ∠PGB =PG 2+BG 2-PB 22PG ·BG =74+34-42·72·32=-217.法二:(1)证明:设AD 中点为G ,因为P A =PD ,所以PG ⊥AD , 又AB =AD ,∠DAB =60°,所以△ABD 为等边三角形,因此,BG ⊥AD ,从而AD ⊥平面PBG . 延长BG 到O 且使PO ⊥OB ,又PO ⊂平面PBG ,所以PO ⊥AD ,又AD ∩OB =G ,所以PO ⊥平面ABCD.以O 为坐标原点,菱形的边长为单位长度,直线OB ,OP 分别为x 轴,z 轴,平行于AD 的直线为y 轴,建立如图1-2所示的空间直角坐标系.设P (0,0,m ),G (n,0,0),则A ⎝⎛⎭⎫n ,-12,0,D ⎝⎛⎭⎫n ,12,0. ∵|GB →|=|AB →|sin60°=32,∴B ⎝⎛⎭⎫n +32,0,0,C ⎝⎛⎭⎫n +32,1,0,E ⎝⎛⎭⎫n +32,12,0,F ⎝⎛⎭⎫n 2+34,12,m 2. ∴AD →=(0,1,0),DE →=⎝⎛⎭⎫32,0,0,FE →=⎝⎛⎭⎫n 2+34,0,-m 2,∴AD →·DE →=0,AD →·FE →=0, ∴AD ⊥DE ,AD ⊥FE ,又DE ∩FE =E ,∴AD ⊥平面DEF .(2)∵P A →=⎝⎛⎭⎫n ,-12,-m ,PB →=⎝⎛⎭⎫n +32,0,-m , ∴m 2+n 2+14=2,⎝⎛⎭⎫n +322+m 2=2,解得m =1,n =32.取平面ABD 的法向量n 1=(0,0,-1), 设平面P AD 的法向量n 2=(a ,b ,c ),由P A →·n 2=0,得32a -b 2-c =0,由PD →·n 2=0,得32a +b 2-c =0,故取n 2=⎝⎛⎭⎫1,0,32.∴cos 〈n 1,n 2〉=-321·74=-217.即二面角P -AD -B 的余弦值为-217【解题技巧点睛】在充分理解掌握二面角的定义的基础上,灵活应用定义法、三垂线定理法、垂面法等确定二面角的平面角,其中面面垂直的性质定理是顺利实现转化的纽带.有时也可不用作出二面角而直接求解,如射影面积法、空间向量法等.考点九 空间向量的应用例18[2011·陕西卷] 如图,在△ABC 中,∠ABC =60°,∠BAC =90°,AD 是BC 上的高,沿AD 把△ABD 折起,使∠BDC =90°.(1)证明:平面ADB ⊥平面BDC ;(2)设E 为BC 的中点,求AE →与DB →夹角的余弦值. 【解答】 (1)∵折起前AD 是BC 边上的高,∴当△ABD 折起后,AD ⊥DC ,AD ⊥DB . 又DB ∩DC =D ,∴AD ⊥平面BDC , ∵AD 平面ABD ,∴平面ABD ⊥平面BDC . (2)由∠BDC =90°及(1)知DA ,DB ,DC 两两垂直,不妨设|DB |=1,以D 为坐标原点,以DB →,DC →,DA →所在直线为x ,y ,z 轴建立如图所示的空间直角坐标系,易得D (0,0,0),B (1,0,0),C (0,3,0),A (0,0,3),E ⎝⎛⎭⎫12,32,0.∴AE →=⎝⎛⎭⎫12,32,-3,DB →=(1,0,0), ∴AE →与DB →夹角的余弦值为cos 〈AE →,DB →〉=AE →·DB →|AE →|·|DB →|=121×224=2222.例19[2011·辽宁卷] 如图,四边形ABCD 为正方形,PD ⊥平面ABCD ,PD ∥QA ,QA =AB =12PD .(1)证明:平面PQC ⊥平面DCQ ; (2)求二面角Q -BP -C 的余弦值.【解答】 如图,以D 为坐标原点,线段DA 的长为单位长,射线DA 为x 轴的正半轴建立空间直角坐标系D -xyz .(1)依题意有Q (1,1,0),C (0,0,1),P (0,2,0).则DQ →=(1,1,0),DC →=(0,0,1),PQ →=(1,-1,0),所以PQ →·DQ →=0,PQ →·DC →=0. 即PQ ⊥DQ ,PQ ⊥DC . 故PQ ⊥平面DCQ .又PQ ⊂平面PQC ,所以平面PQC ⊥平面DCQ .(2)依题意有B (1,0,1),CB →=(1,0,0),BP →=(-1,2,-1).设n =(x ,y ,z )是平面PBC 的法向量,则⎩⎪⎨⎪⎧n ·CB →=0,n ·BP →=0,即⎩⎪⎨⎪⎧x =0,-x +2y -z =0.因此可取n =(0,-1,-2).设m 是平面PBQ 的法向量,则⎩⎪⎨⎪⎧m ·BP →=0,m ·PQ →=0.可取m =(1,1,1),所以cos 〈m ,n 〉=-155. 故二面角Q -BP -C 的余弦值为-155. 【解题技巧点睛】用向量知识证明立体几何问题有两种基本思路:一种是用向量表示几何量,利用向量的运算进行判断;另一种是用向量的坐标表示几何量,共分三步:(1)建立立体图形与空间向量的联系,用空间向量(或坐标)表示问题中所涉及的点、线、面,把立体几何问题转化为向量问题;(2)通过向量运算,研究点、线、面之间的位置关系;(3)根据运算结果的几何意义来解释相关问题.考点十 探索性问题例20[2011·浙江卷] 如图,在三棱锥P -ABC 中,AB =AC ,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上,已知BC =8,PO =4,AO =3,OD =2. (1)证明:AP ⊥BC ;(2)在线段AP 上是否存在点M ,使得二面角A -MC -B 为直二面角?若存在,求出AM 的长;若不存在,请说明理由.【解答】 方法一:(1)证明:如图,以O 为原点,以射线OP 为z 轴的正半轴,建立空间直角坐标系O -xyz .则O (0,0,0),A (0,-3,0),B (4,2,0),C (-4,2,0),P (0,0,4),AP →=(0,3,4),BC →=(-8,0,0),由此可得AP →·BC →=0,所以AP →⊥BC →,即 AP ⊥BC .(2)设PM →=λP A →,λ≠1,则PM →=λ(0,-3,-4).BM →=BP →+PM →=BP →+λP A →=(-4,-2,4)+λ(0,-3,-4) =(-4,-2-3λ,4-4λ), AC →=(-4,5,0),BC →=(-8,0,0).设平面BMC 的法向量n 1=(x 1,y 1,z 1). 平面APC 的法向量n 2=(x 2,y 2,z 2),由⎩⎪⎨⎪⎧BM →·n 1=0,BC →·n 1=0,得⎩⎪⎨⎪⎧-4x 1-(2+3λ)y 1+(4-4λ)z 1=0,-8x 1=0, 即⎩⎪⎨⎪⎧x 1=0,z 1=2+3λ4-4λy 1,可取n 1=⎝ ⎛⎭⎪⎫0,1,2+3λ4-4λ. 由⎩⎪⎨⎪⎧AP →·n 2=0,AC →·n 2=0,即 ⎩⎪⎨⎪⎧3y 2+4z 2=0,-4x 2+5y 2=0,得⎩⎨⎧x 2=54y 2,z 2=-34y 2,可取n 2=(5,4,-3).由n 1·n 2=0,得4-3·2+3λ4-4λ=0,解得λ=25,故AM =3,综上所述,存在点M 符合题意,AM =3, 方法二:(1)证明:由AB =AC ,D 是BC 的中点,得AD ⊥BC . 又PO ⊥平面ABC ,得PO ⊥BC .因为PO ∩AD =O ,所以BC ⊥平面P AD . 故BC ⊥P A .(2)如图,在平面P AB 内作BM ⊥P A 于M ,连CM , 由(1)中知AP ⊥BC ,得AP ⊥平面BMC .又AP ⊂平面APC ,所以平面BMC ⊥平面APC .在Rt △ADB 中,AB 2=AD 2+BD 2=41,得AB =41. 在Rt △POD 中,PD 2=PO 2+OD 2, 在Rt △PDB 中,PB 2=PD 2+BD 2,所以PB 2=PO 2+OD 2+DB 2=36,得PB =6,在Rt △POA 中,P A 2=AO 2+OP 2=25,得P A =5,又cos ∠BP A =P A 2+PB 2-AB 22P A ·PB =13,从而PM =PB cos ∠BP A =2,所以AM =P A -PM =3. 综上所述,存在点M 符合题意,AM =3.例21 [2011·福建卷] 如图,四棱锥P -ABCD 中,P A ⊥底面ABCD .四边形ABCD 中,AB ⊥AD ,AB +AD =4,CD =2,∠CDA =45°. (1)求证:平面P AB ⊥平面P AD ; (2)设AB =AP .①若直线PB 与平面PCD 所成的角为30°,求线段AB 的长;②在线段AD 上是否存在一个点G ,使得点G 到P 、B 、C 、D 的距离都相等?说明理由.【解答】 (1)证明:因为P A ⊥平面ABCD ,AB ⊂平面ABCD , 所以P A ⊥AB .又AB ⊥AD ,P A ∩AD =A , 所以AB ⊥平面P AD .又AB ⊂平面P AB ,所以平面P AB ⊥平面P AD .(2)①以A 为坐标原点,建立空间直角坐标系A -xyz 在平面ABCD 内,作CE ∥AB 交AD 于点E ,则CE ⊥AD .在Rt △CDE 中,DE =CD ·cos45°=1, CE =CD ·sin45°=1.设AB =AP =t ,则B (t,0,0),P (0,0,t ). 由AB +AD =4得AD =4-t ,所以E (0,3-t,0),C (1,3-t,0),D (0,4-t,0), CD →=(-1,1,0),PD →=(0,4-t ,-t ). 设平面PCD 的法向量为n =(x ,y ,z ).由n ⊥CD →,n ⊥PD →,得⎩⎪⎨⎪⎧-x +y =0.(4-t )y -tz =0.取x =t ,得平面PCD 的一个法向量n =(t ,t,4-t ). 又PB →=(t,0,-t ),故由直线PB 与平面PCD 所成的角为30°得cos60°=⎪⎪⎪⎪⎪⎪n ·P B →|n |·|PB →|,即|2t 2-4t |t 2+t 2+(4-t )2·2t 2=12.解得t =45或t =4(舍去,因为AD =4-t >0),所以AB =45.则GC →=(1,3-t -m,0),GD →=(0,4-t -m,0), GP →=(0,-m ,t ). 由|GC →|=|GD →|得12+(3-t -m )2=(4-t -m )2, 即t =3-m ;① 由|GD →|=|GP →|得(4-t -m )2=m 2+t 2.②由①、②消去t ,化简得m 2-3m +4=0.③由于方程③没有实数根,所以在线段AD 上不存在一个点G ,使得点G 到点P 、C 、D 的距离都相等.从而,在线段AD 上不存在一个点G ,使得点G 到点P ,B ,C ,D 的距离都相等. 法二:假设在线段AD 上存在一个点G ,使得点G 到点P 、B 、C 、D 的距离都相等. 由GC =GD ,得∠GCD =∠GDC =45°,从而∠CGD =90°,即CG ⊥AD . 所以GD =CD ·cos45°=1. 设AB =λ,则AD =4-λ,AG =AD -GD =3-λ. 在Rt △ABG 中, GB =AB 2+AG 2=λ2+(3-λ)2=2⎝⎛⎭⎫λ-322+92>1. 这与GB =GD 矛盾.所以在线段AD 上不存在一个点G ,使得点G 到点B 、C 、D 的距离都相等.从而,在线段AD 上不存在一个点G ,使得点G 到点P ,B ,C ,D 的距离都相等. 【解题技巧点睛】1.对于“是否存在”型问题的探索方式有两种:一种是根据条件作出判断,再进一步论证. 如解决探究某些点或线的存在性问题,一般的方法是先研究特殊点(中点、三等分点等)、特殊位置(平行或垂直),再证明其符合要求,一般来说与平行有关的探索性问题常常寻找三角形的中位线或平行四边形.另一种是利用空间向量,先设出假设存在点的坐标,再根据条件求该点坐标,即找到“存在点”,若该点坐标不能求出,或有矛盾,则判定“不存在”.2.空间向量最适合于解决这类立体几何中的探索性问题,它无需进行复杂繁难的作图、论证、推理,只需通过坐标运算进行判断,在解题过程中,往往把“是否存在”问题转化为“点的坐标是否有规定范围内的解”,所以使问题的解决更简单,有效,应善于运用这一方法解题.针对训练一.选择题1.【湖北省孝感市2011—2012学年度高中三年级第一次统一考试】【答案】C 【解析】由题设条件给出的三视图可知,该几何体为四棱锥,且侧棱SC 垂直底面 ABCD ,如图所示.2,1,SC AB BC CD DA =====且四边形ABCD 为正方形,则12112.33V =⨯⨯⨯= 2.【2012北京海淀区高三年级第一学期期末试题】已知平面α,β,直线l ,若αβ^,l αβ= ,则(A )垂直于平面β的平面一定平行于平面α (B )垂直于直线l 的直线一定垂直于平面α (C )垂直于平面β的平面一定平行于直线l (D )垂直于直线l 的平面一定与平面α,β都垂直 【答案】D【解析】A 错,如墙角的三个平面不满足;B 错,缺少条件直线应该在平面β内;C 错,直线l 也可能在平面内。

空间几何体的结构与计算

空间几何体的结构与计算

名师大讲堂·2013 高考总复习《数学》(理科)
4. 台柱与柱体和锥体的联系 (1)台体是由平行于锥体底面的平面截得的,因此,解决台体 问题的一种方法是:将有关台体的问题转化为锥体的问题解 决(即“还台为锥”). (2) 5.球的结构特征 由球的定义,并类比圆的结构特征得到:在空间中,到一个 定点 O 的距离等于定长 r(r>0)的点的集合叫做球面,球面所 围成的几何体叫做球体.其中定点 O 叫做球的球心.定长 r(r>0)叫做球的半径.
名师大讲堂·2013 高考总复习《数学》(理科)
名师大讲堂·2013 高考总复习《数学》(理科)
空间几何体的结构与计算
名师大讲堂·2013 高考总复习《数学》(理科)
1.简单的几何体:
名师大讲堂·2013 高考总复习《数学》(理科)
2.棱柱、棱锥、棱台的结构特征
几何体
结构特征 ①有两个面(底面)互相平行
名师大讲堂·2013 高考总复习《数学》(理科)
(2)连接 EB、EC 由题意知多面体 ABCD 可分割成正四棱锥 E- ABCD 和正四面体 E-BCF 两部分.设 AD 中点为 M,在 Rt△MEE′中,由于 ME′=1,ME= 3, ∴EE′= 2. 1 1 2 4 2 ∴VE-ABCD= · 正方形 ABCD· S EE′= ×2 × 2= 3 3 3 又 VE-BCF=VC-BEF=VC-BEA=VE-ABC 1 1 1 2 2 2 =3SABC· EE′=3×2×2 × 2= 3 ∴多面体 ABCDEF 的体积为 VE-ABCD+VE-BCF=2 2
名师大讲堂·2013 高考总复习《数学》(理科)
【解析】 长方体 ABCD-A1B1C1D1 的表面可如下图三种方法展 开后,A、C1 两点间的距离分别为: 5+42+32=3 10, 5+32+42=4 5, 3+42+52= 74,三者比较得 74是从点 A 沿表面到 C1 的最 短距离,∴最短距离是 74cm.

老杨数学 高考数学专题讲义

老杨数学 高考数学专题讲义

高考数学专题讲义以下是一个可能的高考数学专题讲义案例,供您参考:一、导数及其应用1.导数的概念和性质2.导数的定义、导数的几何意义、导数的运算性质等。

3.导数在解题中的应用4.利用导数研究函数的单调性、极值与最值、曲线的切线方程等。

5.综合题型解析6.导数与其他知识点的结合,如函数、不等式、数列等,以及压轴题的解题思路等。

二、数列与不等式1.数列的概念与性质2.等差数列、等比数列的定义与性质,数列的通项公式和求和公式等。

3.不等式的性质与解法4.不等式的性质、不等式的解法、不等式的证明等。

5.数列与不等式的综合题型6.数列与不等式的结合题型,如数列求和、不等式证明等。

三、解析几何1.直线与圆2.直线的方程、圆的方程,直线与圆的位置关系等。

3.圆锥曲线4.椭圆、双曲线、抛物线的定义、方程和性质等。

5.解析几何中的最值问题6.利用圆锥曲线的性质求最值等。

四、立体几何1.空间几何体的性质与计算2.空间几何体的表面积、体积的计算等。

3.空间向量及其应用4.空间向量的加法、数乘、向量的模,向量的数量积、向量积等。

5.立体几何中的证明与计算问题6.利用空间向量证明题目,如垂直证明、角度计算等。

五、概率与统计1.概率的基本概念与计算方法2.概率的定义、概率的加法公式、概率的乘法公式等。

3.随机变量的分布及其性质4.离散型随机变量、连续型随机变量的分布及其性质等。

5.统计的基本概念与方法6.总体与样本、统计量及其性质、参数估计和假设检验等。

六、三角函数与解三角形1.三角函数的基本概念与性质2.角度的弧度制、三角函数的定义、三角函数的图象与性质等。

3.三角函数的恒等变换4.同角三角函数的关系、诱导公式、两角和与差的三角函数等。

5.解三角形6.正弦定理、余弦定理、三角形的面积公式等,以及解三角形的实际应用。

七、平面向量1.平面向量的基本概念与性质2.向量的定义、向量的模、向量的方向、零向量、单位向量、平行向量、共线向量、相等向量等。

2013届南京市高三暑期培训讲座4——高三解析几何复习专题讲座(杨东福)

y
.
B2 M
T
4. (10 年 6)在平面直角坐标系 xOy 中, x2 y2 双曲线 - =1 上一点 M,点 M 的横坐标 A 4 12 1 是 3,则 M 到双曲线右焦点的距离是____. 5. (10 年 9)在平面直角坐标系 xOy 中,
O
A2
x
已知圆 x2+y2=4 上有且仅有四个点到直线 12x-5y+c=0 的距离为 1, 则实数 c 的取值范围是______.
解答题(5 道题) 1. (08 年 18)设平面直角坐标系 xOy 中,设二次函数 f(x)=x2+ 2x+b(xR)的图像与两坐标轴有三个交点,经过这三个交点的圆记为 C.求: (1)求实数 b 的取值范围; (2)求圆 C 的方程 (3) 问圆 C 是否经过某定点 (其坐标与 b 无关) ?请证明你的结论.
x2 y2 案例 6.在平面直角坐标系 xOy 中,过双曲线 2- 2=1(a a b >0,b>0)的右焦点 F 作一条渐近线的垂线,垂足为 A,与 另一条渐近线交于点 B,若 OA,AB,OB 成等差数列,且 → → 向量BF与向量FA同向,则双曲线的离心率为 .
1.我们应该做什么?
2.我们能做什么? (1)把方法选择、运算还给学生,让学生经历、体验、
(3)巧用几何性质简化运算.
案例 5. (南京市模考题)在平面直角坐标系 xOy 中,过点 x2 y2 A(-2, -1)的椭圆 C: 2+ 2=1(a>b>0)的左焦点为 F, a b → → 短轴端点为 B1,B2.FB1·FB2=2b2. (1)求 a,b 的值; (2)过点 A 的直线 l,与椭圆 C 的另一个交点为 Q,与 y 轴的交点为 R. 过原点 O 且平行于 l 的直线与椭圆的一个交 点为 P.若 AQ·AR=3OP2,求直线 l 的方程.

2013年状元360一轮复习课件理科数学10.1


DE=
3 2.
故棱锥
D-PBC
的高为
3 2.
【点评】本题考查直线与平面垂直、直线与直线垂直的的 判定与性质、三棱锥的体积、点到平面的距离等基础知识与基 本方法,考查空间想象能力、推理论证能力和运算能力,对平 面几何知识也有一定的要求,属中等偏难题.
【解析】可证 AC⊥平面 D1DBB1,从而 AC⊥BE,A 正确; 由 B1D1∥平面 ABCD,可知 EF∥平面 ABCD,B 正确;连接 BD 交 AC 于 O,则 AO 为三棱锥 A-BEF 的高,SΔBEF=21×21×1 =14,三棱锥 A-BEF 的体积为13×14× 22=242为定值,C 正确, D 错误.故选 D.
【解析】(1)因为∠DAB=60°,AB=2AD,由余弦定理, 得 BD= 3AD.从而 BD2+AD2=AB2.则 BD⊥AD.又 PD⊥底面 ABCD,BD⊂平面 ABCD,可得 BD⊥PD.又 PD∩AD=D,所 以 BD⊥平面 PAD.又 PA⊂平面 PAD,故 PA⊥BD.
(2)如下图所示,作 DE⊥PB,垂足为 E,已知 PD⊥底面 ABCD,BC⊂平面 ABCD,则 PD⊥BC.
1.(2011 全国)已知直二面角 α-l-β,A∈α,AC⊥l,C 为
垂足,B∈β,BD⊥l,D 为垂足,若 AB=2,AC=BD=1,则
CD=( )
A.2
B. 3
C. 2
D.1
【答案】C 【解析】由题意,得 AB2=AC2+CD2+BD2,即 4=1+CD2 +1.解得 CD= 2.故选 C.
4.棱锥的定义及表示方法 有一个面是多边形,其余各面都是有一个公共顶点的
三__角__形__,这些面所围成的多 ___面__体_叫做棱锥.类比棱柱,可以得

2025届高考一轮复习《基本立体图形、简单几何体的表面积与体积》课件

可知 AC1⊥O1M,O1M=0.6,那么 tan∠CAC1=CACC1=OAO1M1 ,
高考一轮总复习•数学
第27页
即 12=A0O.61, 解得 AO1=0.6 2, 根据对称性可知圆柱的高为 3-2×0.6 2≈1.732-1.2×1.414=0.035 2>0.01, 所以能够被整体放入正方体内,故 D 符合题意. 故选 ABD.
高考一轮总复习•数学
第26页
设 OE∩AC=E,可知 AC= 2,CC1=1,AC1= 3,OA= 23,
那么
tan∠CAC1=CACC1=OAOE,即
1 =OE, 23
2
解得 OE= 46,且 462=38=294>295=0.62,
即 46>0.6,
所以以 AC1 为轴可能对称放置底面直径为 1.2 m 圆柱,若底面直径为 1.2 m 的圆柱与正 方体的上下底面均相切,设圆柱的底面圆心为 O1,与正方体的下底面的切点为 M,
圆台
体积 V= Sh =πr2h
V=
1 3Sh
=13πr2h=13πr2
l2-r2
V=13(S 上+S 下+ S上S下)h
=13π(r21+r22+r1r2)h
第11页
高考一轮总复习•数学
名称 棱柱 棱锥 棱台 球
体积 V= Sh
1 V= 3Sh V=13(S 上+S 下+ S上S下)h V=43πR3
= 直观图
2 4S
原图形.
高考一轮总复习•数学
以三角形为例说明原因:
第36页
S
直观图=12B′C′·O′A′·sin
高考一轮总复习•数学
第24页
解析:(1)由圆台定义知,以直角梯形垂直于底边的腰为旋转轴,其余三边旋转一周形 成的面围成的旋转体是圆台,故 A 错误;

【高考数学精品讲义教师版】第三部分_重点板块_专题三立体几何:第1讲空间几何体的三视图、表面积及体积


保留整数,如 544≈23, 550≈23)( )
A.250 平方尺
B.990 平方尺
C.1 035 平方尺
D.518 平方尺
[解析] (1)如图所示,取 BC 的中点 P,连接 PF,则 PF⊥BC,过
F 作 FQ⊥AB,垂足为 Q.
因为△ADE 和△BCF 都是边长为 2 的等边三角形,且 EF ∥AB,
解析:如图,设△BCD 的中心为点 O1,球 O 的半径为 R,则 A,O,
O1 三点共线.连接 O1D,O1E,OD,OE,则 O1D= 3,AO1= AD2-O1D2
=3.在 Rt△OO1D 中,R2=3+(3-R)2,即 R=2,所以 OO1=1.在△O1DE


DE

2 3
BD

2


O1DE
1.(2018·全国卷Ⅰ)某圆柱的高为 2,底面周长为 16,其三视图
如图所示.圆柱表面上的点 M 在正视图上的对应点为 A,圆柱表面
上的点 N 在左视图上的对应点为 B,则在此圆柱侧面上,从 M 到 N
的路径中,最短路径的长度为( )
A.2 17
B.2 5
C.3
D.2
解析:选 B 先画出圆柱的直观图,根据题图的三视图可知点 M,N 的位置如图①所示.
可得 V 圆柱=π·O1M2·O1O=π×122×1=π4 .
第 145 页 共 434 页
(2)把三视图还原成几何体 ABC-DEF,如图所示,在 AD 上取点 G,
使得 AG=2,连接 GE,GF,则把几何体 ABC-DEF 分割成三棱柱
ABC-GEF 和三棱锥 D-GEF,所以 VABC­DEF=VABC­GEF+VD­GEF=4 3×2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

立体几何中的向量方法 专题讲座共五讲20121223第一讲平行与垂直方法总结1.位置关系:(1).两条异面直线相互垂直证明方法:○1证明两条异面直线所成角为90º;○2证明两条异面直线的方向量相互垂直。

(2).直线和平面相互平行证明方法:○1证明直线和这个平面内的一条直线相互平行;○2证明这条直线的方向向量和这个平面内的一个向量相互平行;○3证明这条直线的方向向量和这个平面的法向量相互垂直。

(3).直线和平面垂直证明方法:○1证明直线和平面内两条相交直线都垂直,○2证明直线的方向量与这个平面内不共线的两个向量都垂直;○3证明直线的方向量与这个平面的法向量相互平行。

(4).平面和平面相互垂直证明方法:○1证明这两个平面所成二面角的平面角为90º;○2证明一个平面内的一条直线垂直于另外一个平面;○3证明两个平面的法向量相互垂直。

考点1.利用空间向量证明空间垂直问题利用空间向量证明空间线线、线面、面面垂直问题是高考考查的重点内容,考查形式灵活多样,常与探索性问题、平行问题、空间角问题结合,考查形式可以是小题,也可以是解答题的一部分,或解答题的某个环节,题目容易,是高考中的重要得分点.例1(2010辽宁理19))已知三棱锥P -ABC 中,PA ⊥面ABC ,AB ⊥AC ,PA=AC=12A B ,N 为AB 上一点,AB=4AN,M,S 分别为PB,BC 的中点.证明:CM ⊥SN ;审题要津:本题空间坐标系易建立,可用坐标法.证明:设PA=1,以A 为原点,射线AB ,AC ,AP 分别为x ,y ,z 轴正向建立空间直角坐标系如图,则P (0,0,1),C (0,1,0),B (2,0,0),M (1,0,12),N (12,0,0),S (1,12,0)111(1,1,),(,,0)222C M SN =-=-- ,因为110022C M SN ∙=-++= , 所以CM ⊥SN .【点评】对坐标系易建立的空间线线垂直判定(证明)问题,常用向量法,即通过证明所证直线的方向向量的数量积为0证明两直线垂直.例2(2010天津理19) 在长方体1111A B C D A B C D -中,E 、F 分别是棱B C ,1C C 上的点,C F =A B =2C E , 1::AB AD AA = 1:2:4.证明A F ⊥平面1A E D审题要津:本题空间坐标系易建立,可用坐标法.解析:如图所示,建立空间直角坐标系,点A 为坐标原点,设1AB =,依题意得(0,2,0)D ,(1,2,1)F ,1(0,0,4)A ,31,,02E ⎛⎫⎪⎝⎭已知(1,2,1)A F = ,131,,42EA ⎛⎫=-- ⎪⎝⎭ ,11,,02ED ⎛⎫=- ⎪⎝⎭ 于是AF ·1E A =0,AF ·ED=0.因此,1AF EA ⊥,AF ED ⊥,又1EA ED E ⋂=所以A F ⊥平面1A E D【点评】对坐标系易建立的空间线面垂直问题,通常用向量法,先求出平面的法向量和直线的方向向量,证明平面法向量与直线的方向向量平行或者直接用向量法证明直线与平面内两条相交直线垂直,再用线面垂直判定定理即可.例 3 (2010年山东文)在如图所示的几何体中,四边形FA B C D 是正方形,M A ⊥平面A B C D ,//P D M A ,E 、G 、分别为M B 、P B 、P C 的中点,且2AD PD M A ==.求证:平面E F G ⊥平面P D C .审题要津:本题空间坐标系易建立,可用坐标法.解析:以A 为原点,向量DA ,AB ,AM分别为x 轴、y 轴、z 轴的正方向,如图建立坐标系,设AM=1,则AD=AB=PD=2,则B(0,2,0),C (-2,2,0),D(-2,0,0),P(-2,0,2), M(0,0,1),则E(0,1,12),G(-1,1,1),F(-2,1,1),∴E G =(-1,0,12),G F=(-1,0,0),设平面EFG 的法向量m =(x ,y ,z ),则EG ∙ m =12x z -+=0且GF ∙ m =x -=0,取y =1,则x =z =0,∴m =(0,1,0),易证面PDC 的法向量为DA=(2,0,0), ∵DA ∙ m =200100⨯+⨯+⨯=0,∴m ⊥DA, ∴平面E F G ⊥平面P D C【点评】对于易建立空间坐标系的面面垂直问题,常向量法,即先建立坐标系,求出两个平面的法向量,通过证明这两个平面的法向量垂直,即得面面垂直.考点2.利用空间向量处理空间平行关系空间线线、线面、面面平行关系问题是高考考查的另一个重点内容,考查的形式灵活多样,常与探索性问题、垂直问题、空间角问题结合,可以是小题,也可以是解答题的一个小题,题目的难度一般不大,是高考中的得分点之一.证直线和平面平行定理:已知直线⊄a 平面α,α∈∈D C a B A ,,,,且C 、D 、E 三点不共线,则a ∥α的充要条件是存在有序实数对μλ,使CECD ABμλ+=.(常设CECD ABμλ+=求解μλ,若μλ,存在即证毕,若μλ,不存在,则直线AB 与平面相交).AB例1(2010 湖南理18)在正方体1111ABC D A B C D -,E 是棱1DD 的中点。

在棱11C D 上是否存在一点F ,使1B F ∥平面1A BE ?证明你的结论。

审题要津:本题坐标系易建立,可用向量法求解.解析:以A 为坐标原点,如图建立坐标系,设正方形的棱长为2,则B(2,0,0),E(0,2,1),1A (0,0,2),1B (2,0,2),∴BE=(-2,2,1),1B A =(-2,0,2),设面1BEA 的法向量为m =(x ,y ,z ),则BE ∙ m =22x y z -++=0且1BA ∙m =22x z +=0,取x =1,则z =-1,y =32,∴m =(1,32,-1),假设在棱11C D 上存在一点F ,使1B F ∥平面1A BE ,设F(0x ,2,2)(0≤0x ≤2),则BF =(02x -,2,2), 则BF ∙ m =031(2)2(1)22x ⨯-+⨯+-⨯=0,解得0x =1, ∴当F 为11C D 中点时,1B F ∥平面1A BE .【点评】对于易建立坐标系的线面平行问题的向量解法,有两种思路:(1)用共面向量定理,证明直线的方向向量能用平面内两条相交直线的方向向量表示出来,即这三个向量共线,根据共面向量概念和直线在平面外,可得线面平行;(2)求出平面法向量,然后证明法向量与直线的方向向量垂直即可.对于探索性问题,通常先假设成立,设出相关点的坐标,利用相关知识,列出关于坐标的方程,若方程有解,则存在,否则不存在.注意,(1)设点的坐标时,利用点在某线段上,设出点分线段所成的比,用比表示坐标可以减少未知量,简化计算;(2)注意点的坐标的范围.例2在三棱柱111ABC A B C -中,侧棱垂直于底面,在底面ABC 中A B C ∠=090,D是BC 上一点,且1A B ∥面1AC D ,1D 为11B C 的中点,求证:面11A BD ∥面1AC D .审题要津:本题的坐标系容易建立,可用向量法.解析:以B 点为原点,如图建立坐标系,设AB=a ,BC=2b ,1B B =c ,则A (a ,0,0),1C (0,2b ,c ),1B (0,0, c ),1A (a ,0,c ), ∴1D (0,b ,c ),设D(0,0y ,0)(0≤0y ≤2b ), ∴AD=(-a ,0y ,0),1A C =(-a ,2b ,c ),1B A =(a ,0,c ),1BD =(0,b ,c ),设面1AC D 的法向量为m =(1x ,1y ,1z ),则AD ∙ m =101ax y y -+=0且1AC ∙ m =1112ax by cz -++=0,取1y =a ,则1x =0y ,1z =02ay abc-,则m =(0y ,a ,02ay abc-), 又∵1A B ∥面1AC D ,∴1BA ∙m =002ay abay c c-+⨯=0,解得0y =b , ∴m =(b ,a ,a bc -),设面11A BD 的法向量为n =(2x ,2y ,2z ),则1BA ∙n =22ax cz +=0且1B D ∙ n =22by cz +=0,取2z =1,则2x =c a-,2y =c b-,则n =(c a-,c b-,1),∴n =c ab-m , ∴m ∥n , ∴面11A BD ∥面1AC D .【点评】对面面平行问题的向量方解法有两种思路,(1)利用向量证明一个面内两条相交直线分别与另一个平面平行,根据面面判定定理即得;(2)求出两个平面的法向量,证明这两个法向量平行,则这两个面就平行.专题训练一 证明空间线面平行与垂直1. 如图, 在直三棱柱ABC -A 1B 1C 1中,AC =3,BC =4,AA 1=4,点D 是AB 的中点, (I )求证:AC ⊥BC 1; (II )求证:AC 1//平面CDB 1;解析:(1)证明线线垂直方法有两类:一是通过三垂线定理或逆定理证明,二是通过线面垂直来证明线线垂直;(2)证明线面平行也有两类:一是通过线线平行得到线面平行,二是通过面面平行得到线面平行.答案:解法一:(I )直三棱柱ABC -A 1B 1C 1,底面三边长AC =3,BC =4AB =5,∴ AC ⊥BC ,且BC 1在平面ABC 内的射影为BC ,∴ AC ⊥BC 1;(II )设CB 1与C 1B 的交点为E ,连结DE ,∵ D 是AB 的中点,E 是BC 1的中点, ∴ DE//AC 1,∵ DE ⊂平面C D B 1,AC 1⊄平面C D B 1, ∴ AC 1//平面C D B 1;解法二:∵直三棱柱ABC -A 1B 1C 1底面三边长AC =3,BC =4,AB =5,∴AC 、BC 、C 1C 两两垂直,如图,以C 为坐标原点,直线CA 、CB 、C 1C 分别为x 轴、y 轴、z 轴,建立空间直角坐标系,则C (0,0,0),A (3,0,0),C 1(0,0,4),B (0,4,0),B 1(0,4,4),D (23,2,0)转化转化(1)∵AC =(-3,0,0),1BC =(0,-4,0),∴AC •1BC =0,∴AC ⊥BC 1. (2)设CB 1与C 1B 的交战为E ,则E (0,2,2).∵DE =(-23,0,2),1AC =(-3,0,4),∴121AC DE =,∴DE ∥AC 1.点评:2.平行问题的转化:面面平行线面平行线线平行;主要依据是有关的定义及判定定理和性质定理.2. (two )如图所示,四棱锥P —ABCD 中,AB ⊥AD ,CD ⊥AD ,PA ⊥底面ABCD ,PA=AD=CD=2AB=2,M 为PC 的中点。

相关文档
最新文档