高中数学人教版选修2-1同步培优作业解析(含答案)第二章圆锥曲线与方程 章末复习提升

合集下载

高二数学人教版选修2-1习题第2章圆锥曲线与方程2.4.1Word版含答案

高二数学人教版选修2-1习题第2章圆锥曲线与方程2.4.1Word版含答案

9 2x

x2=
4 3
y.
一、选择题
1.若动点 M(x,y)到点 F (4,0)的距离比它到直线 x+ 5= 0 的距离小 1,则点 M 的轨迹方程是 ( )
A . x+ 4= 0 B . x-4= 0 C. y2= 8x
D . y2=16x
[答案 ] D
[解析 ] 依题意可知 M 点到点 F 的距离等于 M 点到直线 x=- 4 的距离,因此其轨迹是抛
[解析 ] ∵点 M 到对称轴的距离为 6, ∴设点 M 的坐标为 (x,6). 又∵点 M 到准线的距离为 10,
62= 2px, ∴ x+ p2= 10.
x= 9,
x= 1,
解得

p= 2,
p= 18.
故当点 M 的横坐标为 9 时,抛物线方程为 y2= 4x.
当点 M 的横坐标为 1 时,抛物线方程为 y2= 36x.
知, P 点的横坐标 xP= 3 2,从而 yP= ±2 6,

S△
POF

1 2
|OF
|
·|yP|=
12×
2×2
6=2
3.
3.已知抛物线 y2= 2px(p>0) 的焦点为 F,点 P1(x1,y1)、P2(x2, y2)、P3(x3,y3)在抛物线上,且
2x2= x1+ x3,则有 ( ) A . |P1F |+ |P2F|= |FP 3| C. 2|P2F|= |P1F |+ |P3F |
物线,且 p= 8,顶点在原点,焦点在 x 轴正半轴上,
∴其方程为 y2= 16x,故答案是 D.
2.O 为坐标原点, F 为抛物线 C: y2=4 2x 的焦点, P 为 C 上一点,若 |PF |= 4 2,则△ POF 的面积为 ( )

高中数学(人教版A版选修2-1)配套课时作业第二章 圆锥曲线与方程 2.4.1 Word版含答案

高中数学(人教版A版选修2-1)配套课时作业第二章 圆锥曲线与方程  2.4.1 Word版含答案

§抛物线抛物线及其标准方程课时目标.掌握抛物线的定义、四种不同标准形式的抛物线方程、准线、焦点坐标及对应的几何图形.会利用定义求抛物线方程..抛物线的定义平面内与一个定点和一条定直线(不经过点)距离的点的轨迹叫做抛物线,点叫做抛物线的,直线叫做抛物线的..抛物线的标准方程()方程=±,=±(>)叫做抛物线的方程.()抛物线=(>)的焦点坐标是,准线方程是,开口方向.()抛物线=-(>)的焦点坐标是,准线方程是,开口方向.()抛物线=(>)的焦点坐标是,准线方程是,开口方向.()抛物线=-(>)的焦点坐标是,准线方程是,开口方向.一、选择题.抛物线=(≠)的焦点到其准线的距离是()..-.已知抛物线的顶点在原点,对称轴为轴,焦点在双曲线-=上,则抛物线方程为().=.=.=.=±.抛物线=(>)上一点到焦点的距离是(>),则点的横坐标是().+.-.+.-.过点()作与抛物线=只有一个公共点的直线有().条.条.条.条.已知抛物线=(>),过其焦点且斜率为的直线交抛物线于、两点,若线段的中点的纵坐标为,则该抛物线的准线方程为().=.=-.=.=-.设抛物线=的焦点为,过点(,)的直线与抛物线相交于,两点,与抛物线的准线相交于点,=,则△与△的面积之比等于()题号答案二、填空题.抛物线+=的准线方程是..若动点在=+上,则点与点(,-)连线中点的轨迹方程是..已知抛物线=+上一定点(-)和两动点,,当⊥时,点的横坐标的取值范围是.三、解答题.已知抛物线的顶点在原点,对称轴为轴,抛物线上的点(-,)到焦点的距离等于,求抛物线的方程和的值,并写出抛物线的焦点坐标和准线方程.。

高中数学(人教版A版选修2-1)配套课时作业:第二章 圆锥曲线与方程 2.4.1 Word版含答案

高中数学(人教版A版选修2-1)配套课时作业:第二章 圆锥曲线与方程  2.4.1 Word版含答案

§ 2.4抛物线2.4.1 抛物线及其标准方程课时目标 1.掌握抛物线的定义、四种不同标准形式的抛物线方程、准线、焦点坐标及对应的几何图形.2.会利用定义求抛物线方程.1.抛物线的定义平面内与一个定点F 和一条定直线l (l 不经过点F)距离________的点的轨迹叫做抛物线,点F 叫做抛物线的________,直线l 叫做抛物线的________. 2.抛物线的标准方程 (1)方程y 2=±2px ,x 2=±2py(p>0)叫做抛物线的________方程.(2)抛物线y 2=2px(p>0)的焦点坐标是________,准线方程是__________,开口方向_______.(3)抛物线y 2=-2px(p>0)的焦点坐标是____________,准线方程是__________,开口方向________.(4)抛物线x 2=2py(p>0)的焦点坐标是________,准线方程是__________,开口方向________.(5)抛物线x 2=-2py(p>0)的焦点坐标是______,准线方程是________,开口方向________.一、选择题1.抛物线y 2=ax(a ≠0)的焦点到其准线的距离是( ) A .|a|4 B .|a|2 C .|a| D .-a 22.已知抛物线的顶点在原点,对称轴为x 轴,焦点在双曲线x 24-y 22=1上,则抛物线方程为( )A .y 2=8xB .y 2=4xC .y 2=2xD .y 2=±8x3.抛物线y 2=2px(p>0)上一点M 到焦点的距离是a(a>p2),则点M 的横坐标是( )A .a +p2 B .a -p2C .a +pD .a -p4.过点M(2,4)作与抛物线y 2=8x 只有一个公共点的直线l 有( ) A .0条 B .1条 C .2条 D .3条5.已知抛物线y 2=2px(p>0),过其焦点且斜率为1的直线交抛物线于A 、B 两点,若线段AB 的中点的纵坐标为2,则该抛物线的准线方程为( ) A .x =1 B .x =-1 C .x =2 D .x =-26.设抛物线y 2=2x 的焦点为F ,过点M(3,0)的直线与抛物线相交于A ,B 两点,与抛物线的准线相交于点C ,|BF|=2,则△BCF 与△ACF 的面积之比S △BCFS △ACF等于( )A .45B .23C .47D .1二、填空题7.抛物线x 2+12y =0的准线方程是__________.8.若动点P 在y =2x 2+1上,则点P 与点Q(0,-1)连线中点的轨迹方程是__________.9.已知抛物线x 2=y +1上一定点A(-1,0)和两动点P ,Q ,当PA ⊥PQ 时,点Q 的横坐标的取值范围是______________. 三、解答题10.已知抛物线的顶点在原点,对称轴为x 轴,抛物线上的点M(-3,m)到焦点的距离等于5,求抛物线的方程和m 的值,并写出抛物线的焦点坐标和准线方程.11.求焦点在x 轴上且截直线2x -y +1=0所得弦长为15的抛物线的标准方程.能力提升12.已知抛物线y 2=2px(p>0)的准线与圆(x -3)2+y 2=16相切,则p 的值为( ) A .12B .1C .2D .4 13.已知抛物线y 2=2px (p>0)上的一点M 到定点A ⎝⎛⎭⎫72,4和焦点F 的距离之和的最小值等于5,求抛物线的方程.1.四个标准方程的区分:焦点在一次项字母对应的坐标轴上,开口方向由一次项系数的符号确定.当系数为正时,开口方向为坐标轴的正方向;系数为负时,开口方向为坐标轴的负方向.2.焦点在y 轴上的抛物线的标准方程x 2=2py 通常又可以写成y =ax 2,这与以前学习的二次函数的解析式是完全一致的,但需要注意的是,由方程y =ax 2来求其焦点和准线时,必须先化成标准形式.§2.4 抛物线2.4.1 抛物线及其标准方程知识梳理1.相等 焦点 准线2.(1)标准 (2)(p 2,0) x =-p2向右(3)(-p 2,0) x =p 2 向左 (4)(0,p 2) y =-p 2 向上 (5)(0,-p 2) y =p2 向下作业设计1.B [因为y 2=ax ,所以p =|a |2,即该抛物线的焦点到其准线的距离为|a |2,故选B.]2.D [由题意知抛物线的焦点为双曲线x 24-y22=1的顶点,即为(-2,0)或(2,0),所以抛物线的方程为y 2=8x 或y 2=-8x .]3.B [由抛物线的定义知:点M 到焦点的距离a 等于点M 到抛物线的准线x =-p2的距离,所以点M 的横坐标即点M 到y 轴的距离为a -p2.]4.C [容易发现点M (2,4)在抛物线y 2=8x 上,这样l 过M 点且与x 轴平行时,或者l 在M 点处与抛物线相切时,l 与抛物线有一个公共点,故选C.]5.B [∵y 2=2px 的焦点坐标为(p2,0),∴过焦点且斜率为1的直线方程为y =x -p 2,即x =y +p2,将其代入y 2=2px 得y 2=2py +p 2,即y 2-2py -p 2=0.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=2p ,∴y 1+y 22=p =2,∴抛物线的方程为y 2=4x ,其准线方程为x =-1.]6.A [如图所示,设过点M (3,0)的直线方程为y =k (x -3),代入y 2=2x 并整理, 得k 2x 2-(23k 2+2)x +3k 2=0,则x 1+x 2=23k 2+2k 2.因为|BF |=2,所以|BB ′|=2.不妨设x 2=2-12=32是方程的一个根,可得k 2=3⎝⎛⎭⎫32-32,所以x 1=2.S △BCF S △ACF =12|BC |·d12|AC |·d =|BC ||AC |=|BB ′||AA ′|=22+12=45.]7.y =3解析 抛物线x 2+12y =0,即x 2=-12y ,故其准线方程是y =3. 8.y =4x 29.(-∞,-3]∪[1,+∞)解析 由题意知,设P (x 1,x 21-1),Q(x 2,x 22-1),即(-1-x 1,1-x 21)·(x 2-x 1,x 22-x 21)=0,也就是(-1-x 1)·(x 2-x 1)+(1-x 21)·(x 22-x 21)=0. ∵x 1≠x 2,且x 1≠-1,∴上式化简得x 2=11-x 1-x 1=11-x 1+(1-x 1)-1,由基本不等式可得x 2≥1或x 2≤-3.10.解 设抛物线方程为y 2=-2px (p >0),则焦点F ⎝⎛⎭⎫-p 2,0,由题意,得⎩⎪⎨⎪⎧m 2=6p ,m 2+⎝⎛⎭⎫3-p22=5,解得⎩⎨⎧ p =4,m =26,或⎩⎨⎧p =4,m =-2 6.故所求的抛物线方程为y 2=-8x ,m =±2 6. 抛物线的焦点坐标为(-2,0),准线方程为x =2. 11.解 设所求抛物线方程为y 2=ax (a ≠0).① 直线方程变形为y =2x +1,② 设抛物线截直线所得弦为AB .②代入①,整理得4x 2+(4-a )x +1=0,则|AB |=(1+22)⎣⎡⎦⎤⎝⎛⎭⎫a -442-4×14=15.解得a =12或a =-4.∴所求抛物线方程为y 2=12x 或y 2=-4x .12.C [本题考查抛物线的相关几何性质及直线与圆的位置关系.方法一 由抛物线的标准方程得准线方程为x =-p2.∵准线与圆相切,圆的方程为(x -3)2+y 2=16,∴3+p2=4,∴p =2.方法二 作图可知,抛物线y 2=2px (p >0)的准线与圆(x -3)2+y 2=16相切于点(-1,0),所以-p2=-1,p =2.]13.解(1)当点A 在抛物线内部时,如图,42<2p ·72,即p >167时,|MF |+|MA |=|MA ′|+|MA |.当A ,M ,A ′共线时,(|MF |+|MA |)min =5,故p 2+72=5,∴p =3满足p >167,∴抛物线方程为y 2=6x .(2)当点A 在抛物线外部或在抛物线上时42≥2p ·72,即0<p ≤167时,连结AF 交抛物线于M ,此时(|MA |+|MF |)最小,即|AF |=5.即 ⎝⎛⎭⎫72-p 22+42=5,∴p =1或p =13(舍). ∴抛物线方程为y 2=2x .综上抛物线方程为y 2=6x 或y 2=2x .。

高中数学(人教版A版选修2-1)配套课时作业:第二章 圆锥曲线与方程 2.2.2 Word版含答案

高中数学(人教版A版选修2-1)配套课时作业:第二章 圆锥曲线与方程  2.2.2 Word版含答案

2.2.2 椭圆的简单几何性质课时目标 1.掌握椭圆的范围、对称性、顶点、离心率等几何性质.2.明确标准方程中a ,b 以及c ,e 的几何意义,a 、b 、c 、e 之间的相互关系.3.能利用椭圆的几何性质解决椭圆的简单问题.1.椭圆的简单几何性质直线y =kx +b 与椭圆x 2a 2+y 2b2=1 (a>b>0)的位置关系:直线与椭圆相切⇔⎩⎪⎨⎪⎧y =kx +b x 2a 2+y 2b 2=1有______组实数解,即Δ______0.直线与椭圆相交⇔⎩⎪⎨⎪⎧ y =kx +b x 2a 2+y 2b 2=1有______组实数解,即Δ______0,直线与椭圆相离⇔⎩⎪⎨⎪⎧y =kx +b x 2a 2+y 2b 2=1________实数解,即Δ______0.一、选择题1.椭圆25x 2+9y 2=225的长轴长、短轴长、离心率依次是( )A .5,3,45B .10,6,45C .5,3,35D .10,6,352.焦点在x 轴上,长、短半轴长之和为10,焦距为45,则椭圆的方程为( ) A .x 236+y 216=1 B .x 216+y 236=1 C .x 26+y 24=1 D .y 26+x 24=13.若焦点在x 轴上的椭圆x 22+y 2m =1的离心率为12,则m 等于( )A . 3B .32C .83D .234.如图所示,A 、B 、C 分别为椭圆x 2a 2+y 2b 2=1 (a>b>0)的顶点与焦点,若∠ABC =90°,则该椭圆的离心率为( )A .-1+52B .1-22C .2-1D .225.若直线mx +ny =4与圆O :x 2+y 2=4没有交点,则过点P(m ,n)的直线与椭圆x 29+y 24=1的交点个数为( )A .至多一个B .2C .1D .0A .(0,1)B .⎝⎛⎦⎤0,12C .⎝⎛⎭⎫0,22 D .⎣⎡⎫2,1 题 号1 2 3 4 5 6 答 案二、填空题 7.已知椭圆的中心在原点,焦点在x 轴上,离心率为55,且过点P(-5,4),则椭圆的方程为______________.8.直线x +2y -2=0经过椭圆x 2a 2+y 2b2=1 (a>b>0)的一个焦点和一个顶点,则该椭圆的离心率等于______.9.椭圆E :x 216+y 24=1内有一点P(2,1),则经过P 并且以P 为中点的弦所在直线方程为____________. 三、解答题 10.如图,已知P 是椭圆x 2a 2+y 2b2=1 (a>b>0)上且位于第一象限的一点,F 是椭圆的右焦点,O是椭圆中心,B 是椭圆的上顶点,H 是直线x =-a 2c(c 是椭圆的半焦距)与x 轴的交点,若PF ⊥OF ,HB ∥OP ,试求椭圆的离心率e.11.已知椭圆4x 2+y 2=1及直线y =x +m.(1)当直线和椭圆有公共点时,求实数m 的取值范围; (2)求被椭圆截得的最长弦所在的直线方程.能力提升12.若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是( ) A .45 B .35 C .25 D .1313.已知在平面直角坐标系xOy 中的一个椭圆,它的中心在原点,左焦点为F 1(-3,0),且右顶点为D(2,0).设点A 的坐标是⎝⎛⎭⎫1,12. (1)求该椭圆的标准方程;(2)若P 是椭圆上的动点,求线段PA 的中点M 的轨迹方程.1.椭圆的范围实质就是椭圆上点的横坐标和纵坐标的取值范围,在求解一些存在性和判断性问题中有着重要的应用.2.椭圆既是一个轴对称图形,又是一个中心对称图形.椭圆的对称性在解决直线与椭圆的位置关系以及一些有关面积的计算问题时,往往能起到化繁为简的作用.3.椭圆的离心率是反映椭圆的扁平程度的一个量,通过解方程或不等式可以求得离心率的值或范围.4.在与椭圆有关的求轨迹方程的问题中要注意挖掘几何中的等量关系.2.2.2 椭圆的简单几何性质知识梳理 1.2.作业设计1.B [先将椭圆方程化为标准形式:x 29+y 225=1,其中b =3,a =5,c =4.] 2.A 3.B4.A [由(a +c )2=a 2+2b 2+c 2, ∵b 2=a 2-c 2,∴c 2+ac -a 2=0,∵e =ca ,∴e 2+e -1=0,∴e =-1+52.]5.B [∵4m 2+n2>2,∴m 2+n 2<4.∴点P (m ,n )在椭圆x 29+y 24=1的内部,∴过点P (m ,n )的直线与椭圆x 29+y 24=1有两个交点.]∴M 点轨迹方程为x 2+y 2=c 2,其中F 1F 2为直径, 由题意知椭圆上的点在圆x 2+y 2=c 2外部, 设点P 为椭圆上任意一点,则|OP |>c 恒成立, 由椭圆性质知|OP |≥b ,其中b 为椭圆短半轴长, ∴b >c ,∴c 2<b 2=a 2-c 2,∴a 2>2c 2, ∴⎝⎛⎭⎫c a 2<12,∴e =c a <22.又∵0<e <1,∴0<e <22.] 7.x 245+y 236=1 解析 设椭圆的方程为x 2a 2+y 2b 2=1 (a >b >0),将点(-5,4)代入得25a 2+16b2=1,又离心率e =c a =55,即e 2=c 2a 2=a 2-b 2a 2=15,解之得a 2=45,b 2=36,故椭圆的方程为x 245+y 236=1.8.255解析 由题意知椭圆的焦点在x 轴上,又直线x +2y -2=0与x 轴、y 轴的交点分别为(2,0)、(0,1),它们分别是椭圆的焦点与顶点,所以b =1,c =2,从而a =5,e =c a =255.9.x +2y -4=0解析 设弦的两个端点为M (x 1,y 1),N (x 2,y 2),则⎩⎨⎧x 2116+y 214=1x 2216+y 224=1, 两式相减,得(x 1+x 2)(x 1-x 2)16+(y 1+y 2)(y 1-y 2)4=0.又x 1+x 2=4,y 1+y 2=2,k MN =y 1-y 2x 1-x 2,∴k MN =-12,由点斜式可得弦所在直线的方程为y =-12(x -2)+1,即x +2y -4=0.10.解 依题意知H ⎝⎛⎭⎫-a 2c ,0,F (c,0),B (0,b ).设P (x P ,y P ),且x P =c ,代入到椭圆的方程,得y P =b 2a.∴P ⎝⎛⎭⎫c ,b 2a .∵HB ∥OP ,∴k HB =k OP ,即b -00+a 2c=b 2a c.∴ab =c 2. ∴e =c a =b c ,∴e 2=a 2-c 2c 2=e -2-1.∴e 4+e 2-1=0.∵0<e <1,∴e =5-12. 11.解 (1)由⎩⎪⎨⎪⎧4x 2+y 2=1,y =x +m ,得5x 2+2mx +m 2-1=0.因为直线与椭圆有公共点,所以Δ=4m 2-20(m 2-1)≥0.解得-52≤m ≤52.(2)设直线与椭圆交于A (x 1,y 1)、B (x 2,y 2), 由(1)知,5x 2+2mx +m 2-1=0,由根与系数的关系得x 1+x 2=-2m5,x 1x 2=15(m 2-1).设弦长为d ,且y 1-y 2=(x 1+m )-(x 2+m )=x 1-x 2, ∴d =(x 1-x 2)2+(y 1-y 2)2=2(x 1-x 2)2 =2[(x 1+x 2)2-4x 1x 2]=2⎣⎡⎦⎤4m 225-45(m 2-1)=2510-8m 2. ∴当m =0时,d 最大,此时直线方程为y =x . 12.B [由题意知2b =a +c ,又b 2=a 2-c 2, ∴4(a 2-c 2)=a 2+c 2+2ac .∴3a 2-2ac -5c 2=0.∴5c 2+2ac -3a 2=0.∴5e 2+2e -3=0.∴e =35或e =-1(舍去).]13.解 (1)∵a =2,c =3,∴b =a 2-c 2=1.∴椭圆的标准方程为x 24+y 2=1.(2)设P (x 0,y 0),M (x ,y ),由中点坐标公式,得⎩⎪⎨⎪⎧x =x 0+12,y =y 0+122,∴⎩⎪⎨⎪⎧x 0=2x -1,y 0=2y -12. 又∵x 204+y 20=1,∴(2x -1)24+⎝⎛⎭⎫2y -122=1 即为中点M 的轨迹方程.。

高中数学人教版选修2-1习题 第2章 圆锥曲线与方程 2.4.1 Word版含答案

高中数学人教版选修2-1习题 第2章 圆锥曲线与方程 2.4.1 Word版含答案

第二章一、选择题.在平面直角坐标系内,到点()和直线+=的距离相等的点的轨迹是( ).直线.抛物线.圆.双曲线[答案][解析]∵点()在直线+=上,故所求点的轨迹是过点()且与直线+=垂直的直线..(·山东荷泽高二检测)过点()且与轴相切的圆的圆心的轨迹为( ).圆.椭圆.直线.抛物线[答案][解析]如图,设点为满足条件的一点,不难得出结论:点到点的距离等于点到轴的距离,故点在以点为焦点,轴为准线的抛物线上,故点的轨迹为抛物线,因此选..(·广东深圳市宝安区高二期末调研)抛物线=上一点的纵坐标为,则点与抛物线焦点的距离为( )....[答案][解析]解法一:∵=,∴=·=,∴=±,∴(±),焦点坐标为(),∴所求距离为==.解法二:抛物线的准线为=-,∴到准线的距离为,又∵到准线的距离与到焦点的距离相等.∴距离为..抛物线=的焦点为,点()在此抛物线上,为线段的中点,则点到该抛物线准线的距离为( )....[答案][解析]∵点()在抛物线上,∴()=,∴=,到抛物线准线的距离为-(-)=,到准线距离为,∴到抛物线准线的距离为==..已知抛物线=(>)的准线与圆+--=相切,则的值为( )...[答案][解析]抛物线的准线为=-,将圆方程化简得到(-)+=,准线与圆相切,则-=-,∴=,故选..(·黑龙江哈师大附中高二期中测试)设抛物线=上一点到轴的距离是,则点到该抛物线焦点的距离为( )....[答案][解析]∵点到轴的距离为,∴点到抛物线=的准线=-的距离=+=,根据抛物线的定义知点到抛物线焦点的距离为.二、填空题.抛物线=的准线方程是=,则的值为[答案]-[解析]抛物线方程化为标准形式为=,由题意得<,∴=-,∴=-,∴准线方程为==-=,∴=-..沿直线=-发出的光线经抛物线=反射后,与轴相交于点(),则抛物线的准线方程为(提示:抛物线的光学性质:从焦点发出的光线经抛物线反射后与轴平行)[答案]=-[解析]由直线=-平行于抛物线的轴知()为焦点,故准线方程为=-.三、解答题.若抛物线=(>)上一点到准线及对称轴的距离分别为和,求点的横坐标及抛物线方程[解析]∵点到对称轴的距离为,∴设点的坐标为().又∵点到准线的距离为,∴(\\(=,+()=.))解得(\\(=,=,))或(\\(=,=.))故当点的横坐标为时,抛物线方程为=.当点的横坐标为时,抛物线方程为=..求顶点在坐标原点,对称轴为坐标轴,过点(-)的抛物线的标准方程[解析]∵点(-)在第二象限,。

高中数学人教版选修2-1习题 第2章 圆锥曲线与方程 2.1 含答案

高中数学人教版选修2-1习题 第2章 圆锥曲线与方程 2.1 含答案

第二章 2.1一、选择题1.方程(2x -y +2)·x 2+y 2-1=0表示的曲线是导学号 33780312( )A .一个点与一条直线B .两条射线和一个圆C .两个点D .两个点或一条直线或一个圆[答案] B[解析] 原方程等价于x 2+y 2-1=0,或⎩⎪⎨⎪⎧ 2x -y +2=0x 2+y 2-1≥0,故选B.2.若方程x -2y -2k =0与2x -y -k =0所表示的两条直线的交点在方程x 2+y 2=9的曲线上,则k 等于导学号 33780313( )A .±3B .0C .±2D . 一切实数[答案] A[解析] 两直线的交点为(0,-k),由已知点(0,-k)在曲线x 2+y 2=9上,故可得k 2=9,∴k =±3.3.在直角坐标系中,方程|x|·y =1的曲线是导学号 33780314( )[答案] C[解析] 由|x|·y =1知y>0,曲线位于x 轴上方,故选C.4.命题“曲线C 上的点的坐标都是方程f(x ,y)=0的解”是正确的,下列命题中正确的是导学号 33780315( )A .方程f(x ,y)=0的曲线是CB .方程f(x ,y)=0是曲线C 的方程C .方程f(x ,y)=0的曲线不一定是CD .以方程f(x ,y)=0的解为坐标的点都在曲线C 上[答案] C[解析] 不论方程f(x ,y)=0是曲线C 的方程,还是曲线C 是方程f(x ,y)=0的曲线,都必须同时满足两层含义:(1)曲线上的点的坐标都是方程的解;(2)以方程的解为坐标的点都在曲线上,所以A 、B 、D 错误.5.已知A(-2,0)、B(2,0),△ABC 的面积为10,则顶点C 的轨迹是导学号 33780316( )A .一个点B .两个点C .一条直线D .两条直线[答案] D[解析] 设顶点C 到边AB 的距离为d ,则12×4×d =10,∴d =5.∴顶点C 到x轴的距离等于5.故顶点C的轨迹是直线y=-5和y=5.6.动点在曲线x2+y2=1上移动时,它和定点B(3,0)连线的中点P的轨迹方程是导学号 33780317( )A.(x+3)2+y2=4 B.(x-3)2+y2=1C.(2x-3)2+4y2=1 D.(x+32)2+y2=1[答案] C[解析] 设P点为(x,y),曲线上对应点为(x1,y1),则有x1+32=x,y1+02=y.∴x1=2x-3,y1=2y.∵(x1,y1)在曲线x2+y2=1上,∴x21+y21=1,∴(2x-3)2+(2y)2=1即(2x-3)2+4y2=1.二、填空题7.方程y=x2-2x+1所表示的图形是________.导学号 33780318[答案] 两条射线x+y-1=0(x≤1)和x-y-1=0(x≥1)[解析] 原方程等价于y=|x-1|⇔x+y-1=0(x≤1)和x-y-1=0(x≥1).8.给出下列结论:导学号 33780319①方程yx-2=1表示斜率为1,在y轴上的截距为-2的直线;②到x轴距离为2的点的轨迹方程为y=-2;③方程(x2-4)2+(y2-4)2=0表示四个点.正确的结论的序号是________.。

高二数学 (人教版A版选修2-1)配套课时作业:第二章 圆锥曲线与方程 2.4.2 Word版含答案

高二数学  (人教版A版选修2-1)配套课时作业:第二章 圆锥曲线与方程  2.4.2 Word版含答案

2.4.2 抛物线的简单几何性质1.抛物线的简单几何性质设抛物线的标准方程为y 2=2px(p>0)(1)范围:抛物线上的点(x ,y)的横坐标x 的取值范围是________,抛物线在y 轴的______侧,当x 的值增大时,|y|也________,抛物线向右上方和右下方无限延伸.(2)对称性:抛物线关于________对称,抛物线的对称轴叫做________________.(3)顶点:抛物线和它的轴的交点叫做抛物线的________.抛物线的顶点为____________. (4)离心率:抛物线上的点到焦点的距离和它到准线的距离的比,叫做抛物线的__________,用e 表示,其值为______.(5)抛物线的焦点到其准线的距离为______,这就是p 的几何意义,顶点到准线的距离为p2,焦点到顶点的距离为________. 2.直线与抛物线的位置关系直线y =kx +b 与抛物线y 2=2px(p>0)的交点个数决定于关于x 的方程________________________的解的个数.当k ≠0时,若Δ>0,则直线与抛物线有______个不同的公共点;当Δ=0时,直线与抛物线有______个公共点;当Δ<0时,直线与抛物线________公共点.当k =0时,直线与抛物线的轴__________,此时直线与抛物线有______个公共点. 3.抛物线的焦点弦设抛物线y 2=2px(p>0),AB 为过焦点的一条弦,A(x 1,y 1),B(x 2,y 2),AB 的中点M(x 0,y 0),则有以下结论.(1)以AB 为直径的圆与准线________.(2)|AB|=________(焦点弦长与中点坐标的关系). (3)|AB|=x 1+x 2+______.(4)A 、B 两点的横坐标之积、纵坐标之积为定值,即x 1x 2=________,y 1y 2=________.一、选择题1.顶点在原点,对称轴为坐标轴的抛物线过点(-2,3),它的方程是( )A .x 2=-92y 或y 2=43xB .y 2=-92x 或x 2=43yC .y 2=-92xD .x 2=43y2.若抛物线y 2=2px (p>0)上三个点的纵坐标的平方成等差数列,那么这三个点到抛物线焦点F 的距离的关系是( ) A .成等差数列B .既成等差数列又成等比数列C .成等比数列D .既不成等比数列也不成等差数列 3.已知点P 是抛物线y 2=2x 上的一个动点,则点P 到点(0,2)的距离与点P 到该抛物线准线的距离之和的最小值为( )A .172B .3C . 5D .924.设斜率为2的直线l 过抛物线y 2=ax(a ≠0)的焦点F ,且和y 轴交于点A ,若△OAF(O 为坐标原点)的面积为4,则抛物线方程为( ) A .y 2=±4x B .y 2=±8xC .y 2=4xD .y 2=8x5.设直线l 1:y =2x ,直线l 2经过点P(2,1),抛物线C :y 2=4x ,已知l 1、l 2与C 共有三个交点,则满足条件的直线l 2的条数为( )A .1B .2C .3D .46.过抛物线y 2=ax (a>0)的焦点F 作一直线交抛物线于P 、Q 两点,若PF 与FQ 的长分别为p 、q ,则1p +1q 等于( )A .2aB .12aC .4aD .4a二、填空题7.已知抛物线C 的顶点为坐标原点,焦点在x 轴上,直线y =x 与抛物线C 交于A ,B 两点,若P(2,2)为AB 的中点,则抛物线C 的方程为________.8.已知F 是抛物线C :y 2=4x 的焦点,A 、B 是抛物线C 上的两个点,线段AB 的中点为M(2,2),则△ABF的面积等于________.9.过抛物线x2=2py (p>0)的焦点F作倾斜角为30°的直线,与抛物线分别交于A、B两点(点A在y轴的左侧),则|AF||FB|=________.三、解答题10.设抛物线y=mx2 (m≠0)的准线与直线y=1的距离为3,求抛物线的标准方程.11.过点Q(4,1)作抛物线y2=8x的弦AB,恰被Q所平分,求AB所在的直线方程.能力提升12.设抛物线y2=8x的焦点为F,准线为l,P为抛物线上一点,PA⊥l,A为垂足,如果直线AF的斜率为-3,那么|PF|等于()A.4 3 B.8 C.8 3 D.1613.已知直线l经过抛物线y2=4x的焦点F,且与抛物线相交于A、B两点.(1)若|AF|=4,求点A的坐标;(2)求线段AB的长的最小值.1.抛物线上一点与焦点的距离问题,可转化为该点到准线的距离.2.直线与抛物线的位置关系,可利用直线方程与抛物线方程联立而成的方程组的解来判定;“中点弦”问题也可使用“点差法”.2.4.2 抛物线的简单几何性质知识梳理1.(1)x ≥0 右 增大 (2)x 轴 抛物线的轴 (3)顶点 坐标原点 (4)离心率 1 (5)p p 22.k 2x 2+2(kb -p )x +b 2=0 两 一 没有 平行或重合 一3.(1)相切 (2)2(x 0+p 2) (3)p (4)p 24-p 2作业设计1.B [由题意知所求抛物线开口向上或开口向左,利用待定系数法可求得方程.] 2.A [设三点为P 1(x 1,y 1),P 2(x 2,y 2),P 3(x 3,y 3),则y 21=2px 1,y 22=2px 2,y 23=2px 3,因为2y 22=y 21+y 23,所以x 1+x 3=2x 2, 即|P 1F |-p 2+|P 3F |-p2=2⎝⎛⎭⎫|P 2F |-p 2, 所以|P 1F |+|P 3F |=2|P 2F |.] 3.A [如图所示,由抛物线的定义知,点P 到准线x =-12的距离d 等于点P 到焦点的距离|PF |.因此点P 到点(0,2)的距离与点P 到准线的距离之和可转化为点P 到点(0,2)的距离与点P到点F 的距离之和,其最小值为点M (0,2)到点F ⎝⎛⎭⎫12,0的距离,则距离之和的最小值为4+14=172.] 4.B [y 2=ax 的焦点坐标为⎝⎛⎭⎫a 4,0,过焦点且斜率为2的直线方程为y =2⎝⎛⎭⎫x -a 4,令x =0得y =-a2.∴12×|a |4×|a |2=4,∴a 2=64,∴a =±8.] 5.C [∵点P (2,1)在抛物线内部,且直线l 1与抛物线C 相交于A ,B 两点,∴过点P 的直线l 2在过点A 或点B 或与x 轴平行时符合题意.∴满足条件的直线l 2共有3条.]6.D [可采用特殊值法,设PQ 过焦点F ⎝⎛⎭⎫a 4,0且垂直于x 轴,则|PF |=p =x P +a 4=a 4+a 4=a 2, |QF |=q =a 2,∴1p +1q =2a +2a =4a.]7.y 2=4x解析 设抛物线方程为y 2=ax .将y =x 代入y 2=ax ,得x =0或x =a ,∴a2=2.∴a =4.∴抛物线方程为y 2=4x . 8.2解析 设A (x 1,y 1),B (x 2,y 2),则y 21=4x 1,y 22=4x 2. ∴(y 1+y 2)(y 1-y 2)=4(x 1-x 2).∵x 1≠x 2,∴y 1-y 2x 1-x 2=4y 1+y 2=1.∴直线AB 的方程为y -2=x -2,即y =x . 将其代入y 2=4x ,得A (0,0)、B (4,4).∴|AB |=4 2.又F (1,0)到y =x 的距离为22,∴S △ABF =12×22×42=2.9.13解析 抛物线x 2=2py (p >0)的焦点为F ⎝⎛⎭⎫0,p 2,则直线AB 的方程为y =33x +p 2, 由⎩⎪⎨⎪⎧x 2=2py ,y =33x +p 2,消去x ,得12y 2-20py +3p 2=0, 解得y 1=p 6,y 2=3p2.由题意可设A (x 1,y 1),B (x 2,y 2),由抛物线的定义,可知|AF ||FB |=y 1+p 2y 2+p 2=p 6+p 23p 2+p 2=13.10.解 由y =mx 2 (m ≠0)可化为x 2=1my ,其准线方程为y =-14m.由题意知-14m =-2或-14m =4,解得m =18或m =-116.则所求抛物线的标准方程为x 2=8y 或x 2=-16y . 11.解 方法一 设以Q 为中点的弦AB 端点坐标为 A (x 1,y 1)、B (x 2,y 2), 则有y 21=8x 1,① y 22=8x 2,②∵Q (4,1)是AB 的中点, ∴x 1+x 2=8,y 1+y 2=2.③①-②,得(y 1+y 2)(y 1-y 2)=8(x 1-x 2).④ 将③代入④得y 1-y 2=4(x 1-x 2),即4=y 1-y 2x 1-x 2,∴k =4.∴所求弦AB 所在的直线方程为y -1=4(x -4),即4x -y -15=0. 方法二 设弦AB 所在直线方程为y =k (x -4)+1.由⎩⎪⎨⎪⎧y 2=8x ,y =k (x -4)+1,消去x , 得ky 2-8y -32k +8=0,此方程的两根就是线段端点A 、B 两点的纵坐标,由根与系数的关系和中点坐标公式,得y 1+y 2=8k,又y 1+y 2=2,∴k =4.∴所求弦AB 所在的直线方程为4x -y -15=0. 12.B [如图所示,直线AF 的方程为y =-3(x -2),与准线方程x =-2联立得A (-2,43). 设P (x 0,43),代入抛物线y 2=8x ,得8x 0=48,∴x 0=6, ∴|PF |=x 0+2=8,选B.]13.解 由y 2=4x ,得p =2,其准线方程为x =-1,焦点F (1,0). 设A (x 1,y 1),B (x 2,y 2).分别过A 、B 作准线的垂线,垂足为A ′、B ′.(1)由抛物线的定义可知,|AF |=x 1+p2,从而x 1=4-1=3.代入y 2=4x ,解得y 1=±2 3. ∴点A 的坐标为(3,23)或(3,-23). (2)当直线l 的斜率存在时, 设直线l 的方程为y =k (x -1).与抛物线方程联立⎩⎪⎨⎪⎧y =k (x -1)y 2=4x ,消去y ,整理得k 2x 2-(2k 2+4)x +k 2=0, 因为直线与抛物线相交于A 、B 两点,则k≠0,并设其两根为x1,x2,则x1+x2=2+4k2. 由抛物线的定义可知,|AB|=x1+x2+p=4+4k2>4.当直线l的斜率不存在时,直线l的方程为x=1,与抛物线相交于A(1,2),B(1,-2),此时|AB|=4,所以,|AB|≥4,即线段AB的长的最小值为4.。

高中数学人教版选修2-1同步培优作业解析(含答案)第二章圆锥曲线与方程 章末检测

高中数学人教版选修2-1同步培优作业解析(含答案)第二章圆锥曲线与方程 章末检测

章末检测一、选择题1.抛物线y 2=8x 的焦点到准线的距离是( )A .1B .2C .4D .8答案 C解析 焦点到准线的距离为p =4.2.已知双曲线x 2a 2-y 2=1(a >0)的右焦点与抛物线y 2=8x 的焦点重合,则此双曲线的渐近线方程是( )A .y =±5xB .y =±55xC .y =±3xD .y =±33x 答案 D解析 ∵y 2=8x 焦点是(2,0),∴双曲线 x 2a2-y 2=1的半焦距c =2,又虚半轴长b =1且a >0,所以a =22-12=3, ∴双曲线的渐近线方程是y =±33x . 3.已知M (-2,0),N (2,0),则以MN 为斜边的直角三角形的直角顶点P 的轨迹方程是( )A .x 2+y 2=2B .x 2+y 2=4C .x 2+y 2=2(x ≠±2)D .x 2+y 2=4(x ≠±2)答案 D解析 点P 的轨迹是以MN 为直径的圆,又P 为直角三角形的顶点,∴点P 不能与M ,N 两点重合,故x ≠±2.4.抛物线y =-x 2上的点到直线4x +3y -8=0的距离的最小值是( ) A.43B.75C.85D .3 答案 A解析 设与直线4x +3y -8=0平行的直线方程为4x +3y +c =0,与抛物线联立方程组得⎩⎪⎨⎪⎧4x +3y +c =0,y =-x 2,消去y 得3x 2-4x -c =0,Δ=(-4)2-4×3×(-c )=0,解得c =-43,则抛物线与直线4x +3y -8=0平行的切线是4x +3y -43=0,问题转化为两平行线间的距离,利用两平行线间的距离公式得d =|-43+8|42+32=43,故选A. 5.如果方程x 2a 2+y 2a +6=1表示焦点在x 轴上的椭圆,则实数a 的取值范围是( ) A .a >3B .a <-2C .a >3或a <-2D .a >3或-6<a <-2 答案 D解析 焦点在x 轴上,则标准方程中a 2>a +6,解得a >3或a <-2.又a 2>0,a +6>0,得a >-6,所以a >3或-6<a <-2. 6.设双曲线的一个焦点为F ,虚轴的一个端点为B ,如果直线FB 与该双曲线的一条渐近线垂直,那么此双曲线的离心率为( ) A. 2B. 3C.1+32D.1+52 答案 D解析 不妨设双曲线方程为x 2a 2-y 2b2=1(a >0,b >0),则可令F (c,0),B (0,b ),直线FB :bx +cy -bc =0与渐近线y =b a x 垂直,所以-b c ·b a=-1,即b 2=ac ,所以c 2-a 2=ac ,即e 2-e -1=0,所以e =1+52或e =1-52(舍去). 7.已知点A (0,2),B (2,0).若点C 在抛物线x 2=y 的图象上,则使得△ABC 的面积为2的点C 的个数为( )A .4B .3C .2D .1答案 A解析 由已知可得|AB |=22,要使S △ABC =2,则点C 到直线AB 的距离必须为2,设C (x ,x 2),而l AB :x +y -2=0,所以有|x +x 2-2|2=2,所以x 2+x -2=±2, 当x 2+x -2=2时,有两个不同的C 点;当x 2+x -2=-2时,亦有两个不同的C 点.因此满足条件的C 点有4个,故选A.8.直线y =kx +1与椭圆x 25+y 2m=1总有公共点,则m 的取值范围是( ) A .m >1B .m ≥1或0<m <1C .m ≥1且m ≠5D .0<m <5且m ≠1答案 C解析 直线y =kx +1过定点(0,1),只需该点落在椭圆内或椭圆上,∴025+1m≤1,解得m ≥1,又m ≠5,故选C.9.已知二次曲线x 23-k -y 2k=1(k <3,k ≠0)与x 25+y 22=1必有( ) A .不同的顶点B .不同的准线C .相同的焦点D .相同的离心率答案 C解析 当0<k <3时,则0<3-k <3,∴x 23-k -y 2k=1表示实轴为x 轴的双曲线,a 2+b 2=3=c 2. ∴两曲线有相同焦点;当k <0时,3-k >-k >0,∴x 23-k +y 2-k=1表示焦点在x 轴上的椭圆. a 2=3-k ,b 2=-k .∴a 2-b 2=3=c 2,与已知椭圆有相同焦点.综上,二次曲线x 23-k -y 2k=1与x 25+y 22=1有相同的焦点. 10.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线过点(2,3) ,且双曲线的一个焦点在抛物线y 2=47x 的准线上,则双曲线的方程为( )A.x 221-y 228=1 B.x 228-y 221=1 C.x 23-y 24=1 D.x 24-y 23=1 答案 D解析 双曲线x 2a 2-y 2b 2=1的渐近线方程为y =±b ax , 又渐近线过点(2,3),所以2b a =3,即2b =3a ,①由已知得a 2+b 2=7,即a 2+b 2=7,②联立①②解得a 2=4,b 2=3,所求双曲线的方程为x 24-y 23=1,选D. 二、填空题11.双曲线x 216-y 29=1的两条渐近线的方程为__________. 答案 y =±34x 解析 由题意可得,a =4,b =3.又∵双曲线的焦点在x 轴上,∴y =±b a x =±34x . 12.在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点F 1,F 2在x 轴上,离心率为22.过F 1的直线l 交椭圆C 于A ,B 两点,且△ABF 2的周长为16,那么椭圆C 的方程为______________.答案 x 216+y 28=1 解析 设椭圆方程为x 2a 2+y 2b 2=1, 由e =22知,c a =22,∴b 2a 2=12. ∵△ABF 2的周长为|AB |+|BF 2|+|AF 2|=|AF 1|+|AF 2|+|BF 1|+|BF 2|=4a =16,∴a =4,∴b 2=8.∴椭圆C 的方程为x 216+y 28=1. 13.设集合A =⎩⎨⎧⎭⎬⎫(x ,y )|x 24+y 216=1,B ={}(x ,y )|y =2x ,则A ∩B 的子集的个数是________. 答案 4解析 ∵集合A =⎩⎨⎧⎭⎬⎫(x ,y )|x 24+y 216=1, B ={}(x ,y )|y =2x ,且(0,1)在椭圆内, ∴两曲线有两个交点,∴A ∩B 有两个元素,∴A ∩B 的子集的个数是22=4.14.设F 1,F 2分别是双曲线x 2-y 29=1的左、右焦点,若点P 在双曲线上,且PF 1→·PF 2→=0,则|PF 1→+PF 2→|=________.答案 210解析 F 1,F 2分别是双曲线x 2-y 29=1的左、右焦点,点P 在双曲线上,且PF 1→·PF 2→=0,O 为坐标原点,则|PF 1→+PF 2→|=2|PO →|=|F 1F 2→|=|F 1F 2|=210.15.已知抛物线y =2px 2(p >0)的焦点为F ,点P ⎝⎛⎭⎫1,14在抛物线上,过点P 作PQ 垂直于抛物线的准线,垂足为点Q ,若抛物线的准线与对称轴相交于点M ,则四边形PQMF 的面积为________.答案 138解析 由P (1,14)在抛物线上,得p =18,故抛物线的标准方程为x 2=4y ,焦点F (0,1),准线为y =-1,∴|FM |=2,|PQ |=1+14=54,|MQ |=1, 则直角梯形PQMF 的面积为12×⎝⎛⎭⎫54+2×1=138. 三、解答题16.抛物线y 2=x 上存在两点关于直线y =m (x -3)对称,求m 的取值范围.解 设抛物线上两点A (x 1,y 1),B (x 2,y 2)关于直线y =m (x -3)对称,A ,B 中点M (x ,y ),则当m =0时,有直线y =0,显然存在两点关于它对称.当m ≠0时,⎩⎪⎨⎪⎧y 21=x 1,y 22=x 2,⇒y 1-y 2x 1-x 2=1y 1+y 2=12y =-1m , 所以y =-m 2,所以M 的坐标为(52,-m 2), ∵M 在抛物线内,则有52>(-m 2)2, 得-10<m <10且m ≠0,综上所述,m 的取值范围为(-10,10).17.设双曲线C :x 2a 2-y 2=1(a >0)与直线l :x +y =1相交于两个不同的点A ,B .求双曲线C 的离心率e 的取值范围.解 由双曲线C 与直线l 相交于两个不同点,知方程组⎩⎪⎨⎪⎧ x 2a 2-y 2=1,x +y =1,有两个不同的实数解. 消去y 并整理得(1-a 2)x 2+2a 2x -2a 2=0.∴⎩⎪⎨⎪⎧1-a 2≠0,4a 4+8a 2(1-a 2)>0.解得0<a <2且a ≠1.∵0<a <2且a ≠1,∴e >62且e ≠ 2. 故离心率e 的取值范围为(62,2)∪(2,+∞). 18.如图,直线l :y =x +b 与抛物线C :x 2=4y 相切于点A .(1)求实数b 的值;(2)求以点A 为圆心,且与抛物线C 的准线相切的圆的方程.解 (1)由⎩⎪⎨⎪⎧y =x +b ,x 2=4y ,联立得x 2-4x -4b =0,(*) 因为直线l 与抛物线C 相切,所以Δ=(-4)2-4×(-4b )=0,解得b =-1.(2)由(1)可知b =-1,故方程(*)即为x 2-4x +4=0,解得x =2,代入x 2=4y ,得y =1,故点A (2,1).因为圆A 与抛物线C 的准线相切,所以圆A 的半径r 等于圆心A 到抛物线的准线y =-1的距离,即r =|1-(-1)|=2, 所以圆A 的方程为(x -2)2+(y -1)2=4.19.已知双曲线的中心在原点,焦点F 1,F 2在坐标轴上,一条渐近线方程为y =x ,且过点(4,-10).(1)求双曲线方程;(2)若点M (3,m )在此双曲线上,求MF 1→·MF 2→.解 (1)∵双曲线的一条渐近线方程为y =x ,∴设双曲线方程为x 2-y 2=λ(λ≠0).把(4,-10)代入双曲线方程得42-(-10)2=λ,∴λ=6,∴所求双曲线方程为x 2-y 2=6.(2)由(1)知双曲线方程为x 2-y 2=6,∴双曲线的焦点为F 1(-23,0),F 2(23,0).∵点M 在双曲线上,∴32-m 2=6,∴m 2=3.∴MF 1→·MF 2→=(-23-3,-m )·(23-3,-m )20.已知椭圆G :x 2a 2+y 2b 2=1 (a >b >0)的离心率为63,右焦点为(22,0),斜率为1的直线l 与椭圆G 交于A 、B 两点,以AB 为底边作等腰三角形,顶点为P (-3,2).(1)求椭圆G 的方程;(2)求△P AB 的面积. 解 (1)由已知得c =22,c a =63. 解得a =23,又b 2=a 2-c 2=4.所以椭圆G 的方程为x 212+y 24=1. (2)设直线l 的方程为y =x +m .由⎩⎪⎨⎪⎧y =x +m ,x 212+y 24=1,联立得4x 2+6mx +3m 2-12=0.① 设A 、B 的坐标分别为(x 1,y 1),(x 2,y 2) (x 1<x 2),AB 中点为E (x 0,y 0),则x 0=x 1+x 22=-3m 4,y 0=x 0+m =m 4; 因为AB 是等腰△P AB 的底边,所以PE ⊥AB .所以PE 的斜率k =2-m 4-3+3m 4=-1,解得m =2. 此时方程①为4x 2+12x =0.解得x 1=-3,x 2=0.所以y 1=-1,y 2=2.所以|AB |=3 2.此时,点P (-3,2)到直线AB :x -y +2=0的距离d =|-3-2+2|2=322, 所以△P AB 的面积S =12|AB |·d =92. 21.在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,左、右焦点分别是F 1,F 2.以F 1为圆心、以3为半径的圆与以F 2为圆心、以1为半径的圆相交,且交点在椭圆C 上.(1)求椭圆C 的方程;(2)设椭圆E :x 24a 2+y 24b2=1,P 为椭圆C 上任意一点,过点P 的直线y =kx +m 交椭圆E 于A ,B 两点,射线PO 交椭圆E 于点Q .(ⅰ)求|OQ ||OP |的值; (ⅱ)求△ABQ 面积的最大值.解 (1)由题意知,2a =4,则a =2,又c a =32,a 2-c 2=b 2, 可得b =1,所以椭圆C 的方程为x 24+y 2=1. (2)由(1)知椭圆E 的方程为x 216+y 24=1. (ⅰ)设P (x 0,y 0),|OQ ||OP |=λ, 由题意知,Q (-λx 0,-λy 0).因为x 204+y 20=1, 又(-λx 0)216+(-λy 0)24=1,即λ24⎝⎛⎭⎫x 204+y 20=1, 所以λ=2,即|OQ ||OP |=2. (ⅱ)设A (x 1,y 1),B (x 2,y 2).将y =kx +m 代入椭圆E 的方程,可得(1+4k 2)x 2+8kmx +4m 2-16=0,由Δ>0,可得m 2<4+16k 2,①因为x 1+x 2=-8km 1+4k 2,x 1x 2=4m 2-161+4k 2. 所以|x 1-x 2|=416k 2+4-m 21+4k 2. 因为直线y =kx +m 与y 轴交点的坐标为(0,m ),所以△OAB 的面积S =12|m ||x 1-x 2| =216k 2+4-m 2|m |1+4k 2=2(16k 2+4-m 2)m 21+4k 2=2⎝⎛⎭⎫4-m 21+4k 2m 21+4k 2. 设m 21+4k 2=t ,则t >0. 将y =kx +m 代入椭圆C 的方程,可得(1+4k 2)x 2+8kmx +4m 2-4=0,由Δ≥0,可得m 2≤1+4k 2.②由①②可知0<t ≤1,故S≤23,当且仅当t=1,即m2=1+4k2时取得最大值2 3. 由(ⅰ)知,△ABQ面积为3S,所以△ABQ面积的最大值为6 3.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.能够熟练使用直接法、待定系数法、定义法求椭圆方程;能够利用“坐标法”研究椭圆的基本性质;能够利用数形结合思想、分类讨论思想、参数法解决椭圆中的有关问题.2.能够根据所给的几何条件熟练地求出双曲线方程,并能灵活运用双曲线定义、参数间的关系解决相关问题;准确理解参数a、b、c、e的关系、渐近线及其几何意义,并灵活运用.3.会根据方程形式或焦点位置判断抛物线的标准方程的类型;会根据抛物线的标准方程确定其几何性质以及会由几何性质确定抛物线的方程.了解抛物线的一些实际应用.1.数形结合思想“数形结合”指的是在处理数学问题时,能够将抽象的数学语言与直观的几何图形有机结合起来思索,促使抽象思维和形象思维的和谐结合,通过对规范图形或示意图形的观察分析,化抽象为直观,化直观为精确,从而使问题得到解决.判断直线与圆锥曲线的位置关系、求最值等问题,可以结合图形,运用数形结合思想,化抽象为具体,使问题变得简单.例1双曲线x2a2-y2b2=1(a>0,b>0)的左、右焦点分别为F1,F2,若P为双曲线上一点,且|PF1|=2|PF2|,则双曲线离心率的取值范围为()A .(1,3)B .(1,3]C .(3,+∞)D .[3,+∞)答案 B解析 如图所示,由|PF 1|=2|PF 2|知P 在双曲线的右支上, 则|PF 1|-|PF 2|=2a , 又|PF 1|=2|PF 2|, ∴|PF 1|=4a ,|PF 2|=2a , 在△F 1PF 2中,由余弦定理得 cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1||PF 2|=16a 2+4a 2-4c 22·4a ·2a =54-c 24a 2=54-e 24,∵0<∠F 1PF 2≤π,且当点P 是双曲线的顶点时,∠F 1PF 2=π, ∴-1≤cos ∠F 1PF 2<1,∴-1≤54-e 24<1,由e >1,解得1<e ≤3.故选B.跟踪训练1 抛物线y 2=2px (p >0)上有A (x 1,y 1),B (x 2,y 2),C (x 3,y 3)三点,F 是它的焦点,若|AF |,|BF |,|CF |成等差数列,则( ) A .x 1,x 2,x 3成等差数列 B .y 1,y 2,y 3成等差数列 C .x 1,x 3,x 2成等差数列 D .y 1,y 3,y 2成等差数列 答案 A解析 如图,过A 、B 、C 分别作准线的垂线,垂足分别为A ′,B ′,C ′,由抛物线定义知:|AF |=|AA ′|,|BF |=|BB ′|,|CF |=|CC ′|. ∵2|BF |=|AF |+|CF |, ∴2|BB ′|=|AA ′|+|CC ′|.又∵|AA ′|=x 1+p 2,|BB ′|=x 2+p 2,|CC ′|=x 3+p2,∴2(x 2+p 2)=x 1+p 2+x 3+p2⇒2x 2=x 1+x 3,∴选A.2.分类讨论思想分类讨论思想是指当所给的对象不能进行统一研究时,我们就需要对研究的对象进行分类,然后对每一类进行研究,得出每一类的结论,最后综合各类的结果得到整个问题的结果.如曲线方程中含有的参数的取值范围不同,对应的曲线也不同,这时要讨论字母的取值范围,有时焦点位置也要讨论,直线的斜率是否存在也需要讨论.例2 如果双曲线的两条渐近线的方程为y =±34x ,求此双曲线的离心率.解 当双曲线的焦点在x 轴上时,由已知可得b a =34,∵c 2=a 2+b 2,∴e 2=⎝⎛⎭⎫c a 2=a 2+b 2a 2=1+b 2a 2=2516, ∴双曲线的离心率e =54;同理,当焦点在y 轴上时,可求得离心率e =53.故双曲线的离心率为54或53.跟踪训练2 求适合下列条件的椭圆的标准方程. (1)椭圆的长轴长是短轴长的2倍,且过点P (2,-6); (2)椭圆过点P (3,0),且e =63. 解 (1)设椭圆的标准方程为x 2a 2+y 2b 2=1或y 2a 2+x 2b 2=1(a >b >0).由已知得a =2b .①∵椭圆过点P (2,-6),∴4a 2+36b 2=1或36a 2+4b 2=1.②由①②得a 2=148,b 2=37或a 2=52,b 2=13. 故所求椭圆的标准方程为x 2148+y 237=1或y 252+x 213=1.(2)当焦点在x 轴上时,∵椭圆过点P (3,0),∴a =3. 又c a =63,∴c = 6. ∴b 2=a 2-c 2=3.此时椭圆的标准方程为x 29+y 23=1.当焦点在y 轴上时,∵椭圆过点P (3,0),∴b =3. 又c a =63,∴a 2-b 2a =63,∴a 2=27. 此时椭圆的标准方程为y 227+x 29=1.故所求椭圆的标准方程为x 29+y 23=1或y 227+x 29=1.3.函数与方程思想圆锥曲线中的许多问题,若能运用函数与方程的思想去分析,则往往能较快地找到解题的突破口.用函数思想解决圆锥曲线中的有关定值、最值问题,最值问题是高中数学中常见的问题,在圆锥曲线问题中也不例外,而函数思想是解决最值问题最有利的武器.我们通常可用建立目标函数的方法解有关圆锥曲线的最值问题.方程思想是从分析问题的数量关系入手,通过联想与类比,将问题中的条件转化为方程或方程组,然后通过解方程或方程组使问题获解,方程思想是高中数学中最基本、最重要的思想方法之一,在高考中占有非常重要的地位.在求圆锥曲线方程、直线与圆锥曲线的位置关系的问题中经常利用方程或方程组来解决.例3 已知椭圆ax 2+by 2=1(a >0,b >0且a ≠b )与直线x +y -1=0相交于A ,B 两点,C 是AB 的中点,若|AB |=22,OC 的斜率为22,求椭圆的方程. 解 方法一 设A (x 1,y 1),B (x 2,y 2),代入椭圆方程并作差,得a (x 1+x 2)(x 1-x 2)+b (y 1+y 2)(y 1-y 2)=0.①∵A ,B 为直线x +y -1=0上的点,∴y 1-y 2x 1-x 2=-1.由已知得y 1+y 2x 1+x 2=k OC =22,代入①式可得b =2a .直线x +y -1=0的斜率k =-1.∴|x 2-x 1|=2.联立ax 2+by 2=1与x +y -1=0可得(a +b )x 2-2bx +b -1=0.且由已知得x 1,x 2是方程(a +b )x 2-2bx +b -1=0的两根,∴x 1+x 2=2ba +b ,x 1x 2=b -1a +b ,∴4=(x 2-x 1)2=(x 1+x 2)2-4x 1x 2 =⎝⎛⎭⎫2b a +b 2-4·b -1a +b.② 将b =2a 代入②式,解得a =13,∴b =23.∴所求椭圆的方程是x 23+23y 2=1.方法二 由⎩⎪⎨⎪⎧ax 2+by 2=1,x +y -1=0,得(a +b )x 2-2bx +b -1=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2ba +b ,x 1x 2=b -1a +b ,且直线AB 的斜率k =-1, ∴|AB |=(k 2+1)(x 1-x 2)2 =(k 2+1)[(x 1+x 2)2-4x 1x 2] =2·4b 2-4(a +b )(b -1)a +b.∵|AB |=22,∴2·4b 2-4(a +b )(b -1)a +b =22,∴a +b -aba +b=1.①设C (x ,y ),则x =x 1+x 22=b a +b ,y =1-x =aa +b .∵OC 的斜率为22, ∴a b =22,将其代入①式得,a =13,b =23. ∴所求椭圆的方程为x 23+23y 2=1.跟踪训练3 若双曲线x 2a 2-y 216=1(a >0)的离心率为53,则a =________.答案 3解析 由离心率公式,有a 2+16a 2=⎝⎛⎭⎫532(a >0),得a =3.故填3.4.化归与转化思想将所研究的对象在一定条件下转化并归结为另一种研究对象的思想方法称之为化归与转化思想.一般将有待解决的问题进行转化,使之成为大家熟悉的或容易解决的问题模式.转化与化归思想在圆锥曲线中经常应用,如把直线与圆锥曲线的位置关系问题转化为方程组的解的个数问题,把求参数的取值范围问题转化为解不等式(组)问题,把陌生的问题转化为熟悉的问题,需要注意转化的等价性.例4 已知点A (4,-2),F 为抛物线y 2=8x 的焦点,点M 在抛物线上移动,当|MA |+|MF |取最小值时,点M 的坐标为( ) A .(0,0) B .(1,-22) C .(2,-4) D .(12,-2)答案 D解析 过点M 作准线l 的垂线,垂足为E ,由抛物线定义知|MF |=|ME |. 当点M 在抛物线上移动时,|MF |+|MA |的值在变化, 显然M 移到M ′,AM ′∥Ox 时, A ,M ,E 共线,此时|ME |+|MA |最小, 把y =-2代入y 2=8x ,得x =12,∴M (12,-2).跟踪训练4 已知向量a =(x ,3y ),b =(1,0),且(a +3b )⊥(a -3b ). (1)求点Q (x ,y )的轨迹C 的方程;(2)设曲线C 与直线y =kx +m 相交于不同的两点M 、N ,又点A (0,-1),当|AM |=|AN |时,求实数m 的取值范围. 解 (1)由题意得,a +3b =(x +3,3y ),a -3b =(x -3,3y ), ∵(a +3b )⊥(a -3b ),∴(a +3b )·(a -3b )=0, 即(x +3)(x -3)+3y ·3y =0, 化简得x 23+y 2=1,∴点Q 的轨迹C 的方程为x 23+y 2=1.(2)由⎩⎪⎨⎪⎧y =kx +m ,x 23+y 2=1.得(3k 2+1)x 2+6mkx +3(m 2-1)=0, 由于直线与椭圆有两个不同的交点, ∴Δ>0,即m 2<3k 2+1.①(ⅰ)当k ≠0时,设弦MN 的中点为P (x P ,y P ),x M 、x N 分别为点M 、N 的横坐标,则x P =x M +x N2=-3mk 3k 2+1,从而y P =kx P +m =m3k 2+1,k AP =y P +1x P =-m +3k 2+13mk ,又|AM |=|AN |,∴AP ⊥MN .则-m +3k 2+13mk =-1k ,即2m =3k 2+1,②将②代入①得2m >m 2,解得0<m <2, 由②得k 2=2m -13>0,解得m >12,故m 的取值范围是⎝⎛⎭⎫12,2. (ⅱ)当k =0时,|AM |=|AN |,∴AP ⊥MN ,m 2<3k 2+1即为m 2<1,解得-1<m <1. 综上,当k ≠0时,m 的取值范围是⎝⎛⎭⎫12,2, 当k =0时,m 的取值范围是(-1,1).1.圆锥曲线的定义是圆锥曲线问题的根本,利用圆锥曲线的定义解题是考查圆锥曲线的一个重要命题点.2.圆锥曲线的标准方程是用代数方法研究圆锥曲线的几何性质的基础,对圆锥曲线标准方程的考查方式有两种:一是在解答题中作为试题的入口进行考查;二是在选择题和填空题中结合圆锥曲线的简单几何性质进行考查.3.虽然考纲中没有直接要求关于直线与圆锥曲线相结合的知识,但直线与圆锥曲线是密不可分的,如双曲线的渐近线、抛物线的准线、圆锥曲线的对称轴等都是直线.考试不但不回避直线与圆锥曲线,而且在试题中进行重点考查,考查方式既可以是选择题、填空题,也可以是解答题.4.考纲对曲线与方程的要求是“了解方程的曲线与曲线的方程的对应关系”,考试对曲线与方程的考查主要体现在以利用圆锥曲线的定义、待定系数法、直接法和代入法等方法求圆锥曲线的方程.5.对圆锥曲线的考查是综合性的,这种综合性体现在圆锥曲线、直线、圆、平面向量、不等式等知识的相互交汇,对圆锥曲线的综合考查主要是在解答题中进行,一般以椭圆或者抛物线为依托,全面考查圆锥曲线与方程的求法、直线与圆锥曲线的位置关系,考查函数、方程、不等式、平面向量等在解决问题中的综合运用.。

相关文档
最新文档