2016-2017学年河南省郑州市高二上学期期末数学试卷(文科)(解析版)

合集下载

2016-2017学年高二上学期期末考试数学文试卷 Word版含答案

2016-2017学年高二上学期期末考试数学文试卷 Word版含答案

2016-2017学年高二上学期期末考试数学文试卷试卷满分:150分考试时间:120分钟一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上.9. 命题“x ∃∈R ,使得2250x x ++=”的否定是______________________.10. 如果直线032=-+y ax 与20x y -=垂直,那么a 等于_______.11. 已知双曲线2213y x -=,则双曲线的离心率为______;渐近线方程为_____________ .12. 一个直三棱柱的三视图如图所示,则该三棱柱的体积为_________.13. 如图,在四边形ABCD 中,1AD DC CB ===, AB =,对角线AC 将ACD △沿AC 所在直线翻折,当AD BC ⊥时,线段BD 的长度 为______.ABCD正(主)视图 侧(左)视图14. 学完解析几何和立体几何后,某同学发现自己家碗的侧面可以看做抛物线的一部分曲线围绕其对称轴旋转而成,他很想知道抛物线的方程,决定把抛物线的顶点确定为原点,对称轴确定为x 轴,建立如图所示的平面直角坐标系,但是他无法确定碗底中心到原点的距离,请你通过对碗的相关数据的测量以及进一步的计算,帮助他求出抛物线的方程.你需要测量的数据是_________________________(所有测量数据用小写英文字母表示),算出的抛物线标准方程为___________. 三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 15.(本小题满分13分)如图,四棱锥P ABCD -的底面是正方形,侧棱PA ⊥底面ABCD ,E 是PA 的中点. (Ⅰ)求证://PC 平面BDE ; (Ⅱ)证明:BD CE ⊥.16.(本小题满分13分)已知圆C 经过)1,1(),3,1(-B A 两点,且圆心在直线x y =上. (Ⅰ)求圆C 的方程;(Ⅱ)设直线l 经过点)2,2(-,且与圆C 相交所得弦长为32,求直线l 的方程.17.(本小题满分13分)如图,在平面ABCD 中,⊥AB 平面ADE ,CD ⊥平面ADE ,ADE △是等边三角形,22AD DC AB ===,,F G 分别为,AD DE 的中点. (Ⅰ)求证: EF ⊥平面ABCD ; (Ⅱ)求四棱锥E ABCD -的体积;(Ⅲ)判断直线AG 与平面BCE 的位置关系,并加以证明.A BCDPE EDAB CGF18.(本小题满分13分)过椭圆2212x y +=右焦点F 的直线l 与椭圆交于两点,C D ,与直线2=x 交于点E .(Ⅰ)若直线l 的斜率为2,求||CD ;(Ⅱ)设O 为坐标原点,若:1:3ODE OCE S S ∆∆=,求直线l 的方程. 19.(本小题满分14分)如图,在三棱柱111ABC A B C -中,1AA ⊥底面ABC ,90BAC ∠=︒,2AB AC ==,1AA =,M N 分别为BC 和1AA 的中点,P 为侧棱1BB 上的动点.(Ⅰ)求证:平面APM ⊥平面11BBC C ;(Ⅱ)若P 为线段1BB 的中点,求证://CN 平面AMP ; (Ⅲ)试判断直线1BC 与PA 能否垂直. 若能垂直,求出PB 的值;若不能垂直,请说明理由.20.(本小题满分14分)已知抛物线22y x =,两点(1,0)M ,(3,0)N . (Ⅰ)求点M 到抛物线准线的距离;(Ⅱ)过点M 的直线l 交抛物线于两点,A B ,若抛物线上存在一点R ,使得,,,A B N R 四点构成平行四边形,求直线l 的斜率.NA MPCBA 1 C 1B 1北京市西城区2016 — 2017学年度第一学期期末试卷高二数学(文科)参考答案及评分标准2017.1一、选择题:本大题共8小题,每小题5分,共40分.1. A ;2.D ;3. C ;4. C ;5. D ;6. A ;7. B ;8. D. 二、填空题:本大题共6小题,每小题5分,共30分.9. 对任意x ∈R ,都有0522≠++x x ; 10. 1; 11. 2;y =; 12. 4;14. 碗底的直径m ,碗口的直径n ,碗的高度h ;2224n my x h-=.注:一题两空的题目,第一空2分,第二空3分.三、解答题:本大题共6小题,共80分. 15.(本小题满分13分)解: (Ⅰ)连结AC 交BD 于O ,连结OE ,因为四边形ABCD 是正方形,所以O 为AC 中点. 又因为E 是PA 的中点,所以//PC OE , ………3分 因为PC ⊄平面BDE ,OE ⊂平面BDE ,所以//PC 平面BDE . ……………6分 (Ⅱ)因为四边形ABCD 是正方形,所以BD AC ⊥. ……8分因为PA ⊥底面ABCD ,且BD ⊂平面ABCD , 所以PA BD ⊥. ……………10分又因为AC PA A =I ,所以BD ⊥平面PAC , ……………12分 又CE ⊂平面PAC ,所以BD CE ⊥. ……………13分16.(本小题满分13分)ABCDPE O解:(Ⅰ)设圆C 的圆心坐标为),(a a ,依题意,有2222)1()1()3()1(-++=-+-a a a a , ……………2分即22451a a a -+=+,解得1=a , ……………4分所以222(11)(31)4r =-+-=, ……………5分 所以圆C 的方程为4)1()1(22=-+-y x . ……………6分 (Ⅱ)依题意,圆C 的圆心到直线l 的距离为1. ……………8分所以直线2x =符合题意. ……………9分 当直线l 斜率存在时,设直线l 方程为)2(2-=+x k y , 即022=---k y kx , 则11|3|2=++k k , ……………11分解得43k =-, ……………12分 所以直线l 的方程为)2(342--=+x y ,即0234=-+y x , ……………13分综上,直线l 的方程为2x = 或0234=-+y x .17.(本小题满分13分)(Ⅰ)证明:因为F 为等边ADE △的边AD 的中点,所以 EF AD ⊥. ……………2分 因为⊥AB 平面ADE ,⊂AB 平面ABCD 所以平面ADE ⊥平面ABCD . ……………4分 所以EF ⊥平面ABCD . ……………5分 (Ⅱ)解:因为⊥AB 平面ADE ,CD ⊥平面ADE , 所以//AB CD ,90ADC ∠=,四边形ABCD 是直角梯形, ……………7分 又22AD DC AB ===, 所以1(21)232ABCD S =⋅+⋅=梯形,……………8分又EF =所以13E ABCDABCD V S EF -=⋅=……………9分 (Ⅲ)结论: 直线//AG 平面BCE .证明: 取CE 的中点H ,连结,GH BH , 因为G 是DE 的中点,所以//GH DC ,且 GH =12DC . ……………11分 DABCGFHE所以//GH AB ,且1GH AB ==,所以四边形ABHG 为平行四边形,//AG BH , ……………12分 又⊄AG 平面BCE ,⊂BH 平面BCE .所以//AG 平面BCE . ……………13分18.(本小题满分13分)解:(Ⅰ)由已知,1=c ,)0,1(F ,直线l 的方程为22-=x y . ……………1分设11(,)C x y ,22(,)D x y ,联立⎩⎨⎧-==+222222x y y x ,消y 得291660x x -+=, ……………3分91621=+x x ,9621=x x , ……………4分 所以||CD = ……………5分9==. ……………6分 (Ⅱ)依题意,设直线l 的斜率为k (0≠k ),则直线l 的方程为)1(-=x k y ,联立⎩⎨⎧-==+kkx y y x 2222,消y 得0)22(4)212222=-+-+k x k x k (, ……………7分2221214k k x x +=+……①, 22212122k k x x +-=……②……………8分 因为:1:3ODE OCE S S =△△,所以 :1:3DE CE =, 3CE DE =,所以 1223(2)x x -=-,整理得 2134x x -=……③ ……………10分由①③得 212121k x k -=+,2223121k x k +=+, ……………11分 代入②,解得1±=k , ……………12分 所以直线l 的方程为1y x =-或1y x =-+. ……………13分19.(本小题满分14分)(Ⅰ)证明:由已知,M 为BC 中点,且AB AC =,所以AM BC ⊥. ……………1分又因为11//BB AA ,且1AA⊥底面ABC , 所以1BB ⊥底面ABC .NA MPCBA 1 C 1B 1 Q所以1BB AM ⊥, ……………3分 所以AM ⊥平面11BBC C .所以平面AMP ⊥平面11BBC C .……………5分 (Ⅱ)证明:连结BN ,交AP 于Q ,连结MQ ,NP .因为,N P 分别为11,AA BB 中点,所以//AN BP ,且AN BP =.所以四边形ANPB 为平行四边形, ……………7分Q 为BN 中点,所以MQ 为CBN △的中位线,所以//CN MQ . ……………8分 又CN ⊄平面AMP ,MQ ⊂平面AMP ,所以//CN 平面AMP . ……………9分 (Ⅲ) 解:假设直线1BC 与直线PA 能够垂直,又因为1BC AM ⊥,所以⊥1BC 平面APM ,所以1BC PM ⊥. ……………10分 设PB x =,x ∈.当1BC PM ⊥时,11BPM BC B ∠=∠,所以Rt PBM △∽11Rt B C B △,所以111C B PB MB BB =. ……………12分因为111MB C B BB ===,解得3x =. ……………13分 因此直线1BC 与直线PA 不可能垂直. ……………14分20.(本小题满分14分)解:(Ⅰ)由已知,抛物线22y x =的准线方程为12x =-. ……………2分 所以,点M 到抛物线准线的距离为131()22--=. ……………4分(Ⅱ)设直线:(1)l y k x =-,11(,)A x y ,22(,)B x y ,由2(1),2y k x y x=-⎧⎨=⎩得2222(22)0k x k x k -++=, ……………5分 所以212222k x x k++=,121x x =. ……………6分 ①,N R 在直线AB 异侧,,,,A B N R 四点构成平行四边形,则,AB NR 互相平分. 所以,12R N x x x x +=+,12R N y y y y +=+,所以,22223R k x k +=+,222R k x k-=. 12122(2)R y y y k x x k=+=+-=. ……………8分将(,)R R x y 代入抛物线方程,得22R R y x =,即222422k k k -=⨯,解得0k =,不符合题意. ……………10分 ②若,N R 在直线AB 同侧,,,,A B N R 四点构成平行四边形,则,AR BN 互相平分. 所以,12R N x x x x +=+,12R N y y y y +=+,所以,213R x x x =-+,21R y y y =-. ……………12分 代入抛物线方程,得22121()2(3)y y x x -=-+,又2112y x =,2222y x =,所以2222121()2(3)22y y y y -=-+,注意到212y y =-=-,解得211y =,11y =±. ……………13分当11y =时,112x =,2k =-;当11y =-时,112x =,2k =.所以2k =±. ……………14分。

郑州市2016-2017高二上期期末数学(理)试题及答案

郑州市2016-2017高二上期期末数学(理)试题及答案

2016-2017学年上期期末考试高二数学(理)试题卷第I 卷(选择题,共60分)一、选择题(本大题共12个小题,每题5分,共60分. 在每个小题所给出的四个选项中,只有一项是符合题目要求的) 1. 不等式11x>的解集为( ) A. (),1-∞ B. ()01, C. ()1+∞, D. ()0+∞, 2. a b >的一个充分不必要条件是( ) A. 1,0a b == B.11a b< C. 22a b > D. 33a b > 3. ABC ∆中,若1,2,cos a b A ===,则sin B =( )A.B. 13C. D.234. 等比数列{}n a 中,243520,40a a a a +=+=,则6a =( )A. 16B. 32C. 64D. 1285. 两座灯塔A 和B 与海洋观测站C 的距离分别是km a 和2km a ,灯塔A 在观测站C 的北偏东20︒,灯塔B 在观测站C 的南偏东40︒,则灯塔A 与灯塔B 之间的距离为( )A.km B. 2km aC. kmD. km6. 在正方体1111ABCD A BC D -中,点,E F 满足11113,3A E EB C F FD ==,则BE 与DF 所成角的正弦值为( ) A.817 B. 917 C. 1217 D. 15177. 等差数列{}n a 的前n 项和为n S ,若10091a =,则2017S =( )A. 1008B. 1009C. 2016D. 2017 8. 过24y x =的焦点作直线交抛物线于,A B 两点,若O 为坐标原点,则OA OB ⋅=( ) A. 1- B. 2- C. 3- D. 4-9. 设椭圆()2222:10x y C a b a b+=>>的左、右焦点分别为12,,F F P 是C 上的点,212PF F F ⊥,1260F PF ∠=︒,则C 的离心率为( )A.6 B. 13 C. 12 D. 310. ABC ∆中,若=2,120BC A =︒,则AB CA ⋅的最大值为( )A.23 B. 23- C. 43 D. 43- 11. 正数,a b 满足121a b+=,则()()24a b ++的最小值为( )A. 16B. 24C. 32D. 4012. 圆O 的半径为定长,A 是平面上一定点,P 是圆上任意一点,线段AP 的垂直平分线l 和直线OP 相交于点Q ,当点P 在圆上运动时,点Q 的轨迹是( )A. 一个点B. 椭圆C. 双曲线D.以上选项都有可能第II 卷(非选择题,90分)二、选择题:本大题共4小题,每题5分,共20分. 13. 命题“,,tan 43x x m ππ⎡⎤∃∈-≤⎢⎥⎣⎦”的否定是 14. 若,x y 满足21x y xx y ≤≤⎧⎨+≤⎩,则2Z x y =+的取值范围是15. 已知F 是双曲线22:1412x y C -=的左焦点,()1,4A ,P 是C 右支上一点,当APF ∆周长最小时,点F 到直线AP 的距离为16.数列{}n a 满足()1121nn n a a n ++-=-,则{}n a 的前40项的和三、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤. 17. 设()()211f x m x mx m =+-+-.(I )当1m =时,求不等式()0f x >的解集;(II )若不等式()10f x +>的解集为332⎛⎫⎪⎝⎭,,求m 的值.18. 在ABC ∆中,,,a b c 分别为角,,A B C 的对边,2228,65bca cb a -=-=,ABC ∆的面积为24.(I )求角A 的正弦值;(II )求边,b c19. n S 为数列{}n a 的前n 项和. 已知0n a >,22n n n a a S +=.(I )求{}n a 的通项公式;(II )若12n nn a a b -=,求数列{}n b 的前n 项和n T .20. 已知命题:p 函数()()2lg 2f x x x a =-+的定义域为R ;命题:q 对于[]1,3x ∈,不等式260ax ax a --+<成立,若p q ∨为真命题,p q ∧为假命题,求实数a 的取值范围.21. 如图,四棱柱1111ABCD A BC D -中,1A D ⊥平面ABCD ,底面ABCD 是边长为1的正方形,侧棱12AA =.(I )求直线DC 与平面1ADB 所成角的大小;(II )在棱上1AA 是否存在一点P ,使得二面角11A B C P --的大小为30︒,若存在,确定P 点位置;若不存在,说明理由.22. 在圆223x y +=上任取一动点P ,过P 作x 轴的垂线PD ,D 为垂足,3PD MD =,动点M 的轨迹为曲线C .(I )求C 的方程及其离心率;(II )若直线l 交曲线C 于,A B 两点,且坐标原点到直线l ,求AOB ∆面积的最大值.2016—2017学年度郑州市上期期末考试 高二数学(理科) 参考答案1-12 BADCD ADCDA CD 13. ,,tan ;43x x m ππ⎡⎤∀∈->⎢⎥⎣⎦14. 5[0,];3 15. 32;5 16. 820. 17.解:(1)当1=m 时,不等式0)(>x f 为220,x x ->………….2分因此所求解集为1(,0)(,).2-∞⋃+∞………….4分(2)不等式01)(>+x f ,即2(1)0,m x mx m +-+>………….6分由题意知3,23是方程0)1(2=+-+m mx x m 的两根,………….8分因此33,921.37321m m m m m ⎧+=⎪⎪+⇒=-⎨⎪⨯=⎪+⎩………….10分 18.(1)由59222bc b c a -=-,可得2224cos ,25b c a A bc +-==………….2分 3sin .5A ==…………..4分(2)因为24sin 21==A bc S ,所以80,bc =…………..6分将80,6==bc a 带入可得22164,b c +=…………..8分与80=bc 联立解得8,10==c b 或者8,10.b c ==…………..12分19.解:(Ⅰ)由题得211122,2,n n n n n n a a S a a S +++⎧+=⎪⎨+=⎪⎩两式子相减得:()()111.n n n n n n aa a a a a ++++-=+…………..2分结合0n a >得11,n n a a +-= …………..4分令n =1得2111122a a S a +==,即1 1.a =所以{}n a 是首项为1,公差为1的等差数列,即.n a n =…………..6分 (Ⅱ)因为n b =11,22n n a n a n--=(n ≥2) 所以121211...,2222n n n n n n n T ---+=++++ ①2111211...,22222n n n n n n n T -+-+=++++ ② …………..8分 ① - ②得211111111331 (2222222)n n n n n n n T -++++=++++-=-,所以数列{}n b 的前n 项和33.2n n n T +=- …………..12分20.解:当P 真时,2()lg(2)f x x x a =-+的定义域为R , 有440a ∆=-<,解得1,a > .………..2分当q 真时,即使06)1()(2<-+-=x x a x f 在[]3,1∈x 上恒成立,则有162+-<x x a 在[]3,1∈x 上恒成立, 而当[]3,1∈x 时,22666,1317()24x x x =≥-+-+ 6.7a ∴< .………..5分又因为“q p ∨”为真,“q p ∧”为假,所以p,q 一真一假, …………..6分当p 真q 假时,1,1,67a a a >⎧⎪⇒>⎨≥⎪⎩ .………..8分 当p 假q 真时,1,6.677a a a ≤⎧⎪⇒<⎨<⎪⎩………..10分 所以实数a 的取值范围是6(,)(1,).7-∞⋃+∞ .……..12分21.解:(I )以点D 为坐标原点O ,1,,DA DC DA 分别为,,x y z 轴, 建立空间直角坐标系,则 ,…………..2分有1(1,0,0),(0,1DA DB ==设平面的法向量为),,(z y x m =,由10,0,m DA m DB ⎧⋅=⎪⎨⋅=⎪⎩取(0,3,1),m =-………..4分 又(0,1,0),DC =设直线DC 与平面所成角为,θ则3sin cos ,DC m DC m DC mθ⋅===xyz O -()()()()()()()3,1,1,3,0,1,3,1,0,3,0,0,0,1,1,0,0,1,0,0,01111--C D B A B A D 1ADB 1ADB因为0,2πθ⎡⎤∈⎢⎥⎣⎦,所以.3πθ= 即直线DC 与平面所成角的大小为.3π…………..6分(II )假设存在点P ,使得使得二面角的大小为, 设1,AP PA λ=111AP PA P λλ⎛=∴ +⎝⎭,1111(1,0,0),,1,,1B C B P λ⎛=-=- +⎝⎭平面的法向量为(,,)n a b c =,由1110,0,n B C n B P ⎧⋅=⎪⎨⋅=⎪⎩取0,,1.1n λ⎛⎫=- ⎪ ⎪+⎝⎭ …….9分 由(I )知,平面11AB C D的法向量(0,m =311cos300, 2.m nm nλλ+⋅∴==>∴=所以棱上存在一点,且12AP PA = 使得二面角的大小为.…..12分22.解:(Ⅰ)设(,)M x y ,00(,)P x y ,由3PD MD =得0,,x x y =⎧⎪⎨=⎪⎩ …………..2分因为22003x y +=,所以22)3x +=,即22: 1.3x C y += 其离心率e =…………..4分 (Ⅱ)当AB 垂直x轴时,AB =当AB 不垂直x 轴时,设直线AB 的方程为,y kx m =+2=,即223(1).4m k =+ …………..6分联立22,13y kx m x y =+⎧⎪⎨+=⎪⎩ 得222(13)6330.k x km m +++-= 1ADB P C B A --11︒30P C B 111AA P P C B A --11︒30设1122(,),(,)A x y B x y ,由求根公式得:12221226,1333,130,km x x k m x x k -⎧+=⎪+⎪-⎪=⎨+⎪∆>⎪⎪⎩…………..8分 所以222222121222633(1)()4(1)()41313km m AB k x x x x k k k ⎡⎤--⎡⎤=++-=+-⎢⎥⎣⎦++⎣⎦()()()()22222222242212(1)133(1)19123.1691313k k m k k k k kkk ++-++===+++++ 当0k =时,AB =; 当0k ≠时,2221233 4.196AB k k=+≤+=++…………..10分当且仅当2219k k =即k =时,取等号,此时满足0∆>. 综上所述,max 2AB =,此时AOB S ∆的最大值为12AB ⨯= ………..12分。

2016-2017学年河南省郑州市高二(上)期末数学试卷(理科)及参考答案与解析

2016-2017学年河南省郑州市高二(上)期末数学试卷(理科)及参考答案与解析

2016-2017学年河南省郑州市高二(上)期末数学试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.(5分)不等式>1的解集为()A.(﹣∞,1)B.(0,1)C.(1,+∞)D.(0,+∞)2.(5分)a>b的一个充分不必要条件是()A.a=1,b=0B.<C.a2>b2D.a3>b33.(5分)在△ABC中,若a=1,b=2,cosA=,则sinB=()A. B. C. D.4.(5分)等比数列{a n}中,a2+a4=20,a3+a5=40,则a6=()A.16B.32C.64D.1285.(5分)两座灯塔A和B与海洋观测站C的距离分别是akm和2akm,灯塔A在观测站C的北偏东20°,灯塔B在观测站C的南偏东40°,则灯塔A与灯塔B之间的距离为()A.akmB.2akmC.akmD.akm6.(5分)在正方体ABCD﹣A1B1C1D1中,点E,F满足=3,=3,则BE与DF所成角的正弦值为()A. B. C. D.7.(5分)等差数列{a n}的前n项和为S n,若a1009=1,则S2017()A.1008B.1009C.2016D.20178.(5分)过抛物线y2=4x的焦点作直线交抛物线于A,B两点,若O为坐标原点,则•=()A.﹣1B.﹣2C.﹣3D.﹣49.(5分)设椭圆C:=1(a>b>0)的左、右焦点分别为F1、F2,P是C上的点PF2⊥F1F2,∠PF1F2=30°,则C的离心率为()A. B. C. D.10.(5分)在△ABC中,若BC=2,A=120°,则•的最大值为()A. B.﹣ C. D.﹣11.(5分)正实数ab满足+=1,则(a+2)(b+4)的最小值为()A.16B.24C.32D.4012.(5分)圆O的半径为定长,A是平面上一定点,P是圆上任意一点,线段AP的垂直平分线l和直线OP相交于点Q,当点P在圆上运动时,点Q的轨迹为() A.一个点 B.椭圆C.双曲线D.以上选项都有可能二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)命题“∃x∈[﹣,],tanx≤m”的否定为.14.(5分)若x,y满足,则z=x+2y的取值范围为.15.(5分)已知F为双曲线C:﹣=1的左焦点,A(1,4),P是C右支上一点,当△APF周长最小时,点F到直线AP的距离为.16.(5分)若数列{a n}满足a n+1+(﹣1)n•a n=2n﹣1,则{a n}的前40项和为.三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.(10分)设f(x)=(m+1)x2﹣mx+m﹣1.(1)当m=1时,求不等式f(x)>0的解集;(2)若不等式f(x)+1>0的解集为,求m的值.18.(12分)在△ABC中,a,b,c的对角分别为A,B,C的对边,a2﹣c2=b2﹣,a=6,△ABC的面积为24.(1)求角A的正弦值;(2)求边b,c.19.(12分)S n为数列{a n}的前n项和,已知a n>0,a n2+a n=2S n.(1)求数列{a n}的通项公式;(2)若b n=,求数列{b n}的前n项和T n.20.(12分)已知命题p:函数f(x)=lg(x2﹣2x+a)的定义域为R,命题q:对于x∈[1,3],不等式ax2﹣ax﹣6+a<0恒成立,若p∨q为真命题,p∧q为假命题,求实数a的取值范围.21.(12分)如图,四棱柱ABCD﹣A1B1C1D1中,A1D⊥平面ABCD,底面为边长为1的正方形,侧棱AA1=2(1)求直线DC与平面ADB1所成角的大小;(2)在棱上AA1是否存在一点P,使得二面角A﹣B1C1﹣P的大小为30°,若存在,确定P的位置,若不存在,说明理由.22.(12分)在圆x2+y2=3上任取一动点P,过P作x轴的垂线PD,D为垂足,=动点M的轨迹为曲线C.(1)求C的方程及其离心率;(2)若直线l交曲线C交于A,B两点,且坐标原点到直线l的距离为,求△AOB 面积的最大值.2016-2017学年河南省郑州市高二(上)期末数学试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.(5分)不等式>1的解集为()A.(﹣∞,1)B.(0,1)C.(1,+∞)D.(0,+∞)【解答】解:不等式可化为x(x﹣1)<0,∴0<x<1,∴不等式>1的解集为(0,1),故选B.2.(5分)a>b的一个充分不必要条件是()A.a=1,b=0B.<C.a2>b2D.a3>b3【解答】解:A.当a=1,b=0时,满足a>b,反之不成立,则a=1,b=0是a >b的一个充分不必要条件.B.当a<0,b>0时,满足<,但a>b不成立,即充分性不成立,C.当a=﹣2,b=1时,满足a2>b2,但a>b不成立,即充分性不成立,D.由a3>b3得a>b,即a3>b3是a>b成立的充要条件,故选:A3.(5分)在△ABC中,若a=1,b=2,cosA=,则sinB=()A. B. C. D.【解答】解:∵0<A<π,且cosA=,∴sinA==,由正弦定理得,,则sinB===,故选D.4.(5分)等比数列{a n}中,a2+a4=20,a3+a5=40,则a6=()A.16B.32C.64D.128【解答】解:∵等比数列{a n}中,a2+a4=20,a3+a5=40,∴,解得a=2,q=2,∴a6=2×25=64.故选:C.5.(5分)两座灯塔A和B与海洋观测站C的距离分别是akm和2akm,灯塔A在观测站C的北偏东20°,灯塔B在观测站C的南偏东40°,则灯塔A与灯塔B之间的距离为()A.akmB.2akmC.akmD.akm【解答】解:根据题意,△ABC中,∠ACB=180°﹣20°﹣40°=120°,∵AC=akm,BC=2akm,∴由余弦定理,得cos120°=,解之得AB=akm,即灯塔A与灯塔B的距离为akm,故选:D.6.(5分)在正方体ABCD﹣A1B1C1D1中,点E,F满足=3,=3,则BE与DF所成角的正弦值为()A. B. C. D.【解答】解:如图,以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,设正方体ABCD﹣A1B1C1D1中棱长为4,∵点E,F满足=3,=3,∴B(4,4,0),E(4,3,4),D(0,0,0),F(0,1,4),=(0,﹣1,4),=(0,1,4),设异面直线BE与DF所成角为θ,则cosθ===.sinθ==,∴BE与DF所成角的正弦值为.故选:A.7.(5分)等差数列{a n}的前n项和为S n,若a1009=1,则S2017()A.1008B.1009C.2016D.2017【解答】解:∵等差数列{a n}的前n项和为S n,a1009=1,∴S2017=(a1+a2017)=2017a1009=2017.故选:D.8.(5分)过抛物线y2=4x的焦点作直线交抛物线于A,B两点,若O为坐标原点,则•=()A.﹣1B.﹣2C.﹣3D.﹣4【解答】解:由题意知,抛物线y2=4x的焦点坐标为(1,0),∴直线AB的方程为y=k(x﹣1),由,得k2x2﹣(2k2+4)x+k2=0,设A(x1,y1),B(x2,y2),x1+x2=,x1+x2=1,y1•y2=k(x1﹣1)•k(x2﹣1)=k2[x1•x2﹣(x1+x2)+1]'则•=x1•x2+y1•y2=x1•x2+k(x1﹣1)•k(x2﹣1)=﹣3.故选:C.9.(5分)设椭圆C:=1(a>b>0)的左、右焦点分别为F1、F2,P是C上的点PF2⊥F1F2,∠PF1F2=30°,则C的离心率为()A. B. C. D.【解答】解:|PF2|=x,∵PF2⊥F1F2,∠PF1F2=30°,∴|PF1|=2x,|F1F2|=x,又|PF1|+|PF2|=2a,|F1F2|=2c∴2a=3x,2c=x,∴C的离心率为:e==.故选D.10.(5分)在△ABC中,若BC=2,A=120°,则•的最大值为()A. B.﹣ C. D.﹣【解答】解:∵,∴⇒4=AC2+AB2﹣2AC•ABcosA⇒4=AC2+AB2+AC•AB≥2A•CAB+AC•AB=3AC•AB⇒AC•AB≤∴•=AC•ABco s120°≤,则•的最大值为,故选:A.11.(5分)正实数ab满足+=1,则(a+2)(b+4)的最小值为()A.16B.24C.32D.40【解答】解:正实数a,b满足+=1,∴1≥2,解得ab≥8,当且仅当b=2a=4时取等号.b+2a=ab.∴(a+2)(b+4)=ab+2(b+2a)+8=3ab+8≥32.故选:C.12.(5分)圆O的半径为定长,A是平面上一定点,P是圆上任意一点,线段AP的垂直平分线l和直线OP相交于点Q,当点P在圆上运动时,点Q的轨迹为() A.一个点 B.椭圆C.双曲线D.以上选项都有可能【解答】解:∵A为⊙O外一定点,P为⊙O上一动点线段AP的垂直平分线交直线OP于点Q,则QA=QP,则QA﹣QO=QP﹣QO=OP=R,即动点Q到两定点O、A的距离差为定值,根据双曲线的定义,可知点Q的轨迹是:以O,A为焦点,OP为实轴长的双曲线故选:C.二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)命题“∃x∈[﹣,],tanx≤m”的否定为∀x∈[﹣,],tanx >m.【解答】解:命题“∃x∈[﹣,],tanx≤m”的否定为命题“∀x∈[﹣,],tanx>m”,故答案为:∀x∈[﹣,],tanx>m14.(5分)若x,y满足,则z=x+2y的取值范围为[0,] .【解答】解:x,y满足,不是的可行域如图:z=x+2y化为:y=﹣+,当y=﹣+经过可行域的O时目标函数取得最小值,经过A时,目标函数取得最大值,由,可得A(,),则z=x+2y的最小值为:0;最大值为:=.则z=x+2y的取值范围为:[0,].故答案为:[0,].15.(5分)已知F为双曲线C:﹣=1的左焦点,A(1,4),P是C右支上一点,当△APF周长最小时,点F到直线AP的距离为.【解答】解:设双曲线的右焦点为F′(4,0),由题意,A,P,F′共线时,△APF 周长最小,直线AP的方程为y=(x﹣4),即4x+3y﹣16=0,∴点F到直线AP的距离为=,故答案为:16.(5分)若数列{a n}满足a n+1+(﹣1)n•a n=2n﹣1,则{a n}的前40项和为820.+(﹣1)n a n=2n﹣1,【解答】解:由于数列{a n}满足a n+1故有a2﹣a1=1,a3+a2=3,a4﹣a3=5,a5+a4=7,a6﹣a5=9,a7+a6=11,…a50﹣a49=97.从而可得a3+a1=2,a4+a2=8,a7+a5=2,a8+a6=24,a9+a7=2,a12+a10=40,a13+a11=2,a16+a14=56,…从第一项开始,依次取2个相邻奇数项的和都等于2,从第二项开始,依次取2个相邻偶数项的和构成以8为首项,以16为公差的等差数列.{a n}的前40项和为10×2+(10×8+×16)=820,故答案为:820三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.(10分)设f(x)=(m+1)x2﹣mx+m﹣1.(1)当m=1时,求不等式f(x)>0的解集;(2)若不等式f(x)+1>0的解集为,求m的值.【解答】(本题12分)解:(1)当m=1时,不等式f(x)>0为:2x2﹣x>0⇒x(2x﹣1)>0⇒x>,x<0;因此所求解集为;…(6分)(2)不等式f(x)+1>0即(m+1)x2﹣mx+m>0∵不等式f(x)+1>0的解集为,所以是方程(m+1)x2﹣mx+m=0的两根因此⇒. …(12分)18.(12分)在△ABC中,a,b,c的对角分别为A,B,C的对边,a2﹣c2=b2﹣,a=6,△ABC的面积为24.(1)求角A的正弦值;(2)求边b,c.【解答】解:(1)由在△ABC中,a2﹣c2=b2﹣①,整理得cosA==,则sinA==;(2)∵S=bcsinA=24,sinA=,∴bc=80,将a=6,bc=80代入①得:b2+c2=164,与bc=80联立,解得:b=10,c=8或b=8,c=10.19.(12分)S n为数列{a n}的前n项和,已知a n>0,a n2+a n=2S n.(1)求数列{a n}的通项公式;(2)若b n=,求数列{b n}的前n项和T n.【解答】解:(1)由题得a n2+a n=2S n,a n+12+an+1=2S n+1,两式子相减得:结合a n>0得a n+1﹣a n=1 …..(4分)令n=1得a12+a1=2S1,即a1=1,所以{a n}是首项为1,公差为1的等差数列,即a n=n…..(6分)(2)因为b n==(n≥2)所以T n=+…+①T n=+…++②…..(8分)①﹣②得T n=1++…+﹣=﹣,所以数列{b n}的前n项和T n=3﹣.…..(12分)20.(12分)已知命题p:函数f(x)=lg(x2﹣2x+a)的定义域为R,命题q:对于x∈[1,3],不等式ax2﹣ax﹣6+a<0恒成立,若p∨q为真命题,p∧q为假命题,求实数a的取值范围.【解答】解:当P真时,f(x)=lg(x2﹣2x+a)的定义域为R,有△=4﹣4a<0,解得a>1.…..(2分)当q真时,即使g(x)=ax2﹣ax﹣6+a在x∈[1,3]上恒成立,则有a<在x∈[1,3]上恒成立,而当x∈[1,3]时,=≥,故a<.…..(5分)又因为p∨q为真命题,p∧q为假命题,所以p,q一真一假,…..(6分)当p真q假时,a>1.…..(8分)当p假q真时,a<…..(10分)所以实数a的取值范围是(﹣∞,)∪(1,+∞)…..(12分)21.(12分)如图,四棱柱ABCD﹣A1B1C1D1中,A1D⊥平面ABCD,底面为边长为1的正方形,侧棱AA1=2(1)求直线DC与平面ADB1所成角的大小;(2)在棱上AA1是否存在一点P,使得二面角A﹣B1C1﹣P的大小为30°,若存在,确定P的位置,若不存在,说明理由.【解答】解:(1)∵四棱柱ABCD﹣A1B1C1D1中,A1D⊥平面ABCD,底面为边长为1的正方形,侧棱AA1=2,∴以点D为坐标原点O,DA,DC,DA1分别为x,y,z轴,建立空间直角坐标系,…..(2分)D(0,0,0),A(1,0,0),B1(0,1,),C(0,1,0),,=(0,1,),=(0,1,0),的法向量为,设平面ADB则,取z=1,得=(0,﹣,1),…..(4分)设直线DC与平面所ADB1成角为θ,则sinθ=|cos<>|==,∵θ∈[0,],∴θ=,∴直线DC与平面ADB1所成角的大小为.…..(6分)(2)假设存在点P(a,b,c),使得二面角A﹣B1C1﹣P的大小为30°,设=,由A1(0,0,),得(a﹣1,b,c)=λ(﹣a,﹣b,),∴,解得,B1(0,1,),C1(﹣1,1,),=(﹣1,0,0),=(,﹣1,﹣),设平面的法向量为=(x,y,z),则,取z=1,得=(0,﹣,1),….(9分)由(1)知,平面AB1C1D的法向量为=(0,﹣,1),∵二面角A﹣B1C1﹣P的大小为30°,∴cos30°===.由λ>0,解得λ=2,所以棱AA1上存在一点P,使得二面角A﹣B1C1﹣P的大小为30°,且AP=2PA1.22.(12分)在圆x2+y2=3上任取一动点P,过P作x轴的垂线PD,D为垂足,=动点M的轨迹为曲线C.(1)求C的方程及其离心率;(2)若直线l交曲线C交于A,B两点,且坐标原点到直线l的距离为,求△AOB 面积的最大值.【解答】解:(Ⅰ)设M(x,y),P(x0,y0),由=得x0=x,y0=y …..(2分)因为x02+y02=3,所以x2+3y2=3,即=1,其离心率e=.…..(4分)(Ⅱ)当AB与x轴垂直时,|AB|=.(5分)②当AB与x轴不垂直时,设直线AB的方程为y=kx+m,A(x1,y1),B(x2,y2),由已知,得.(6分)把y=kx+m代入椭圆方程,整理得(3k2+1)x2+6kmx+3m2﹣3=0,∴x1+x2=,x1x2=(7分)∴k≠0,|AB|2=(1+k2)(x2﹣x1)2=3+≤4,当且仅当9k2=,即k=时等号成立,此时|AB|=2.(10分)当k=0时,|AB|=.(11分)综上所述:|AB|max=2,此时△AOB面积取最大值=(12分)。

(完整版)郑州市2016-2017高二上学期期末考试数学(文)试题含答案,推荐文档

(完整版)郑州市2016-2017高二上学期期末考试数学(文)试题含答案,推荐文档

2016-2017学年上学期期末考试高二数学(文)试题第Ⅰ卷(选择题)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.不等式的解集为11x> A. B. C. D.(),1-∞()0,1()1,+∞()0,+∞2. 在中,若,则ABC ∆11,2,sin 3a b A ===sin B =A.B. 23133. 等比数列中,,则{}n a 243520,40a a a a +=+=6a = A. 128 B. 64 C. 32 D. 164. 两座灯塔A 和B 与海洋观测站C 的距离分别是和,灯塔A 在观测站C 的北偏东,akm 2akm 20 灯塔B 在观测站C 的南偏东,则灯塔A 与灯塔B 之间的距离为40B. 2akm 5. “”是“”的a b >22a b > A. 充要条件 B. 充分不必要条件C. 必要不充分条件D.既不充分也不必要条件6.函数的最小值为-2,则的最大值为()[]3239,2,2f x x x x a x =-+++∈-()f xA. 25B. 23C. 21D. 207. 等差数列的前项和为,若,则{}n a n n S 100010182a a +=2017S A. 1008 B. 1009 C. 2016 D.20178. 的内角分别为,已知,则ABC ∆,,A B C ,,a b c 24,cos 3a c A ===b =A. 9.已知直线与曲线相切,则的值为y x k =+xy e =k A. B. 2 C. 1 D. 0e10. 过抛物线的焦点作直线交抛物线于A,B 两点,若O 为坐标原点,则24y x =OA OB ⋅=A. B. C. D.1-2-3-4-11. 在中,若,则有ABC ∆2,60BC A ==AB CA ⋅A. 最大值-2B. 最小值-2C.最大值D.最小值12..圆O 的半径为定长,A 是平面上一定点,P 是圆上任意一点,线段AP 的垂直平分线和直线OP l 相交于点Q,当点P 在圆上运动时,点Q 的轨迹为A. 一个点B. 椭圆C. 双曲线D.以上选项都有可能第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分,共20分.13.若命题,则为 .2:,20xp x R x ∀∈+>p ⌝14. 若满足,则的取值范围为 .,x y 2,1,x y x x y ≤≤⎧⎨+≤⎩2z x y =+15. 数列满足,且,则 .{}n a 121,2a a ==()2117n n n a a n N a *++-=∈1001i i a ==∑16. 已知F 为双曲线的左焦点,,P 是C 右支上一点,当周长最小时,22:1412x y C -=()1,4A APF ∆点F 到直线AP 的距离为 .三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.(本题满分10分)已知是等差数列,是等比数列,且{}n a {}n b 2311842,4,,.b b a b a b ==== (1)求数列的通项公式;{}n a (2)设,求数列的前项和.n n n c a b =+{}n c n18. 在中,a,b,c 的对角分别为A,B,C 的对边,ABC ∆22284,6,sin .55bc a c b a B -=-== (1)求角A 的正弦值; (2)求的面积.ABC ∆19.(本题满分12分)已知命题函数的定义域为R,命题对于,不等式:p ()()2lg 2f x x x a =-+:q []1,3x ∈恒成立,若为真命题,为假命题,求实数a 的取值范围.260ax ax a --+<p q ∨p q ∧20.(本题满分12分)为数列的前项和,已知n S {}n a n 20,2.n n n n a a a S >+= (1)求数列的通项公式;{}n a (2)若,求数列的前项和.22n n n b a a +=⋅{}n b n n T21.(本题满分12分) 已知函数()ln .f x x = (1)若与相切,求k 的值;y kx =()f x (2)证明:当时,对任意不等式恒成立.1a ≥0x >()11a f x ax x-≤+-22.(本题满分12分)在圆上任取一动点P ,过P 作轴的垂线PD ,D 为垂足,动点M 的223x y +=x PD =轨迹为曲线C. (1)求C 的方程及其离心率;(2)若直线交曲线C 交于A,B 两点,且坐标原点到直线,求面积的最l l AOB ∆大值.2016—2017学年度郑州市上期期末考试高二数学(文科)参考答案1-12 BABCA ADDCC BD13. 14. 15. 1;16.17.解:(Ⅰ)因为是等比数列,且,所以………….2分所以………….5分(Ⅱ)由(1)可知,………….7分设的前n项和为,则………….10分18.(Ⅰ)可得………….3分所以………..6分(Ⅱ)因为,解得…………..8分将…………..10分由面积公式或勾股定理可得面积为24或.…………..12分19.解:当P真时,的定义域为R,有,解得 .………..2分当q真时,对任意实数x,不等式成立,所以,解得…………..4分又因为“”为真,“”为假,所以p,q一真一假,…………..6分当p真q假时,解得………..8分当p假q真时,解得………..10分所以实数a的取值范围是. ………..12分20.解:(Ⅰ)由题得两式子相减得:…………..2分结合得…………..4分令n=1得,即所以是首项为1,公差为1的等差数列,即…………..6分(Ⅱ)因为…………..8分所以即数列的前项和…………..12分21.(Ⅰ)解:由,设切点坐标为,则解得………..5分(Ⅱ)证明:只需证即恒成立,当时,记则在上,,, ………..9分时,单调递减;时,单调递增,,即恒成立………..12分22.解:(Ⅰ)设,,由得…………..2分因为,所以,即其离心率…………..5分(Ⅱ)当AB垂直x轴时,.当AB不垂直x轴时,设直线AB的方程为由题意得,即…………..7分联立得设,则…………..9分所以当时,;当时,当且仅当即时,去等号,此时满足.综上所述,,此时的最大值为…………..12分。

学年上学期高二数学(文科)参考答案

学年上学期高二数学(文科)参考答案

依题设得椭圆的方程为
x2 y2 1, 4
ห้องสมุดไป่ตู้
直线 AB、EF 的方程分别为 x 2 y 2, y kx ( k 0)
y kx 由 x2 消去 y 得 2 y 1 4
故 x2 x1
(1 4k 2 ) x 2 4
2 1 4k 2
, y2 y1
10 3 ]. 3
19. 解:(Ⅰ)由S n 2an 2知 S n 1 2an 1 2
S n S n 1 2 an an 1 an 即an 2an 1 而S1 2a1 2a1 2 数列an 为等比数列,且an 2n 6分
(Ⅱ)由(Ⅰ)可得bn log 2 an n cn Tn
bn n n 7分 an 2
1 2 3 n 2 3 n 2 2 2 2 1 1 2 3 n Tn 2 3 4 n 1 9分 2 2 2 2 2 1 1 1 1 1 n Tn Tn 2 3 n n 1 2 2 2 2 2 2 1 1 n Tn 1 n n 1 11分 2 2 2 1 n Tn 2 n 1 n 12分 2 2
2k 1 4k 2

由 ED 6 DF 知 x0 x1 6( x2 x0 ) 得 x0 由 D 在 AB 上,知 x0 2kx0 2 ,得 x0


1 5 10 . (6 x2 x1 ) x2 7 7 7 1 4k 2
2 . 1 2k
20. 解(Ⅰ)设捕捞 n 年后开始盈利,盈利为 y 万元,则
y 50n (12n

2016-2017学年河南省郑州市高二(上)期末数学试卷(理科)

2016-2017学年河南省郑州市高二(上)期末数学试卷(理科)

2016-2017学年河南省郑州市高二(上)期末数学试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.(5分)不等式>1的解集为()A.(﹣∞,1)B.(0,1) C.(1,+∞)D.(0,+∞)2.(5分)a>b的一个充分不必要条件是()A.a=1,b=0 B.<C.a2>b2D.a3>b33.(5分)在△ABC中,若a=1,b=2,cosA=,则sinB=()A.B.C.D.4.(5分)等比数列{a n}中,a2+a4=20,a3+a5=40,则a6=()A.16 B.32 C.64 D.1285.(5分)两座灯塔A和B与海洋观测站C的距离分别是akm和2akm,灯塔A 在观测站C的北偏东20°,灯塔B在观测站C的南偏东40°,则灯塔A与灯塔B 之间的距离为()A.akm B.2akm C.akm D.akm6.(5分)在正方体ABCD﹣A1B1C1D1中,点E,F满足=3,=3,则BE与DF所成角的正弦值为()A.B.C.D.7.(5分)等差数列{a n}的前n项和为S n,若a1009=1,则S2017()A.1008 B.1009 C.2016 D.20178.(5分)过抛物线y2=4x的焦点作直线交抛物线于A,B两点,若O为坐标原点,则•=()A.﹣1 B.﹣2 C.﹣3 D.﹣49.(5分)设椭圆C:=1(a>b>0)的左、右焦点分别为F1、F2,P是C上的点PF2⊥F1F2,∠PF1F2=30°,则C的离心率为()A.B.C.D.10.(5分)在△ABC中,若BC=2,A=120°,则•的最大值为()A.B.﹣ C.D.﹣11.(5分)正实数ab满足+=1,则(a+2)(b+4)的最小值为()A.16 B.24 C.32 D.4012.(5分)圆O的半径为定长,A是平面上一定点,P是圆上任意一点,线段AP的垂直平分线l和直线OP相交于点Q,当点P在圆上运动时,点Q的轨迹为()A.一个点B.椭圆C.双曲线D.以上选项都有可能二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)命题“∃x∈[﹣,],tanx≤m”的否定为.14.(5分)若x,y满足,则z=x+2y的取值范围为.15.(5分)已知F为双曲线C:﹣=1的左焦点,A(1,4),P是C右支上一点,当△APF周长最小时,点F到直线AP的距离为.16.(5分)若数列{a n}满足a n+1+(﹣1)n•a n=2n﹣1,则{a n}的前40项和为.三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.(10分)设f(x)=(m+1)x2﹣mx+m﹣1.(1)当m=1时,求不等式f(x)>0的解集;(2)若不等式f(x)+1>0的解集为,求m的值.18.(12分)在△ABC中,a,b,c的对角分别为A,B,C的对边,a2﹣c2=b2﹣,a=6,△ABC的面积为24.(1)求角A的正弦值;(2)求边b,c.19.(12分)S n为数列{a n}的前n项和,已知a n>0,a n2+a n=2S n.(1)求数列{a n}的通项公式;(2)若b n=,求数列{b n}的前n项和T n.20.(12分)已知命题p:函数f(x)=lg(x2﹣2x+a)的定义域为R,命题q:对于x∈[1,3],不等式ax2﹣ax﹣6+a<0恒成立,若p∨q为真命题,p∧q为假命题,求实数a的取值范围.21.(12分)如图,四棱柱ABCD﹣A1B1C1D1中,A1D⊥平面ABCD,底面为边长为1的正方形,侧棱AA1=2(1)求直线DC与平面ADB1所成角的大小;(2)在棱上AA1是否存在一点P,使得二面角A﹣B1C1﹣P的大小为30°,若存在,确定P的位置,若不存在,说明理由.22.(12分)在圆x2+y2=3上任取一动点P,过P作x轴的垂线PD,D为垂足,=动点M的轨迹为曲线C.(1)求C的方程及其离心率;(2)若直线l交曲线C交于A,B两点,且坐标原点到直线l的距离为,求△AOB面积的最大值.2016-2017学年河南省郑州市高二(上)期末数学试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.(5分)不等式>1的解集为()A.(﹣∞,1)B.(0,1) C.(1,+∞)D.(0,+∞)【解答】解:不等式可化为x(x﹣1)<0,∴0<x<1,∴不等式>1的解集为(0,1),故选B.2.(5分)a>b的一个充分不必要条件是()A.a=1,b=0 B.<C.a2>b2D.a3>b3【解答】解:A.当a=1,b=0时,满足a>b,反之不成立,则a=1,b=0是a>b的一个充分不必要条件.B.当a<0,b>0时,满足<,但a>b不成立,即充分性不成立,C.当a=﹣2,b=1时,满足a2>b2,但a>b不成立,即充分性不成立,D.由a3>b3得a>b,即a3>b3是a>b成立的充要条件,故选:A3.(5分)在△ABC中,若a=1,b=2,cosA=,则sinB=()A.B.C.D.【解答】解:∵0<A<π,且cosA=,∴sinA==,由正弦定理得,,则sinB===,故选D.4.(5分)等比数列{a n}中,a2+a4=20,a3+a5=40,则a6=()A.16 B.32 C.64 D.128【解答】解:∵等比数列{a n}中,a2+a4=20,a3+a5=40,∴,解得a=2,q=2,∴a6=2×25=64.故选:C.5.(5分)两座灯塔A和B与海洋观测站C的距离分别是akm和2akm,灯塔A 在观测站C的北偏东20°,灯塔B在观测站C的南偏东40°,则灯塔A与灯塔B 之间的距离为()A.akm B.2akm C.akm D.akm【解答】解:根据题意,△ABC中,∠ACB=180°﹣20°﹣40°=120°,∵AC=akm,BC=2akm,∴由余弦定理,得cos120°=,解之得AB=akm,即灯塔A与灯塔B的距离为akm,故选:D.6.(5分)在正方体ABCD﹣A1B1C1D1中,点E,F满足=3,=3,则BE与DF所成角的正弦值为()A.B.C.D.【解答】解:如图,以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,设正方体ABCD﹣A1B1C1D1中棱长为4,∵点E,F满足=3,=3,∴B(4,4,0),E(4,3,4),D(0,0,0),F(0,1,4),=(0,﹣1,4),=(0,1,4),设异面直线BE与DF所成角为θ,则cosθ===.sinθ==,∴BE与DF所成角的正弦值为.故选:A.7.(5分)等差数列{a n}的前n项和为S n,若a1009=1,则S2017()A.1008 B.1009 C.2016 D.2017【解答】解:∵等差数列{a n}的前n项和为S n,a1009=1,∴S2017=(a1+a2017)=2017a1009=2017.故选:D.8.(5分)过抛物线y2=4x的焦点作直线交抛物线于A,B两点,若O为坐标原点,则•=()A.﹣1 B.﹣2 C.﹣3 D.﹣4【解答】解:由题意知,抛物线y2=4x的焦点坐标为(1,0),∴直线AB的方程为y=k(x﹣1),由,得k2x2﹣(2k2+4)x+k2=0,设A(x1,y1),B(x2,y2),x1+x2=,x1+x2=1,y1•y2=k(x1﹣1)•k(x2﹣1)=k2[x1•x2﹣(x1+x2)+1]'则•=x1•x2+y1•y2=x1•x2+k(x1﹣1)•k(x2﹣1)=﹣3.故选:C.9.(5分)设椭圆C:=1(a>b>0)的左、右焦点分别为F1、F2,P是C上的点PF2⊥F1F2,∠PF1F2=30°,则C的离心率为()A.B.C.D.【解答】解:|PF2|=x,∵PF2⊥F1F2,∠PF1F2=30°,∴|PF1|=2x,|F1F2|=x,又|PF1|+|PF2|=2a,|F1F2|=2c∴2a=3x,2c=x,∴C的离心率为:e==.故选D.10.(5分)在△ABC中,若BC=2,A=120°,则•的最大值为()A.B.﹣ C.D.﹣【解答】解:∵,∴⇒4=AC2+AB2﹣2AC•ABcosA⇒4=AC2+AB2+AC•AB≥2A•CAB+AC•AB=3AC•AB⇒AC•AB≤∴•=AC•ABco s120°≤,则•的最大值为,故选:A.11.(5分)正实数ab满足+=1,则(a+2)(b+4)的最小值为()A.16 B.24 C.32 D.40【解答】解:正实数a,b满足+=1,∴1≥2,解得ab≥8,当且仅当b=2a=4时取等号.b+2a=ab.∴(a+2)(b+4)=ab+2(b+2a)+8=3ab+8≥32.故选:C.12.(5分)圆O的半径为定长,A是平面上一定点,P是圆上任意一点,线段AP的垂直平分线l和直线OP相交于点Q,当点P在圆上运动时,点Q的轨迹为()A.一个点B.椭圆C.双曲线D.以上选项都有可能【解答】解:∵A为⊙O外一定点,P为⊙O上一动点线段AP的垂直平分线交直线OP于点Q,则QA=QP,则QA﹣QO=QP﹣QO=OP=R,即动点Q到两定点O、A的距离差为定值,根据双曲线的定义,可知点Q的轨迹是:以O,A为焦点,OP为实轴长的双曲线故选:C.二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)命题“∃x∈[﹣,],tanx≤m”的否定为∀x∈[﹣,],tanx>m.【解答】解:命题“∃x∈[﹣,],tanx≤m”的否定为命题“∀x∈[﹣,],tanx>m”,故答案为:∀x∈[﹣,],tanx>m14.(5分)若x,y满足,则z=x+2y的取值范围为[0,] .【解答】解:x,y满足,不是的可行域如图:z=x+2y化为:y=﹣+,当y=﹣+经过可行域的O时目标函数取得最小值,经过A时,目标函数取得最大值,由,可得A(,),则z=x+2y的最小值为:0;最大值为:=.则z=x+2y的取值范围为:[0,].故答案为:[0,].15.(5分)已知F为双曲线C:﹣=1的左焦点,A(1,4),P是C右支上一点,当△APF周长最小时,点F到直线AP的距离为.【解答】解:设双曲线的右焦点为F′(4,0),由题意,A,P,F′共线时,△APF 周长最小,直线AP的方程为y=(x﹣4),即4x+3y﹣16=0,∴点F到直线AP的距离为=,故答案为:16.(5分)若数列{a n}满足a n+1+(﹣1)n•a n=2n﹣1,则{a n}的前40项和为820.【解答】解:由于数列{a n}满足a n+1+(﹣1)n a n=2n﹣1,故有a2﹣a1=1,a3+a2=3,a4﹣a3=5,a5+a4=7,a6﹣a5=9,a7+a6=11,…a50﹣a49=97.从而可得a3+a1=2,a4+a2=8,a7+a5=2,a8+a6=24,a9+a7=2,a12+a10=40,a13+a11=2,a16+a14=56,…从第一项开始,依次取2个相邻奇数项的和都等于2,从第二项开始,依次取2个相邻偶数项的和构成以8为首项,以16为公差的等差数列.{a n}的前40项和为10×2+(10×8+×16)=820,故答案为:820三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.(10分)设f(x)=(m+1)x2﹣mx+m﹣1.(1)当m=1时,求不等式f(x)>0的解集;(2)若不等式f(x)+1>0的解集为,求m的值.【解答】(本题12分)解:(1)当m=1时,不等式f(x)>0为:2x2﹣x>0⇒x(2x﹣1)>0⇒x>,x<0;因此所求解集为;…(6分)(2)不等式f(x)+1>0即(m+1)x2﹣mx+m>0∵不等式f(x)+1>0的解集为,所以是方程(m+1)x2﹣mx+m=0的两根因此⇒.…(12分)18.(12分)在△ABC中,a,b,c的对角分别为A,B,C的对边,a2﹣c2=b2﹣,a=6,△ABC的面积为24.(1)求角A的正弦值;(2)求边b,c.【解答】解:(1)由在△ABC中,a2﹣c2=b2﹣①,整理得cosA==,则sinA==;(2)∵S=bcsinA=24,sinA=,∴bc=80,将a=6,bc=80代入①得:b2+c2=164,与bc=80联立,解得:b=10,c=8或b=8,c=10.19.(12分)S n为数列{a n}的前n项和,已知a n>0,a n2+a n=2S n.(1)求数列{a n}的通项公式;(2)若b n=,求数列{b n}的前n项和T n.【解答】解:(1)由题得a n2+a n=2S n,a n+12+a n+1=2S n+1,两式子相减得:结合a n>0得a n+1﹣a n=1 …..(4分)令n=1得a12+a1=2S1,即a1=1,所以{a n}是首项为1,公差为1的等差数列,即a n=n…..(6分)(2)因为b n==(n≥2)所以T n=+…+①T n=+…++②…..(8分)①﹣②得T n=1++…+﹣=﹣,所以数列{b n}的前n项和T n=3﹣.…..(12分)20.(12分)已知命题p:函数f(x)=lg(x2﹣2x+a)的定义域为R,命题q:对于x∈[1,3],不等式ax2﹣ax﹣6+a<0恒成立,若p∨q为真命题,p∧q为假命题,求实数a的取值范围.【解答】解:当P真时,f(x)=lg(x2﹣2x+a)的定义域为R,有△=4﹣4a<0,解得a>1.…..(2分)当q真时,即使g(x)=ax2﹣ax﹣6+a在x∈[1,3]上恒成立,则有a<在x∈[1,3]上恒成立,而当x∈[1,3]时,=≥,故a<.…..(5分)又因为p∨q为真命题,p∧q为假命题,所以p,q一真一假,…..(6分)当p真q假时,a>1.…..(8分)当p假q真时,a<…..(10分)所以实数a的取值范围是(﹣∞,)∪(1,+∞)…..(12分)21.(12分)如图,四棱柱ABCD﹣A1B1C1D1中,A1D⊥平面ABCD,底面为边长为1的正方形,侧棱AA1=2(1)求直线DC与平面ADB1所成角的大小;(2)在棱上AA1是否存在一点P,使得二面角A﹣B1C1﹣P的大小为30°,若存在,确定P的位置,若不存在,说明理由.【解答】解:(1)∵四棱柱ABCD﹣A1B1C1D1中,A1D⊥平面ABCD,底面为边长为1的正方形,侧棱AA1=2,∴以点D为坐标原点O,DA,DC,DA1分别为x,y,z轴,建立空间直角坐标系,…..(2分)D(0,0,0),A(1,0,0),B1(0,1,),C(0,1,0),,=(0,1,),=(0,1,0),设平面ADB1的法向量为,则,取z=1,得=(0,﹣,1),…..(4分)设直线DC与平面所ADB1成角为θ,则sinθ=|cos<>|==,∵θ∈[0,],∴θ=,∴直线DC与平面ADB1所成角的大小为.…..(6分)(2)假设存在点P(a,b,c),使得二面角A﹣B1C1﹣P的大小为30°,设=,由A1(0,0,),得(a﹣1,b,c)=λ(﹣a,﹣b,),∴,解得,B1(0,1,),C1(﹣1,1,),=(﹣1,0,0),=(,﹣1,﹣),设平面的法向量为=(x,y,z),则,取z=1,得=(0,﹣,1),….(9分)由(1)知,平面AB1C1D的法向量为=(0,﹣,1),∵二面角A﹣B1C1﹣P的大小为30°,∴cos30°===.由λ>0,解得λ=2,所以棱AA1上存在一点P,使得二面角A﹣B1C1﹣P的大小为30°,且AP=2PA1.22.(12分)在圆x2+y2=3上任取一动点P,过P作x轴的垂线PD,D为垂足,=动点M的轨迹为曲线C.(1)求C的方程及其离心率;(2)若直线l交曲线C交于A,B两点,且坐标原点到直线l的距离为,求△AOB面积的最大值.【解答】解:(Ⅰ)设M(x,y),P(x0,y0),由=得x0=x,y0=y …..(2分)因为x02+y02=3,所以x2+3y2=3,即=1,其离心率e=.…..(4分)(Ⅱ)当AB与x轴垂直时,|AB|=.(5分)②当AB与x轴不垂直时,设直线AB的方程为y=kx+m,A(x1,y1),B(x2,y2),由已知,得.(6分)把y=kx+m代入椭圆方程,整理得(3k2+1)x2+6kmx+3m2﹣3=0,∴x1+x2=,x1x2=(7分)∴k≠0,|AB|2=(1+k2)(x2﹣x1)2=3+≤4,当且仅当9k2=,即k=时等号成立,此时|AB|=2.(10分)当k=0时,|AB|=.(11分)综上所述:|AB|max=2,此时△AOB面积取最大值=(12分)。

河南省郑州市高二数学上学期期末考试(文)扫描版 新人教版

河南省郑州市高二数学上学期期末考试(文)扫描版 新人教版

参考答案一、选择题 BBACC DCBCC DB二、填空题 13. 2 ; 14. 22 ; 15. 9 ; 16. 56 .三、解答题17.解答:由已知可得p 真,q 假 , ………………………2分p 为真命题,则10<<c ,……………………… 4分q 为假命题,则08162≤-=∆c c .又 0>c ,得 102c <≤. ………………………7分 因为p 真q 假,则:01,10.2c c <<⎧⎪⎨<≤⎪⎩ 得210≤<c . ……………………… 9分 综上:210≤<c 即为所求. ……………………… 10分18.解:在△ABD 中,设BD = x ,则BDA AD BD AD BD BA ∠⋅⋅-+=cos 2222,……………………… 2分即2227510cos60,x x =+-………………………4分整理得: 02452=--x x .解之:81=x ,32-=x (舍去),……………………… 6分 由正弦定理,得:BCDBD CDB BC ∠=∠sin sin , ……………………… 8分 ∴0030sin 135sin 8=BC =24(km ). 答:两景点B 与C 的距离约为24km . ………………………12分19.解答:设11A B x =,易知114000B C x=, ………………………2分 4000(20)(8)S x x=++8000041608(0)x x x=++>.………………………6分 800004160841605760S x x x x=++≥+=.………………………9分 当且仅当800008100x x x ==即时取等号 . ………………………11分 ∴要使公园所占面积最小,休闲区A 1B 1C 1D 1的长为100米、宽为40米.………………………………………………………………………12分20.解:(1)'2()369f x x x =-++, ……………………… 2分令'2()03690f x x x <-++<即,解得3x >或1x <- . ………………………4分再令'2()03690f x x x >-++>即,解得13x -<<.所以该函数的单调递减区间为(,1)-∞-、(3,)+∞;单调递增区间为(1,3)-. ……… 6分(2)令'()0f x =,得到1x =-或3x =,由上表可知,最小值为(1)54f d -=-=-,所以1d =.………………………10分 则最大值为28)3(=f ,所以函数f (x )的最大值为28. ………………………12分21.解:(1)由题意得,11311,3.a d a d a d a d +=⎧⎨+=⎩ 解得1,2=-=d d .(舍去) ………………………2分3221=-=a d 时.3)2()2(32,2381nn n n b n a --=-⋅=-=∴- . ………………………4分 (2)3)2()382(nn n n b a --=. 3)2()382(3)2()3822(32)382(2nn n S -⋅-++-⋅-⋅+-⋅-= , ① 3)2()382(3)2()3822(3)2()382(2132+-⋅-++-⋅-⋅+-⋅-=-n n n S . ②…………7分 ① -② 得3)2()382(3)2(3)2(3)2(2943132+-⋅--⎥⎦⎤⎢⎣⎡-++-+-+=n n n n S 3)2()1(342+--+=n n . ………………………10分 9)2)(1(942+--+=∴n n n S . ………………………12分22.解:(1)由题设知:512c a ab ⎧=⎪⎪⎨⎪=⎪⎩又222a b c =+,将,5c a b a ==代入, 得到:222205a a a+=,即425a =,所以25a =,24b =. 故椭圆方程为22154x y +=. ………………………4分 (2)由(1)知((0,2)A B ,PQ AB k k ∴== ∴设直线l的方程为y b =+,………………………6分由22,154y x b x y ⎧=+⎪⎪⎨⎪+=⎪⎩ 得2285200x b ++-=,设P (x 1,y 1),Q (x 2,y 2),则212125208b x x x x -+=⋅=, ………………………8分1212121)1))y y x x x x ∴-=--=-, 221221)()(||y y x x PQ -+-=∴====, ………………………10分 解之,245b =(验证判别式为正),所以直线l 的方程为552552±=x y .…………12分。

河南省郑州市2017-2018学年高二上学期期末数学试卷(文科) Word版含解析

河南省郑州市2017-2018学年高二上学期期末数学试卷(文科) Word版含解析

河南省郑州市2017-2018学年高二上学期期末数学试卷(文科)一、选择题(共12小题,每小题5分,满分60分)1.(5分)抛物线x2=2y的焦点坐标是()A.B.C.(1,0)D.(0,1)2.(5分)设a,b∈R,则a>b是(a﹣b)b2>0的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件3.(5分)不等式x2+2014x﹣2015>0的解集为()A.{x|﹣2015<x<1} B.{x|x>1或x<﹣2015}C.{x|﹣1<x<2015} D.{x|x<﹣1或x>2015}4.(5分)等差数列{a n}的前n项和为S n,且S3=6,a3=0,则公差d等于()A.﹣1 B.1C.2D.﹣25.(5分)如图所示,为了测量某障碍物两侧A,B间的距离,给定下列四组数据,不能确定A,B间距离的是()A.α,a,b B.α,β,a C.a,b,γD.α,β,b6.(5分)下列关于星星的图案构成一个数列,该数列的一个通项公式是()A.a n=n2﹣n+1 B.a n=C.a n=D.a n=7.(5分)设变量x,y满足约束条件:,则目标函数z=2x+3y的最小值为()A.6B.7C.8D.238.(5分)已知a>0,b>0,且2是2a与b的等差中项,则的最小值为()A.B.C.2D.49.(5分)已知点(2,1)和(﹣1,3)在直线3x﹣2y+a=0的两侧,则a的取值范围是()A.﹣4<a<9 B.﹣9<a<4 C.a<﹣4或a>9 D.a<﹣9或a>410.(5分)已知各项为正的等比数列{a n}中,a4与a14的等比中项为,则2a7+a11的最小值为()A.16 B.8C.D.411.(5分)已知f(x)=x2+2xf′(1),则f′(0)等于()A.0B.﹣2 C.﹣4 D.212.(5分)已知方程=k在(0,+∞)上有两个不同的解α,β(α<β),则下面结论正确的是()A.s inα=﹣αcosβB.s inα=αcosβC.c osα=βsinβD.sinβ=βsinα二、填空题(共4小题,每小题5分,满分20分)13.(5分)“∃x<0,有x2>0”的否定是.14.(5分)若2、a、b、c、9成等差数列,则c﹣a=.15.(5分)在△ABC中,角A,B,C所对的边分别为a,b,c,若sinA=sinC,B=30°,b=2,则边c=.16.(5分)现有甲、乙两人相约到登封爬嵩山,若甲上山的速度为v1,下山的速度为v2(v1≠v2),乙上山和下山的速度都是(甲、乙两人中途不停歇且下山时按原路返回),则甲、乙两人上下山所用的时间t1、t2的大小关系为.三、解答题(共6小题,满分70分)17.(10分)设等差数列{a n}满足a3=5,a10=﹣9.(Ⅰ)求{a n}的通项公式;(Ⅱ)求{a n}的前n项和S n的最大值.18.(12分)p:关于x的不等式x2+2ax+4>0,对一切x∈R恒成立.q:抛物线y2=4ax的焦点在(1,0)的左侧,若p或q为真,p且q为假,求实数a的取值范围.19.(12分)在锐角△ABC中,角A,B,C的对边分别为a,b,c,且b=2csinB(1)求角C的大小;(2)若c2=(a﹣b)2+6,求△ABC的面积.20.(12分)汽车在行驶中,由于惯性的作用,刹车后还要继续向前滑行一段距离才能停住,我们称这段距离为“刹车距离”.刹车距离是分析事故的一个重要因素.某市的一条道路在一个限速为40km/h的弯道上,甲、乙两辆汽车相向而行,发现情况不对,同时刹车,但还是相撞了.事后现场勘查测得甲车刹车距离刚好12m,乙车刹车距离略超过10m.又知甲、乙两种车型的刹车距离S(m)与车速x(km/h)之间分别有如下关系:S甲=0.1x+0.01x2,S乙=0.05x+0.005x2.问:甲、乙两车有无超速现象?21.(12分)已知函数f(x)=e x﹣2x(e为自然对数的底数)(1)求函数f(x)的单调区间(2)若存在使不等式f(x)<mx成立,求实数m的取值范围.22.(12分)已知圆C:x2+y2=3的半径等于椭圆E:+=1(a>b>0)的短半轴长,椭圆E的右焦点F在圆C内,且到直线l:y=x﹣的距离为﹣,点M是直线l与圆C的公共点,设直线l交椭圆E于不同的两点A(x1,y1),B(x2,y2).(Ⅰ)求椭圆E的方程;(Ⅱ)求证:|AF|﹣|BF|=|BM|﹣|AM|.河南省郑州市2014-2015学年高二上学期期末数学试卷(文科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)抛物线x2=2y的焦点坐标是()A.B.C.(1,0)D.(0,1)考点:抛物线的简单性质.专题:计算题.分析:根据抛物线的定义可得,x2=2py(p>0)的焦点坐标(0,)可直接求解解答:解:根据抛物线的定义可得,x2=2y的焦点坐标(0,)故选B.点评:本题主要考查了抛物线的简单的性质,属于基础试题.2.(5分)设a,b∈R,则a>b是(a﹣b)b2>0的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:规律型.分析:结合不等式的性质,利用充分条件和必要条件的定义进行判断.解答:解:当a>b,b=0时,不等式(a﹣b)b2>0不成立.若(a﹣b)b2>0,则b≠0,且a﹣b>0,∴a>b成立.即a>b是(a﹣b)b2>0的必要不充分条件.故选:B.点评:本题主要考查充分条件和必要条件的判断,利用不等式的性质是解决本题的关键,比较基础.3.(5分)不等式x2+2014x﹣2015>0的解集为()A.{x|﹣2015<x<1} B.{x|x>1或x<﹣2015}C.{x|﹣1<x<2015} D.{x|x<﹣1或x>2015}考点:一元二次不等式的解法.专题:不等式的解法及应用.分析:把不等式化为(x+2015)(x﹣1)>0,求出解集即可.解答:解:不等式x2+2014x﹣2015>0可化为(x+2015)(x﹣1)>0,解得x<﹣2015或x>1;∴不等式的解集为{x|x>1或x<﹣2015}.故选:B.点评:本题考查了一元二次不等式的解法与应用问题,是基础题目.4.(5分)等差数列{a n}的前n项和为S n,且S3=6,a3=0,则公差d等于()A.﹣1 B.1C.2D.﹣2考点:等差数列的前n项和.专题:等差数列与等比数列.分析:由题意结合等差数列的性质和求和公式可得a2的值,进而可得公差d.解答:解:∵等差数列{a n}的前n项和为S n,且S3=6,a3=0,∴S3=a1+a2+a3=3a2=6,∴a2=2,∴公差d=a3﹣a2=0﹣2=﹣2故选:D点评:本题考查等差数列的求和公式和通项公式,属基础题.5.(5分)如图所示,为了测量某障碍物两侧A,B间的距离,给定下列四组数据,不能确定A,B间距离的是()A.α,a,b B.α,β,a C.a,b,γD.α,β,b考点:解三角形的实际应用.专题:应用题;解三角形.分析:给定α,a,b,由正弦定理,β不唯一确定,故不能确定A,B间距离.解答:解:给定α,a,b,由正弦定理,β不唯一确定,故不能确定A,B间距离.故选:A.点评:本题考查解三角形的实际应用,考查学生的计算能力,比较基础.6.(5分)下列关于星星的图案构成一个数列,该数列的一个通项公式是()A.a n=n2﹣n+1 B.a n=C.a n=D.a n=考点:数列递推式.专题:规律型.分析:由图中所给的星星个数:1,1+2,1+2+3,…,1+2+3+…+n;得出数列第n项,即通项公式.解答:解析:从图中可观察星星的构成规律,n=1时,有1个;n=2时,有3个;n=3时,有6个;n=4时,有10个;∴a n=1+2+3+4+…+n=.答案:C点评:这是一个简单的自然数求和公式,由观察得出猜想,一般不需要证明.考查学生的观察猜想能力.7.(5分)设变量x,y满足约束条件:,则目标函数z=2x+3y的最小值为()A.6B.7C.8D.23考点:简单线性规划的应用.专题:不等式的解法及应用.分析:本题考查的知识点是线性规划,处理的思路为:根据已知的约束条件.画出满足约束条件的可行域,再用角点法,求出目标函数的最小值.解答:解:画出不等式.表示的可行域,如图,让目标函数表示直线在可行域上平移,知在点B自目标函数取到最小值,解方程组得(2,1),所以z min=4+3=7,故选B.点评:用图解法解决线性规划问题时,分析题目的已知条件,找出约束条件和目标函数是关键,可先将题目中的量分类、列出表格,理清头绪,然后列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数.然后将可行域各角点的值一一代入,最后比较,即可得到目标函数的最优解.8.(5分)已知a>0,b>0,且2是2a与b的等差中项,则的最小值为()A.B.C.2D.4考点:基本不等式;等差数列.专题:不等式的解法及应用.分析:利用等差中项及基本不等式的性质即可求出答案.解答:解:∵2是2a与b的等差中项,∴2a+b=4,又∵a>0,b>0,∴=,当且仅当2a=b=2,即a=1,b=2时取等号,∴.故选B.点评:充分理解基本不等式及其变形是解题的关键.9.(5分)已知点(2,1)和(﹣1,3)在直线3x﹣2y+a=0的两侧,则a的取值范围是()A.﹣4<a<9 B.﹣9<a<4 C.a<﹣4或a>9 D.a<﹣9或a>4考点:直线的斜率.专题:直线与圆.分析:由点(2,1)和(﹣1,3)在直线3x﹣2y+a=0的两侧,把两点的坐标代入3x﹣2y+a 所得的值异号,由此列不等式求得a的范围.解答:解:∵点(2,1)和(﹣1,3)在直线3x﹣2y+a=0的两侧,∴(3×2﹣2×1+a)(﹣1×3﹣2×3+a)<0,即(a+4)(a﹣9)<0.解得﹣4<a<9.故选:A.点评:本题考查了简单的线性规划,考查了二元一次不等式所表示的平面区域,是基础题.10.(5分)已知各项为正的等比数列{a n}中,a4与a14的等比中项为,则2a7+a11的最小值为()A.16 B.8C.D.4考点:等比数列的通项公式.专题:计算题;等差数列与等比数列.分析:由各项为正的等比数列{a n}中,a4与a14的等比中项为,知a4•a14=(2)2=8,故a7•a11=8,利用均值不等式能够求出2a7+a11的最小值.解答:解:∵各项为正的等比数列{a n}中,a4与a14的等比中项为,∴a4•a14=(2)2=8,∴a7•a11=8,∵a7>0,a11>0,∴2a7+a11≥2=2=8.故选B.点评:本题考查等比数列的通项公式的应用,是中档题.解题时要认真审题,仔细解答.11.(5分)已知f(x)=x2+2xf′(1),则f′(0)等于()A.0B.﹣2 C.﹣4 D.2考点:导数的运算.专题:导数的概念及应用.分析:把给出的函数求导得其导函数,在导函数解析式中取x=1可求2f′(1)的值.解答:解:由f(x)=x2+2xf′(1),得:f′(x)=2x+2f′(1),取x=1得:f′(1)=2×1+2f′(1),所以,f′(1)=﹣2.所以f′(x)=2x﹣4故f′(0)=2f′(1)=﹣4,故选:C.点评:本题考查了导数运算,解答此题的关键是理解原函数解析式中的f′(1),在这里f′(1)只是一个常数,此题是基础题.12.(5分)已知方程=k在(0,+∞)上有两个不同的解α,β(α<β),则下面结论正确的是()A.s inα=﹣αcosβB.s inα=αcosβC.c osα=βsinβD.sinβ=βsinα考点:根的存在性及根的个数判断.专题:计算题;作图题;函数的性质及应用;导数的综合应用.分析:由题意,方程=k可化为|sinx|=kx,作函数y=|sinx|与y=kx的图象,从而可求得y′|x=β=﹣cosβ,即k=﹣cosβ,从而可得=﹣cosβ,化简即可.解答:解:在(0,+∞)上,方程=k可化为|sinx|=kx,作函数y=|sinx|与y=kx的图象如下,在x=β时,==k,又∵在x=β处直线与y=|sinx|相切,∴y′|x=β=﹣cosβ,故k=﹣cosβ,则=﹣cosβ,即sinα=﹣αcosβ;故选A.点评:本题考查了导数的几何意义的应用及方程的根与函数图象的关系应用,同时考查了数形结合的思想应用,属于中档题.二、填空题(共4小题,每小题5分,满分20分)13.(5分)“∃x<0,有x2>0”的否定是∀x<0,有x2≤0.考点:的否定.分析:对特称的否定是一个全称,对一个全称的否定是全称,即:对“∃x∈A,P(X)”的否定是:“∀x∈A,¬P(X)”;对“∀x∈A,P(X)”的否定是:“∃x∈A,¬P(X)”,由此不难得到对“∃x<0,有x2>0”的否定.解答:解:∵对“∃x∈A,P(X)”的否定是:“∀x∈A,¬P(X)”∴对“∃x<0,有x2>0”的否定是“∀x<0,有x2≤0”故答案为:∀x<0,有x2≤0点评:对“∃x∈A,P(X)”的否定是:“∀x∈A,¬P(X)”;对“∀x∈A,P(X)”的否定是:“∃x∈A,¬P(X)”,即对特称的否定是一个全称,对一个全称的否定是全称14.(5分)若2、a、b、c、9成等差数列,则c﹣a=.考点:等差数列的性质.专题:等差数列与等比数列.分析:由等差数列的性质可得2b=2+9,解之可得b值,再由等差中项可得a,c的值,作差即可得答案.解答:解:由等差数列的性质可得2b=2+9,解得b=,又可得2a=2+b=2+=,解之可得a=,同理可得2c=9+=,解得c=,故c﹣a=﹣==故答案为:点评:本题考查等差数列的性质和通项公式,属基础题.15.(5分)在△ABC中,角A,B,C所对的边分别为a,b,c,若sinA=sinC,B=30°,b=2,则边c=2.考点:正弦定理;余弦定理.专题:解三角形.分析:在△ABC中,由正弦定理求得a=c,结合余弦定理,即可求出c的值解答:解:∵在△ABC中,sinA=sinC∴a= c又∵B=30°,由余弦定理,可得:cosB=cos30°===解得c=2故答案为:2.点评:本题考查的知识点是正弦定理和余弦定理,熟练掌握定理是解题的关键,属于中档题.16.(5分)现有甲、乙两人相约到登封爬嵩山,若甲上山的速度为v1,下山的速度为v2(v1≠v2),乙上山和下山的速度都是(甲、乙两人中途不停歇且下山时按原路返回),则甲、乙两人上下山所用的时间t1、t2的大小关系为t1>t2.考点:有理数指数幂的化简求值.专题:计算题;函数的性质及应用.分析:由题意,甲用的时间t1=+=S;乙用的时间t2=2×=;从而作差比较大小即可.解答:解:由题意知,甲用的时间t1=+=S•;乙用的时间t2=2×=;∴t1﹣t2=S﹣=S(﹣)=S>0;故t1>t2;故答案为:t1>t2.点评:本题考查了有理指数幂的化简求值,属于基础题.三、解答题(共6小题,满分70分)17.(10分)设等差数列{a n}满足a3=5,a10=﹣9.(Ⅰ)求{a n}的通项公式;(Ⅱ)求{a n}的前n项和S n的最大值.考点:等差数列的前n项和;等差数列的通项公式.专题:计算题;等差数列与等比数列.分析:(Ⅰ)运用等差数列的通项公式,列出方程,解得首项和公差,即可得到通项公式;(Ⅱ)运用前n项和的公式,配方,结合二次函数的最值,即可得到.解答:解:(Ⅰ)由a n=a1+(n﹣1)d,及a3=5,a10=﹣9得,,解得,数列{a n}的通项公式为a n=11﹣2n.(Ⅱ)由(1)知.因为.所以n=5时,S n取得最大值25.点评:本题考查等差数列的通项公式和前n项和公式的运用,考查解方程组和二次函数的最值的求法,属于基础题.18.(12分)p:关于x的不等式x2+2ax+4>0,对一切x∈R恒成立.q:抛物线y2=4ax的焦点在(1,0)的左侧,若p或q为真,p且q为假,求实数a的取值范围.考点:复合的真假.专题:计算题;简易逻辑.分析:先分别求出p,q为真时实数a的取值范围,再由p或q为真,p且q为假,可知p 和q一真一假,从而解得.解答:解:设g(x)=x2+2ax+4,由于关于x的不等式x2+2ax+4>0对一切x∈R恒成立,故△=4a2﹣16<0,∴﹣2<a<2.又∵抛物线y2=4ax的焦点在(1,0)的左侧,∴a<1.a≠0.又由于p或q为真,p且q为假,可知p和q一真一假.(1)若p真q假,则∴1≤a<2;或a=0.(2)若p假q真,则∴a≤﹣2.综上可知,所求实数a的取值范围为1≤a<2,或a≤﹣2.或a=0.点评:本题考查了复合的真假性的应用,属于基础题.19.(12分)在锐角△ABC中,角A,B,C的对边分别为a,b,c,且b=2csinB(1)求角C的大小;(2)若c2=(a﹣b)2+6,求△ABC的面积.考点:余弦定理;正弦定理.专题:解三角形.分析:(1)已知等式利用正弦定理化简,根据sinB不为0求出sinC的值,由C为锐角求出C的度数即可;(2)利用余弦定理列出关系式,把cosC的值代入并利用完全平方公式变形,结合已知等式求出ab的值,再由sinC的值,利用三角形面积公式求出三角形ABC面积即可.解答:解:(1)由正弦定理==,及b=2csinB,得:sinB=2sinCsinB,∵sinB≠0,∴sinC=,∵C为锐角,∴C=60°;(2)由余弦定理得:c2=a2+b2﹣2abcosC=a2+b2﹣ab=(a﹣b)2+ab,∵c2=(a﹣b)2+6,∴ab=6,则S△ABC=absinC=.点评:此题考查了正弦、余弦定理,三角形面积公式,以及特殊角的三角函数值,熟练掌握定理是解本题的关键.20.(12分)汽车在行驶中,由于惯性的作用,刹车后还要继续向前滑行一段距离才能停住,我们称这段距离为“刹车距离”.刹车距离是分析事故的一个重要因素.某市的一条道路在一个限速为40km/h的弯道上,甲、乙两辆汽车相向而行,发现情况不对,同时刹车,但还是相撞了.事后现场勘查测得甲车刹车距离刚好12m,乙车刹车距离略超过10m.又知甲、乙两种车型的刹车距离S(m)与车速x(km/h)之间分别有如下关系:S甲=0.1x+0.01x2,S乙=0.05x+0.005x2.问:甲、乙两车有无超速现象?考点:函数模型的选择与应用.专题:函数的性质及应用.分析:由题意列出不等式组,分别求解两种车型的事发前的车速,判断它们是不是超速行驶,即可得到结论.解答:解:由题意知,对于甲车,有0.1x+0.01x2=12.即x2+10x﹣1200=0,…(2分)解得x=30或x=﹣40(x=﹣40不符合实际意义,舍去).…(4分)这表明甲车的车速为30km/h.甲车车速不会超过限速40km/h.…(6分)对于乙车,有0.05x+0.005x2>10,即x2+10x﹣2000>0,…(8分)解得x>40或x<﹣50(x<﹣50不符合实际意义,舍去).…(10分)这表明乙车的车速超过40km/h,超过规定限速.…(12分)点评:本题的考点是函数模型的选择与应用,考查不等式模型的构建,考查利用数学知识解决实际问题.解题的关键是利用函数关系式构建不等式.21.(12分)已知函数f(x)=e x﹣2x(e为自然对数的底数)(1)求函数f(x)的单调区间(2)若存在使不等式f(x)<mx成立,求实数m的取值范围.考点:利用导数研究函数的单调性;利用导数求闭区间上函数的最值.专题:导数的综合应用.分析:(Ⅰ)先求出函数的导数,令f′(x)=0,解得x=ln2,从而求出函数的单调区间;(Ⅱ)问题转化为求的最小值.令,通过求导得到函数g(x)的最小值,从而求出m的范围.解答:解:(Ⅰ)f′(x)=e x﹣2,令f′(x)=0,即e x﹣2=0,解得x=ln2,x∈(﹣∞,ln2)时,f′(x)<0,x∈(ln2,+∞)时,f′(x)>0,∴f(x)的单调递减区间为(﹣∞,ln2),单调递增区间为(ln2,+∞).(Ⅱ)由题意知使f(x)<mx成立,即使成立;所以的最小值.令,,所以g(x)在上单调递减,在上单调递增,则g(x)min=g(1)=e﹣2,所以m∈(e﹣2,+∞).点评:本题考查了函数的单调性,函数的最值问题,考查了导数的应用,考查转化思想,是一道中档题.22.(12分)已知圆C:x2+y2=3的半径等于椭圆E:+=1(a>b>0)的短半轴长,椭圆E的右焦点F在圆C内,且到直线l:y=x﹣的距离为﹣,点M是直线l与圆C的公共点,设直线l交椭圆E于不同的两点A(x1,y1),B(x2,y2).(Ⅰ)求椭圆E的方程;(Ⅱ)求证:|AF|﹣|BF|=|BM|﹣|AM|.考点:直线与圆锥曲线的综合问题.专题:圆锥曲线中的最值与范围问题.分析:(Ⅰ)设点F(c,0)(c>0),由已知条件得,圆C的半径等于椭圆E的短半轴长,由此能求出椭圆方程.(Ⅱ)由圆心O到直线l的距离为,得,由已知条件推导出|AF|+|AM|=2,|BF|+|BM|=2,由此能证明|AF|﹣|BF|=|BM|﹣|AM|.解答:(Ⅰ)解:设点F(c,0)(c>0),则F到直线l的距离为,即,…(2分)因为F在圆C内,所以,故c=1;…(4分)因为圆C的半径等于椭圆E的短半轴长,所以b2=3,椭圆方程为.…(6分)(Ⅱ)证明:因为圆心O到直线l的距离为,所以直线l与圆C相切,M是切点,故△AOM为直角三角形,所以,又,得,…(7分),又,得,…(9分)所以|AF|+|AM|=2,同理可得|BF|+|BM|=2,…(11分)所以|AF|+|AM|=|BF|+|BM|,即|AF|﹣|BF|=|BM|﹣|AM|.…(12分)点评:本题考查椭圆方程的求法,考查两组线段差相等的证明,解题时要认真审题,注意点到直线的距离公式的合理运用.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016-2017学年河南省郑州市高二(上)期末数学试卷(文科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.不等式>1的解集为()A.(﹣∞,1)B.(0,1) C.(1,+∞)D.(0,+∞)2.△ABC中,若a=1,b=2,sinA=,则sinB=()A.B.C.D.3.等比数列{a n}中,a2+a4=20,a3+a5=40,则a6=()A.16 B.32 C.64 D.1284.两座灯塔A和B与海洋观测站C的距离分别是akm和2akm,灯塔A在观测站C的北偏东20°,灯塔B在观测站C的南偏东70°,则灯塔A与灯塔B之间的距离为()A.akm B.2akm C.akm D.akm5.“a>b“是“a3>b3”的()A.充要条件B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件6.函数f(x)=﹣x3+3x2+9x+a,x∈[﹣2,2]的最小值为﹣2,则f(x)的最大值为()A.25 B.23 C.21 D.207.等差数列{a n}的前n项和为S n,若a1000+a1018=2,则S2017=()A.1008 B.1009 C.2016 D.20178.△ABC的内角A,B,C的对边分别为a,b,c,已知a=2,c=4,cosA=,则b=()A.2 B.2 C.4 D.69.已知直线y=x+k与曲线y=e x相切,则k的值为()A.e B.2 C.1 D.010.过y2=4x的焦点作直线交抛物线于A,B两点,若O为坐标原点,则•=()A.﹣1 B.﹣2 C.﹣3 D.不确定11.在△ABC中,若BC=2,A=60°,则•有()A.最大值﹣2 B.最小值﹣2 C.最大值2D.最小值212.圆O的半径为定长,A是平面上一定点,P是圆上任意一点,线段AP的垂直平分线l和直线OP相交于点Q,当点P在圆上运动时,点Q的轨迹为()A.一个点B.椭圆C.双曲线D.以上选项都有可能二、填空题:本大题共4小题,每小题5分,共20分)13.若命题P:∀x∈R,2x+x2>0,则¬P为.14.若x,y满足,则z=x+2y的取值范围为.=(n∈N*),则a i=.15.数列{a n}满足a1=1,a2=2,且a n+216.已知F为双曲线C:﹣=1的左焦点,A(1,4),P是C右支上一点,当△APF周长最小时,点F到直线AP的距离为.三、解答题:本大题共6小题,共70分.解答写出文字说明、证明过程或演算过程.17.已知{a n}是等差数列,{b n}是等比数列,且b2=2,b3=4,a1=b1,a8=b4.(Ⅰ)求{a n}的通项公式;(Ⅱ)设c n=a n+b n,求数列{c n}的前n项和.18.在△ABC中,a,b,c分别为角A,B,C的对边,a2﹣c2=b2﹣,a=6,sinB=.(Ⅰ)求角A的正弦值;(Ⅱ)求△ABC的面积.19.已知p:函数f(x)=lg(x2﹣2x+a)的定义域为R;q:对任意实数x,不等式4x2+ax+1>0成立,若“p∨q”为真,“p∧q”为假,求实数a的取值范围.20.S n为数列{a n}的前n项和,已知a n>0,a n2+a n=2S n.(Ⅰ)求{a n}的通项公式;(Ⅱ)若b n=,求数列{b n}的前n项和T n.21.已知函数f(x)=lnx.(Ⅰ)y=kx与f(x)相切,求k的值;(Ⅱ)证明:当a≥1时,对任意x>0不等式f(x)≤ax+﹣1恒成立.22.在圆x2+y2=3上任取一动点P,过P作x轴的垂线PD,D为垂足,=动点M的轨迹为曲线C.(1)求C的方程及其离心率;(2)若直线l交曲线C交于A,B两点,且坐标原点到直线l的距离为,求△AOB面积的最大值.2016-2017学年河南省郑州市高二(上)期末数学试卷(文科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.不等式>1的解集为()A.(﹣∞,1)B.(0,1) C.(1,+∞)D.(0,+∞)【考点】其他不等式的解法.【分析】不等式可化为x(x﹣1)<0,即可得到不等式>1的解集.【解答】解:不等式可化为x(x﹣1)<0,∴0<x<1,∴不等式>1的解集为(0,1),故选B.2.△ABC中,若a=1,b=2,sinA=,则sinB=()A.B.C.D.【考点】正弦定理.【分析】利用正弦定理求得sinB的值.【解答】解:△ABC中,若a=1,b=2,sinA=,则由正弦定理可得=,即=,∴sinB=,故选:A.3.等比数列{a n}中,a2+a4=20,a3+a5=40,则a6=()A.16 B.32 C.64 D.128【考点】等比数列的通项公式.【分析】由等比数列通项公式列出方程组,求出首项和公差,由此能求出a6.【解答】解:∵等比数列{a n}中,a2+a4=20,a3+a5=40,∴,解得a=2,q=2,∴a6=2×25=64.故选:C.4.两座灯塔A和B与海洋观测站C的距离分别是akm和2akm,灯塔A在观测站C的北偏东20°,灯塔B在观测站C的南偏东70°,则灯塔A与灯塔B之间的距离为()A.akm B.2akm C.akm D.akm【考点】解三角形的实际应用.【分析】先根据题意确定∠ACB的值,再由勾股定理可直接求得|AB|的值.【解答】解:根据题意,△ABC中,∠ACB=180°﹣20°﹣70°=90°∵AC=akm,BC=2akm,∴由勾股定理,得AB=akm,即灯塔A与灯塔B的距离为akm,故选:C.5.“a>b“是“a3>b3”的()A.充要条件B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】根据不等式的性质结合充分条件和必要条件的定义进行判断.【解答】解:由a3>b3得a>b,则“a>b“是“a3>b3”的充要条件,故选:A6.函数f(x)=﹣x3+3x2+9x+a,x∈[﹣2,2]的最小值为﹣2,则f(x)的最大值为()A.25 B.23 C.21 D.20【考点】利用导数求闭区间上函数的最值.【分析】先将f(x)的各极值与其端点的函数值比较,其中最大的一个就是最大值,最小的一个就是最小值,再根据条件求出a的值,最小值即可求得.【解答】解:求导函数可得f′(x)=﹣3x2+6x+9=﹣3(x+1)(x﹣3)令f′(x)=﹣3x2+6x+9=0,解得x=﹣1或3∵x∈[﹣2,﹣1)时,f′(x)<0,函数单调减,x∈(﹣1,2]时,f′(x)>0,函数单调增,∴函数在x=﹣1时,取得最小值,在x=﹣2或x=2时,函数取得最大值,∵f(﹣1)=﹣5+a=﹣2,∴a=3,∴f(﹣2)=2+a=5,f(2)=22+a=25,函数的最大值为25,故选:A.7.等差数列{a n}的前n项和为S n,若a1000+a1018=2,则S2017=()A.1008 B.1009 C.2016 D.2017【考点】等差数列的前n项和;等差数列的通项公式.【分析】由等差数列的性质得a1+a2017=2由此能求出结果【解答】解:∵等差数列{a n}的前n项和为S n,a1000+a1018=2,∴a1+a2017=2,∴S2017=(a1+a2017)=2017.故选:D8.△ABC的内角A,B,C的对边分别为a,b,c,已知a=2,c=4,cosA=,则b=()A.2 B.2 C.4 D.6【考点】正弦定理.【分析】由已知利用余弦定理即可计算得解.【解答】解:∵a=2,c=4,cosA=,∴由余弦定理a2=b2+c2﹣2bccosA,可得:20=b2+16﹣2×,∴整理可得:3b2﹣16b﹣12=0,解得:b=6或﹣(舍去).故选:D.9.已知直线y=x+k与曲线y=e x相切,则k的值为()A.e B.2 C.1 D.0【考点】利用导数研究曲线上某点切线方程.【分析】设切点为(x0,y0),求出切线斜率,利用切点在直线上,代入方程,即可得到结论.【解答】解:设切点为(x0,y0),则y0=e x0,∵y′=(e x)′=e x,∴切线斜率k=e x0,又点(x0,y0)在直线上,代入方程得y0=k+x0,即e x0=e x0 +x0,解得x0=0,k=1,故选:C.10.过y2=4x的焦点作直线交抛物线于A,B两点,若O为坐标原点,则•=()A.﹣1 B.﹣2 C.﹣3 D.不确定【考点】平面向量数量积的运算.【分析】可得出抛物线y2=4x的焦点为(1,0),并画出图形,根据题意可设AB 的方程为x=ky+1,联立抛物线方程消去x便得到y2﹣4ky﹣4=0,从而得出y1y2=﹣4,然后可设,这样便可求出的值.【解答】解:抛物线y2=4x的焦点坐标为(1,0),如图:设直线AB的方程为x=ky+1,代入y2=4x消去x得:y2﹣4ky﹣4=0;∴y1y2=﹣4;设,则:.故选C.11.在△ABC中,若BC=2,A=60°,则•有()A.最大值﹣2 B.最小值﹣2 C.最大值2D.最小值2【考点】平面向量数量积的运算.【分析】可先画出图形,根据BC=2,A=60°,对两边平方,进行数量积的运算即可得到,从而得出,这样便可求出,从而得出正确选项.【解答】解:如图,;∴,且BC=2,A=60°;∴;即;∴;∴有最小值﹣2.故选B.12.圆O的半径为定长,A是平面上一定点,P是圆上任意一点,线段AP的垂直平分线l和直线OP相交于点Q,当点P在圆上运动时,点Q的轨迹为()A.一个点B.椭圆C.双曲线D.以上选项都有可能【考点】轨迹方程.【分析】结合双曲线的定义及圆与直线的相关性质,推导新的结论,熟练掌握双曲线的定义及圆与直线的性质是解决问题的关键.【解答】解:∵A为⊙O外一定点,P为⊙O上一动点线段AP的垂直平分线交直线OP于点Q,则QA=QP,则QA﹣QO=QP﹣QO=OP=R,即动点Q到两定点O、A的距离差为定值,根据双曲线的定义,可知点Q的轨迹是:以O,A为焦点,OP为实轴长的双曲线故选:C.二、填空题:本大题共4小题,每小题5分,共20分)13.若命题P:∀x∈R,2x+x2>0,则¬P为∃x0>0,2+x02≤0.【考点】命题的否定.【分析】根据全称命题的否定是特称命题即可得到结论.【解答】解:命题是全称命题,则¬p为:∃x0>0,2+x02≤0,故答案为:∃x0>0,2+x02≤014.若x,y满足,则z=x+2y的取值范围为[0,] .【考点】简单线性规划.【分析】画出约束条件的可行域,利用目标函数的几何意义,求解范围即可.【解答】解:x,y满足,不是的可行域如图:z=x+2y化为:y=﹣+,当y=﹣+经过可行域的O时目标函数取得最小值,经过A时,目标函数取得最大值,由,可得A(,),则z=x+2y的最小值为:0;最大值为:=.则z=x+2y的取值范围为:[0,].故答案为:[0,].=(n∈N*),则a i=1.15.数列{a n}满足a1=1,a2=2,且a n+2【考点】数列的求和.【分析】利用a1=1,a2=2,且a n+2=(n∈N*),可得a n+3=a n.即可得出.【解答】解:∵a1=1,a2=2,且a n+2=(n∈N*),∴a3==﹣3,a4==1,a5==2,…,=a n.∴a n+3则a i=33(a1+a2+a3)+a1=0+1=1.故答案为:1.16.已知F为双曲线C:﹣=1的左焦点,A(1,4),P是C右支上一点,当△APF周长最小时,点F到直线AP的距离为.【考点】双曲线的简单性质.【分析】设双曲线的右焦点为F′(4,0),由题意,A,P,F′共线时,△APF周长最小,求出直线AP的方程,即可求出点F到直线AP的距离.【解答】解:设双曲线的右焦点为F′(4,0),由题意,A,P,F′共线时,△APF周长最小,直线AP的方程为y=(x﹣4),即4x+3y﹣16=0,∴点F到直线AP的距离为=,故答案为:三、解答题:本大题共6小题,共70分.解答写出文字说明、证明过程或演算过程.17.已知{a n}是等差数列,{b n}是等比数列,且b2=2,b3=4,a1=b1,a8=b4.(Ⅰ)求{a n}的通项公式;(Ⅱ)设c n=a n+b n,求数列{c n}的前n项和.【考点】数列的求和;等差数列的通项公式.【分析】(I)利用等差数列与等比数列的通项公式即可得出.(II)利用等差数列与等比数列的求和公式即可得出.【解答】解:(Ⅰ)∵{b n}是等比数列,且b2=2,b3=4,∴q=2,b1=1.所∴a1=b1=1,a8=b4=23=8.∴8=1+7d,解得公差d=1.∴a n=1+(n﹣1)=n.(Ⅱ)由(I)可知:b n=2n﹣1,c n=a n+b n=n+2n﹣1.∴{c n}的前n项和=(1+2+…+n)+(1+2+22+…+2n﹣1)=+=+2n﹣1.18.在△ABC中,a,b,c分别为角A,B,C的对边,a2﹣c2=b2﹣,a=6,sinB=.(Ⅰ)求角A的正弦值;(Ⅱ)求△ABC的面积.【考点】余弦定理;正弦定理.【分析】(Ⅰ)由已知利用余弦定理可求cosA,进而利用同角三角函数基本关系式可求sinA的值.(Ⅱ)由已知利用正弦定理可求b的值,代入已知可求c的值,利用三角形面积公式即可计算得解.【解答】(本题满分为12分)解:(Ⅰ)a2﹣c2=b2﹣,①可得cosA==,….所以sinA==.…..(Ⅱ)因为:asinB=bsinA,a=6,sinA=,sinB=,所以:解得b=8,…..因为:a=6,b=8,代入①,可得:c=10或,…..所以:S△ABC=bcsinA=24或.…..19.已知p:函数f(x)=lg(x2﹣2x+a)的定义域为R;q:对任意实数x,不等式4x2+ax+1>0成立,若“p∨q”为真,“p∧q”为假,求实数a的取值范围.【考点】命题的真假判断与应用;复合命题的真假.【分析】若“p∨q”为真,“p∧q”为假,则p,q一真一假,进而可得实数a的取值范围.【解答】解:当P真时,f(x)=lg(x2﹣2x+a)的定义域为R,有△=4﹣4a<0,解得a>1.…..当q真时,对任意实数x,不等式4x2+ax+1>0成立,所以△=a2﹣16<0,解得﹣4<a<4 …..又因为“p∨q”为真,“p∧q”为假,所以p,q一真一假,…..当p真q假时,,解得a≥4…..当p假q真时,,解得:﹣4<a≤1…..所以实数a的取值范围是(﹣4,1]∪[4,+∞).…..20.S n为数列{a n}的前n项和,已知a n>0,a n2+a n=2S n.(Ⅰ)求{a n}的通项公式;(Ⅱ)若b n=,求数列{b n}的前n项和T n.【考点】数列的求和;数列递推式.【分析】(I)利用递推关系、等差数列的通项公式即可得出.(II)b n===,利用“裂项求和”方法即可得出.【解答】解:(Ⅰ)∵a n2+a n=2S n,∴=2S n+1,两式子相减得:(a n+1+a n)(a n+1﹣a n)=a n+1+a n,∵a n>0,∴a n+1﹣a n=1,令n=1得=2S1=2a1,解得a1=1∴数列{a n}是首项为1,公差为1的等差数列,∴a n=1+(n﹣1)=n.(Ⅱ)∵b n===,∴T n=+++…++=﹣.21.已知函数f(x)=lnx.(Ⅰ)y=kx与f(x)相切,求k的值;(Ⅱ)证明:当a≥1时,对任意x>0不等式f(x)≤ax+﹣1恒成立.【考点】利用导数求闭区间上函数的最值;利用导数研究曲线上某点切线方程.【分析】(Ⅰ)求出函数的导数,设出切点坐标,求出k的值即可;(Ⅱ)问题转化为ax+﹣lnx≥1恒成立,当a≥1时,记h(x)=ax+﹣lnx,根据函数的单调性求出h(x)的最小值,从而证出结论即可.【解答】(Ⅰ)解:由f(x)=lnx,得:f′(x)=,设切点坐标为(x0,y0),则,解得:k=…..(Ⅱ)证明:只需证f(x)﹣g(x)≥1,即ax+﹣lnx≥1恒成立,当a≥1时,记h(x)=ax+﹣lnx,则在(0,+∞)上,h(x)≥1,h′(x)=,…..∵a≥1,x>0,∴ax+a﹣1>0,x∈(0,1)时,h′(x)<0,h(x)单调递减;x∈(1,+∞)时,h′(x)>0,h(x)单调递增∴h(x)min=h(1)=2a﹣1,∵a≥1,∴2a﹣1≥1,即h(x)≥1恒成立…..22.在圆x2+y2=3上任取一动点P,过P作x轴的垂线PD,D为垂足,=动点M的轨迹为曲线C.(1)求C的方程及其离心率;(2)若直线l交曲线C交于A,B两点,且坐标原点到直线l的距离为,求△AOB面积的最大值.【考点】直线与圆的位置关系.【分析】(1)由=得x0=x,y0=y,即可得到椭圆的方程及其离心率;(2)由于已知坐标原点O到直线l的距离为,故求△AOB面积的最大值的问题转化为求线段AB的最大值的问题,由弦长公式将其表示出来,再判断最值即可得到线段AB的最大值.【解答】解:(Ⅰ)设M(x,y),P(x0,y0),由=得x0=x,y0=y …..因为x02+y02=3,所以x2+3y2=3,即=1,其离心率e=.…..(Ⅱ)当AB与x轴垂直时,|AB|=.②当AB与x轴不垂直时,设直线AB的方程为y=kx+m,A(x1,y1),B(x2,y2),由已知,得.把y=kx+m代入椭圆方程,整理得(3k2+1)x2+6kmx+3m2﹣3=0,∴x1+x2=,x1x2=∴k≠0,|AB|2=(1+k2)(x2﹣x1)2=3+≤4,当且仅当9k2=,即k=时等号成立,此时|AB|=2.当k=0时,|AB|=.综上所述:|AB|max=2,此时△AOB面积取最大值=。

相关文档
最新文档