计量经济学4 多元回归分析:推断

合集下载

所有计量经济学检验方法

所有计量经济学检验方法

所有计量经济学检验方法
1、回归分析:回归分析是用来确定两个变量之间相关关系的一种统计方法,它能够推断出一个变量对另一个变量的影响程度。

常用的回归检验包括偏直斜率检验、R平方检验、Durbin-Watson检验、自相关检验、Box-Cox检验等。

2、主成分分析:主成分分析(PCA)是一种统计分析方法,用于消除随机变量之间的相关性,从而简化数据分析过程。

常用的方法有二元主成分分析(BPCA)、多元主成分分析(MPCA)
3、因子分析:因子分析是一种统计学方法,用于确定从多个离散观测变量中提取的隐含变量。

常用的因子分析检验包括KMO检验、Bartlett 统计量检验、条件双侧门限统计量检验等。

4、多元分析:多元分析是一种统计学方法,用于探索随机变量之间的关系,常用的多元分析检验包括多元弹性网络(MANOVA)、多元回归(MR)以及结构方程模型(SEM)。

5、聚类分析:聚类分析是一种用于探索研究数据中的结构和特征的统计学方法。

它主要是将数据集分组,以便对数据集中的每组信息单独进行分析。

常用的聚类分析检验有K均值聚类、层次聚类、嵌套聚类等。

6、特征选择:特征选择是一种数据分析技术,用于从大量可能的特征中,选择有效的特征变量。

计量经济学课程第4章(多元回归分析)

计量经济学课程第4章(多元回归分析)
Page 2
§4.1 多元线性回归模型的两个例子
一、例题1:CD生产函数
Qt AKt 1 Lt 2 et
这是一个非线性函数,但取对数可以转变为一个 对参数线性的模型
ln Qt 0 1 ln Kt 2 ln Lt t
t ~ iid(0, 2 )
注意:“线性”的含义是指方程对参数而言是线 性的
R 2 1 RSS /(N K 1) TSS /(N 1)
调整思想: 对 R2 进行自由度调整。
Page 20
基本统计量TSS、RSS、ESS的自由度:
1.
TSS的自由度为N-1。基于样本容量N,TSS

N i1
(Yi
Y
)2
因为线性约束 Y 1 N
Y N
i1 i
而损失一个自由度。
分布的多个独立统计量平方加总,所得到的新统计量就服从
2 分布。
《计量经济学》,高教出版社2011年6月,王少平、杨继生、欧阳志刚等编著
Page 23
双侧检验
概 率 密 度
概率1-
0
2 1 / 2
2 /2
图4.3.1

2
(N-K-1)的双侧临界值
双侧检验:统计值如果落入两尾中的任何一个则拒绝原假设
《计量经济学》,高教出版社2011年6月,王少平、杨继生、欧阳志刚等编著
Page 24
单侧检验
概 率 密 度
概率 概率
0
2 1
2
图4.3.2 (2 N-K-1)的单侧临界值
H0:
2


2,
0
HA :

2


2 0

伍德里奇《计量经济学导论》(第5版)笔记和课后习题详解

伍德里奇《计量经济学导论》(第5版)笔记和课后习题详解
伍德里奇《计量经济学导论》(第5 版)笔记和课后习题详解
读书笔记模板
01 思维导图
03 目录分析 05 读书笔记
目录
02 内容摘要 04 作者介绍 06 精彩摘录
思维导图
本书关键字分析思维导图
第版
计量经济 学
时间
习题
序列
经典
变量
笔记
教材
笔记 复习
模型
导论
笔记
第章
习题
分析
数据
回归
内容摘要
本书是伍德里奇《计量经济学导论》(第5版)教材的配套电子书,主要包括以下内容:(1)整理名校笔记, 浓缩内容精华。每章的复习笔记以伍德里奇所著的《计量经济学导论》(第5版)为主,并结合国内外其他计量经 济学经典教材对各章的重难点进行了整理,因此,本书的内容几乎浓缩了经典教材的知识精华。(2)解析课后习 题,提供详尽答案。本书参考国外教材的英文答案和相关资料对每章的课后习题进行了详细的分析和解答。(3) 补充相关要点,强化专业知识。一般来说,国外英文教材的中译本不太符合中国学生的思维习惯,有些语言的表 述不清或条理性不强而给学习带来了不便,因此,对每章复习笔记的一些重要知识点和一些习题的解答,我们在 不违背原书原意的基础上结合其他相关经典教材进行了必要的整理和分析。本书特别适用于参加研究生入学考试 指定考研考博参考书目为伍德里奇所著的《计量经济学导论》的考生,也可供各大院校学习计量经济学的师生参 考。

2.1复习笔记 2.2课后习题详解
3.1复习笔记 3.2课后习题详解
4.1复习笔记 4.2课后习题详解
5.1复习笔记 5.2课后习题详解
6.1复习笔记 6.2课后习题详解
7.1复习笔记 7.2课后习题详解

计量经济学_四元线性回归模型案例分析

计量经济学_四元线性回归模型案例分析

计量经济学课程设计班级:学号:姓名:2011年月一、引言财政收入是衡量一国政府财力的重要指标,国家在社会活动中提供公共物品和服务,很大程度上需要财政收入的鼎力相助。

财政收入既是国家的集中性分配活动,又是国家进行宏观调控的重要工具。

税收是国家为实现其职能的需要,凭借其政治权利并按照特定的标准,强制、无偿的取得财政收入的一种形式,它是现代国家财政收入最重要的收入形式和最主要的收入来源。

本课题跟据我国最近几年的经济发展水平和税收收入并结合我国各地区在2008年的实际情况,利用《中国统计年鉴2009》做出了税收收入的计量模型,比较分析了职工工资总额、财政支出和人均家庭总收入等变量对税收收入的不同影响,得出了几个重要的结论。

税收是国家在社会经济活动中为提供公共物品和服务的主要收入来源,在很大程度上决定于财政收入的充裕状况。

税收是国家集中性分配活动,又是国家进行宏观调控的重要工具。

我国自改革开放以来税收一直随经济的增长在快速的增长,尤其是进入21世纪以来成高速发展趋势。

由1999年的10682.58亿元到2008年的54233.79亿元,十年来增加了5.08倍(见表1)。

近几年以来,尤其是2008年以来社会不公平和贫富差距进一步了大,造成了社会的不稳定。

2010年两会期间温家宝总理提出调整税收基数,从而来缩小贫富差距和社会公平问题。

表1 我国十年来税收一览表二、理论基础税收是国家为了实现其职能,以政治权利为基础,按规定标准以政治权力为基础,按预定标准像经济组织和居民无偿课征而取得的一种财政收入。

税收的影响因素有很多包括一国的经济实力,经济发展水平,劳动者的素质,职工工资总额,财政支出,家庭总收入,生产总值,商品零售价格指数等。

职工工资总额,指各单位或组织在一定时期内直接支付给本单位全部职工的劳动报酬总额。

个人所得税的税基就是劳动报酬总额。

而个人所得税是税收收入的组成部分。

生产总值,生产总值是经济发展的最重要指标,税收与生产总值的关系集中反映了税收与经济的关系。

第04章 多元回归分析1

第04章 多元回归分析1


y t2
安徽大学经济学院
计量经济学讲义
4.6 多元回归的假设检验
虽然R2度量了估计回归直线的拟合优度,但是R2本身 却不能判定估计的回归系数是否是统计显著的,即是否 显著不为零。有的回归系数可能是显著的,有些可能不 是。如何判断呢? 与一元回归模型相同,如果用真实的但不可观察的σ2 的无偏估计量代替σ2,则OLS估计量服从自由度为 n-3 的 t 分布,而不是正态分布。
2
可以证明:
ESS = b 2 ∑ y t x 2 t + b 3 ∑ y t x 3 t RSS = R =
2
20
(4.19) (4.20) (4.21)
∑ b ∑
2
y t2 −b 2 ∑ y t x 2 t − b 3 ∑ y t x 3 t y t x 2 t + b3 ∑ y t x 3 t
15
安徽大学经济学院
计量经济学讲义
4.4 OLS估计量的方差与标准误
计算标准误的目的:(1)建立真实参数的置信区间; (2)检验统计假设。
var (b 2 ) = se ( b 2 ) =
(∑
x
2 2t
)(∑

x
2 3t
) − (∑
x 32t
x 2t x3t )
2
⋅σ
2
(4.12) (4.13)
var( b 2 )
(4.26)
在给定显著性水平下,检验B2的置信区间是否包含0,若没有 拒绝原假设,否则接受原假设。
24
安徽大学经济学院
计量经济学讲义
4.7.2 显著性检验法
2、显著性检验法:检验H0:B2=0,H1:B2
≠0

计量经济学的方法

计量经济学的方法

计量经济学的方法
计量经济学是研究经济现象和经济政策的一种方法,它主要利用数理统计学和经济理论来分析和评估经济问题。

计量经济学的方法包括以下几个方面:
1. 建立经济模型:计量经济学通常从建立经济模型开始,通过建立一定的假设和框架来描述经济现象,并对经济变量之间的关系进行定量分析。

2. 数据收集和处理:计量经济学依靠可量化的数据来分析经济问题,因此数据的收集和处理是非常重要的一步。

这包括选择合适的样本和时间范围,以及对数据进行清洗和转换,使其适合进行统计分析。

3. 统计推断:计量经济学依赖于统计方法来进行推断和判断。

通过使用统计学的方法,如假设检验、置信区间和回归分析等,计量经济学可以得出关于经济变量之间关系的结论。

4. 回归分析:回归分析是计量经济学中最常用的方法之一。

它可以用来研究因变量和自变量之间的关系,并通过计算回归系数来评估这种关系的强度和方向。

通过回归分析,我们可以对经济变量之间的因果关系进行检验。

5. 自然实验:在某些情况下,计量经济学可以利用已有的自然实验来进行研究。

这些自然实验是由外部因素引起的经济变化或政策变化,可以用来评估这些变化对经济现象的影响。

总之,计量经济学的方法是以数理统计学和经济理论为基础,通过建立经济模型、收集和处理数据、进行统计推断和回归分析等手段,来研究经济现象和评估经济政策。

计量经济学多元回归分析案例.pdf

计量经济学多元回归分析案例.pdf

计量经济学多元回归分析案例引言计量经济学是运用数理统计和经济学方法研究经济现象的一门学科。

在实际研究中,多元回归分析是一种常用的方法。

本文将通过一个实际案例来介绍计量经济学中的多元回归分析方法和应用。

研究背景单因素回归分析在计量经济学中,单因素回归分析是最基本的方法之一。

它通过确定一个因变量和一个自变量之间的关系,来解释因变量的变化。

然而,在现实世界中,经济现象往往受到多个因素的影响,因此需要使用多元回归分析来更全面地解释经济现象的变化。

问题陈述本研究的问题是探究某个城市的房价与多个因素之间的关系。

具体来说,我们感兴趣的因变量是房价,自变量包括房屋面积、地理位置、周边设施等。

我们希望通过建立一个多元回归模型来解释房价的变化,并分析不同因素对房价的影响程度。

数据收集为了进行多元回归分析,我们需要收集相关的数据。

在本案例中,我们采集了以下数据:1.房价:通过不同的房地产网站获取该城市的房屋销售数据,包括每个房屋的售价信息。

2.房屋面积:通过购房广告或房产中介提供的信息收集每个房屋的面积数据。

3.地理位置:通过经纬度或邮政编码信息获取每个房屋的地理位置信息。

4.周边设施:通过地图应用或开放的公共数据接口获取每个房屋周边设施(如学校、医院、商场等)的数量和距离信息。

数据预处理在进行多元回归分析前,我们需要对收集到的数据进行预处理。

缺失值处理在数据收集过程中,可能会出现数据缺失的情况。

对于缺失的数据,我们可以选择删除相应的样本,或者通过插补方法进行填充。

在本案例中,我们选择使用均值填充的方法。

数据转换由于多元回归模型要求变量之间具有线性关系,因此我们需要对非数值型数据进行转换。

在本案例中,地理位置可以通过编码转换为数值型变量。

模型建立在进行多元回归分析时,我们需要选择适当的模型来描述因变量和自变量之间的关系。

在本案例中,我们选择使用普通最小二乘法(OLS)来估计回归模型的参数。

模型表达式我们将房价作为因变量(Y),房屋面积、地理位置和周边设施作为自变量(X)。

5、计量经济学【多元线性回归模型】

5、计量经济学【多元线性回归模型】

二、多元线性回归模型的参数估计
2、最小二乘估计量的性质 当 ˆ0, ˆ1, ˆ2, , ˆk 为表达式形式时,为随机变量, 这时最小二乘估计量 ˆ0, ˆ1, ˆ2, , ˆk 经过证明同样也 具有线性性、无偏性和最小方差性(有效性)。 也就是说,在模型满足那几条基本假定的前提 下,OLS估计量具有线性性、无偏性和最小方差性 (有效性)这样优良的性质, 即最小二乘估计量
用残差平方和 ei2 最小的准则: i
二、多元线性回归模型的参数估计
1、参数的普通最小二乘估计法(OLS) 即:
min ei2 min (Yi Yˆi )2 min Yi (ˆ0 ˆ1X1i ˆ2 X 2i ˆk X ki )2
同样的道理,根据微积分知识,要使上式最小,只 需求上式分别对 ˆj ( j 0,1, k) 的一阶偏导数,并令 一阶偏导数为 0,就可得到一个包含 k 1 个方程的正 规方程组,这个正规方程组中有 k 1个未知参数 ˆ0, ˆ1, ˆ2, , ˆk ;解这个正规方程组即可得到这 k 1 个参数 ˆ0, ˆ1, ˆ2, , ˆk 的表达式,即得到了参数的最小 二乘估计量;将样本数据代入到这些表达式中,即可 计算出参数的最小二乘估计值。
该样本回归模型与总体回归模型相对应,其中残差 ei Yi Yˆi 可看成是总体回归模型中随机误差项 i 的 估计值。
2、多元线性回归模型的几种形式: 上述几种形式的矩阵表达式: 将多元线性总体回归模型 (3.1) 式表示的 n 个随机方 程写成方程组的形式,有:
Y1 0 1 X11 2 X 21 .Y.2.........0.......1.X...1.2........2.X...2.2. Yn 0 1 X1n 2 X 2n
ˆ0, ˆ1, ˆ2, , ˆk 是总体参数真值的最佳线性无偏估计 量( BLUE );即高斯—马尔可夫定理 (GaussMarkov theorem)。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.701
拒绝域
Example:小时工资方程
ˆ ) 0.284 0.092educ 0.0041exp er 0.022tenure log( wage (0.104) (0.007) n 526, R 0.316
2
(0.0017)
(0.003)
标准误
ˆ ? H0 : exp er 0 ? H 0 : 0.0041 0
4.2.3 双侧对立假设
H1 : j 0 (4.12)
当经济理论(或常识)没有很好的说明j的 符号时,这是一个恰当的对立假设。即便知 道j在对立假设中的符号,采取双侧检验也 是明智的——避免根据回归方程中参数估计 值来提出对立假设。
双尾检验的拒绝法则:
tˆ c
j
(4.13)
如果在5%的显著性水平上拒绝H0并支持H1,则称 xj是统计显著的,否则称xj是统计上不显著的。
随着t分布的自由度逐渐变大,t分布会 接近标准的正态分布——df大于120, 就可以使用标准正态分布的临界值。
例子:5%的显著性水平,df=n-k-1=28,临 界值c=1.701
面积 =0.05
0
在显著性水 平是1%时 统计上显著
在显著性水 平是5%时 统计上不显著
小结:t统计量检验显著性原理
如果H0成立, P{|t|>t /2}= {|t|>t /2}是小 概率事件,如果该事 件在一次抽样中就出 现,说明假设H0值得 怀疑,应当拒绝H0
/ 2
/ 2
0
-t/2
拒绝H0
是总体未知的特征, 而且永远不会确定的 知道它们。但可以做 出假设,然后通过统 计推断来检验假设
4.2.1 定理及概念
定理 4.2 标准化估计量的t分布
在经典线性模型假定下,有
式中,k+1为总体模型中未知参数的个数。
证明:
正态分布:Y~N(μ,σ2)
标准正态分布:Z=(Y-μ)/σ~N(0,1) χ2分布:X=∑Zi2~χn2
5%的显著性水平,df=25, c=2.06
面积 =0.025
面积 =0.025
拒绝域
-2.06
0
2.06
拒绝域
Example:大学GPA的决定因素
因变量:大学GPA (colGPA);自变量:高中GPA (hsGPA),大学能力测验分数(ACT),每周缺课次 数(skipped)
ˆ 1.39 0.412hsGPA 0.015 ACT 0.083skippped colGPA (0.33) (0.094)
0.954 (1) t 0.393 <c 0.117
如此小的t统计量,几乎不需要看t分布中的临界值: 即使在很大的显著性水平上,估计的弹性也不会显著的异于-1。
4.2.5 计算t检验的P值
使用经典方法进行假设检验,需要选择一个 显著性水平。给定t统计量的观测值,能拒 绝虚拟假设的最小显著性水平是多少——这 个水平被称为检验的p值
虚拟假设:
H0 : j 0 (4.6)
兴趣所在。又叫 原假设,零假设
意味着控制了其他自变量后, xj对y没有任何局部效应。
回顾统计学中给出的正态总体的均值的假设检验 t统计量(或t比率) ˆ j tˆ j ˆ ) se( j
软件会给出
(4.7)
备择假设
4.2.2对立假设:单侧对立假设
2
(0.011)
(0.026)
n 141, R 0.234
双尾检验:5%的显著性水平,c=1.96;1% 的显著性水平,c=2.58
t hsGPA 0.412 / 0.094 4.38 2.58 t ACT 0.015 / 0.011 1.36 1.96 t skipped 0.083 / 0.026 3.19 2.58
df=404,在5%的显著性水平上,临界值为-1.65
不能拒 绝H0

enroll
0.00020 / 0.00022 0.91 >-1.65
实际上在15%的显著性水平上,c=-1.04<-0.91 也不能拒绝虚拟假设
习题4.1
变化函数形式:自变量取log
ˆ 10 207.66 21.16log(inc) 3.98log( staff ) 1.29log(enroll ) math (48.70) (4.06) (4.19) (0.69)
log( price) 0 1 log(nox) 2 log(dist ) 3rooms 4 stratio u
H 0 : 1 1 H1 : 1 1
ˆ ) 11.08 0.954log( nox) 0.134log( dist ) 0.255rooms 0.052 stratio log( price (0.32) (0.117) (0.043) (0.019) (0.006) n 506, R 2 0.581
拒绝法则:
(4.10)
tˆ c
j
(4.11)
t分布只报告正值,c一定为 正值,故-c一定为负值。
例子 5%的显著性水平,df=18,临界值c=1.734
面积 =0.05
拒绝域
-1.734
0
Example:学生表现与学校规模
一种观点认为,在所有其它条件相同的情况下, 小学校的学生比大学校的学生的情况更好些。
其中,SSTj为xj的总样本变异 SST j ( xij x j ) 2 因此,
i 1 n
ˆ ) / sd ( ˆ ) ~ N (0,1) ( j j j
证明:(仅证明β 1)
ˆ 1
rˆ y
i 1 n 2 ˆ r i1 i 1
n
i1 i
ˆi1ui 1 r
t / 2
拒绝H0
bj
接受H0
检验步骤
(1)计算 | t | (2)查表求临界值 t/2(n-k-1) (3)比较,下结论
如果 | t | ≤t/2 ,则接受H0,认为在显著性水 平为的意义下, βj 不显著; 如果| t | >t/2 ,则拒绝 H0,认为在显著性水 平为的意义下, βj 显著。
t分布:
F分布:
~tn
~Fk1,k2
ˆ ) / sd ( ˆ ) ~ N (0,1) ( j j j
SSR
2
s ˆ 2 s
ˆ ˆ s
2
~
2 n2
SSR ~ tn2 2 s ( n 2)
SSTx ~ tn2
SSTx
所谓假设检验,就是事先对总体参数或总 体分布形式作出一个假设,然后利用样本信 息来判断原假设是否合理,即判断样本信息 与原假设是否有显著差异,从而决定是否接 受或否定原假设。 假设检验采用的逻辑推理方法是反证法。 先假定原假设正确,然后根据样本信息, 观察由此假设而导致的结果是否合理,从而 判断是否接受原假设。 判断结果合理与否,是基于“小概率事件 不易发生”这一原理的。
math10 0 1inc 2 staff 3enroll u
学生通同过 密歇根教学 评价委员会 标准化十分 制数学测验 的百分比, 用来衡量学 生表现
年均 教师 工资
每千名 学生拥 有的教 职工人 数
学生注册 人数,用 来衡量学 生规模
ˆ 10 2.274 0.00046inc 0.048 staff 0.00020enroll math (6.113) (0.00010) (0.040) (0.00022) n 408, R 2 0.0541
H1 : j 0 (4.8)
并不是不关心j<0 的情形——只是基 于经济理论,对于 该研究,排除了 j<0的可能
临界值——根据显著 性水平和自由度决定 (查表可得G.2)
拒绝法则: 在 t
ˆ j
c
(4.9)
时,H0在某一显著性水平上被拒绝并支持H1
在虚拟假设正确时,
错误拒绝它的概率
{ }中的任何一个子集也都具有联合正态 分布。
4.2 检验对单个总体参数的假设:t检验
对总体模型中的某个参数的假设进行检验 总体模型: 假设它满足经典
y 0 1 x1 2 x2 k xk u
线性模型假定
(4.4)
研究如何检验那些有关某个特定的j的假设。
u ~ N (0, s )
2
4.1.2 经典线性模型假定
高斯—马尔科夫假定与正态分布假定一起被 称为经典线性模型假定
对参数而言为线性; 随机抽样性;条件均 值为0;不存在完全 共线性;同方差性 经典线性模型
总结经典线性模型假定的一种简洁方法:
在实际应用中,误差不一定具有正态性
例子:考虑劳动力市场上,工资与教育、 工作经历、在现任工作的任职年限的关系ຫໍສະໝຸດ 4.1 OLS估计量的抽样分布
已经了解了OLS估计量的期望值和方差—— 有助描述OLS估计量的精密度 要进行统计推断,还需要知道估计量的抽样 分布
4.1.1 正态性假定
样本中自变量的值既定,因而OLS估计量 的抽样分布取决于误差分布 假定MLR.6 正态性 总体误差u独立于解释变量x1,x2,…,xk, 而且服从均值为零,方差为s2的正态分布:
H 0 : exp er 0 H 1 : exp er 0

exp er
0.0041/ 0.0017 2.41
df=522,使用标准正态分布的临界值:1%的显著性水 平,c=2.326
在1%的显著性水平上是统计显著大于0的
参数小于0的单侧对立假设
H1 : j 0
相关文档
最新文档