数学建模通识课大作业题目
数学建模试卷及参考答案

数学建模 试卷及参考答案一.概念题(共3小题,每小题5分,本大题共15分)1、一般情况下,建立数学模型要经过哪些步骤?(5分)答:数学建模的一般步骤包括:模型准备、模型假设、模型构成、模型求解、模型分析、模型检验、模型应用。
2、学习数学建模应注意培养哪几个能力?(5分)答:观察力、联想力、洞察力、计算机应用能力。
3、人工神经网络方法有什么特点?(5分)答:(1)可处理非线性;(2)并行结构.;(3)具有学习和记忆能力;(4)对数据的可容性大;(5)神经网络可以用大规模集成电路来实现。
二、模型求证题(共2小题,每小题10分,本大题共20分)1、 某人早8:00从山下旅店出发,沿一条路径上山,下午5:00到达山顶并留宿.次日早8:00沿同一路径下山,下午5:00回到旅店.证明:这人必在2天中同一时刻经过路途中某一地点(15分) 证明:记出发时刻为t=a,到达目的时刻为t=b,从旅店到山顶的路程为s.设某人上山路径的运动方程为f(t), 下山运动方程为g(t),t 是一天内时刻变量,则f(t),g(t)在[a,b]是连续函数。
作辅助函数F(t)=f(t)-g(t),它也是连续的,则由f(a)=0,f(b)>0和g(a)>0,g(b)=0,可知F (a )<0, F(b)>0,由介值定理知存在t0属于(a,b)使F(t0)=0, 即f(t0)=g(t0) 。
2、三名商人各带一个随从乘船过河,一只小船只能容纳二人,由他们自己划行,随从们秘约,在河的任一岸,一旦随从的人数比商人多,就杀人越货,但是如何乘船渡河的大权掌握在商人们手中,商人们怎样才能安全渡河呢?(15分)解:模型构成记第k 次渡河前此岸的商人数为k x ,随从数为k y ,k=1,2,........,k x ,k y =0,1,2,3。
将二维向量k s =(k x ,k y )定义为状态。
安全渡河条件下的状态集合称为允许状态集合,记做S 。
大学生数学建模练习题

大学生数学建模练习题一、线性规划问题假设你是一家制造公司的经理,公司生产两种产品A和B。
生产一个产品A需要3小时的机器时间和2小时的人工时间,产品B需要2小时的机器时间和4小时的人工时间。
公司每天有24小时的机器时间和40小时的人工时间可用。
如果产品A的销售价格是50元,产品B是80元,如何安排生产计划以最大化利润?二、排队论问题一家银行有3个服务窗口,平均每天接待200名顾客。
每名顾客的平均服务时间是5分钟。
假设顾客到达银行是随机的,服从泊松分布,服务时间服从指数分布。
请计算银行的平均排队长度和顾客的平均等待时间。
三、库存管理问题一家零售商销售一种季节性产品,该产品的需求量在一年中波动很大。
产品的成本是每个20元,存储成本是每个每年2元,缺货成本是每个10元。
如果零售商希望在一年内保持至少95%的服务水平,应该如何确定最优的订货量和订货频率?四、网络流问题在一个供水系统中,有四个水库和五个城市。
水库1和2可以向城市A 供水,水库2和3可以向城市B供水,水库3和4可以向城市C和D供水。
每个水库的供水能力不同,每个城市的需求也不同。
如果需要确保所有城市的需求都得到满足,如何确定最优的供水方案?五、预测问题给定一个公司过去5年的季度销售额数据,使用时间序列分析方法预测下个季度的销售额。
请考虑季节性因素和趋势,并给出预测的置信区间。
六、优化问题一个农场主有一块矩形土地,打算围成一个矩形的牧场。
如果围栏的总长度是固定的,比如400米,如何确定牧场的长和宽,使得牧场的面积最大?七、多目标决策问题一家公司需要在多个项目中做出选择,每个项目都有不同的预期收益、风险和实施时间。
如果公司需要在风险和收益之间做出权衡,并且希望项目尽快完成,如何使用多目标决策方法来选择最合适的项目组合?通过解决这些练习题,大学生可以加深对数学建模的理解,提高分析和解决实际问题的能力。
希望这些练习题能够帮助学生在数学建模的道路上更进一步。
数学建模题目及答案-数学建模100题

资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载数学建模题目及答案-数学建模100题地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容09级数模试题1. 把四只脚的连线呈长方形的椅子往不平的地面上一放,通常只有三只脚着地,放不稳,然后稍微挪动几次,就可以使四只脚同时着地,放稳了。
试作合理的假设并建立数学模型说明这个现象。
(15分)解:对于此题,如果不用任何假设很难证明,结果很可能是否定的。
因此对这个问题我们假设:(1)地面为连续曲面(2)长方形桌的四条腿长度相同(3)相对于地面的弯曲程度而言,方桌的腿是足够长的(4)方桌的腿只要有一点接触地面就算着地。
那么,总可以让桌子的三条腿是同时接触到地面。
现在,我们来证明:如果上述假设条件成立,那么答案是肯定的。
以长方桌的中心为坐标原点作直角坐标系如图所示,方桌的四条腿分别在A、B、C、D 处,A、B,C、D的初始位置在与x轴平行,再假设有一条在x轴上的线ab,则ab也与A、B,C、D平行。
当方桌绕中心0旋转时,对角线 ab与x轴的夹角记为。
容易看出,当四条腿尚未全部着地时,腿到地面的距离是不确定的。
为消除这一不确定性,令为A、B离地距离之和,为C、D离地距离之和,它们的值由唯一确定。
由假设(1),,均为的连续函数。
又由假设(3),三条腿总能同时着地,故=0必成立()。
不妨设,g(若也为0,则初始时刻已四条腿着地,不必再旋转),于是问题归结为:已知,均为的连续函数,,且对任意有,求证存在某一,使。
证明:当θ=π时,AB与CD互换位置,故,。
作,显然,也是的连续函数,而,由连续函数的取零值定理,存在,,使得,即。
又由于,故必有,证毕。
2.学校共1000名学生,235人住在A宿舍,333人住在B宿舍,432人住在C宿舍。
《数学建模》练习题库及答案.doc

一、名词解释1.Table命令的使用格式;2.Solve命令的使用格式;3.Do命令的使用格式;4.Plot命令的使用格式;5.ListPlot命令的使用格式;6.Reduce命令的使用格式;7.Expand命令的使用格式;8.FindRoot命令的使用格式;9.Switch命令的使用格式;lO.ConstrainedMin命令的使用格式;11 .Factor命令的特点与几种使用格式。
12.Clear命令的特点与使用格式二、计算题1. 1959年8月4日是星期几,这一天与2001年12月4日之间共有多少天?2.求我国北京市的地理经纬度。
3.北美地区有几个国家?写出它们的名字。
4.求解递归关系式a” = 3% _2a”_2,ao =1,4 = 2。
5.求斐波那契(Fibonacci)数列Fibonacci[n]从n=l至【Jn = 50的值。
6.分别以0.1、0.01、0.001为误差上限,将J方化成近似分数。
7 .求下列矩阵的特征值与对应的特征向量:13•求解方程7% -和"—张+ 1X 14.求1+ 28+38+...+n 8的简洁表达式。
15.求Pell 方程.r 2 -234y 2 -1的最小正整数解。
16.将16进制的数字20转化为10进制的数字。
17.求下列矩阵的行列逆矩阵与转置矩‘1 2 3、A= 2 3 1、3 1 2,8.求多项式 f=( X1 + X2 +X3 + X4 + X5严中 Xi 3 x 23 X35 X42 X55 的系数。
9•求208素因子分解。
10. 用Lindo 求解下列整数线性规划问题。
max / = 20 兀 1 +10%兀1 +兀2 +兀3 = 30y, + y 2 + = 2020x l +10% = 30X 2 + 20y 2 = 25 x 3 + 15y 3s.tA 20兀i +10% <20*30 + 10*2030兀2+20y2 <30*30 + 20*20 25兀3+15儿 <25*30 + 15*20 x t , y j > 0,integers11. 求中国香港的地理经纬度。
高中数学建模试题及答案

高中数学建模试题及答案一、单项选择题(每题3分,共30分)1. 数学建模的一般步骤不包括以下哪一项?A. 问题提出B. 模型假设C. 模型求解D. 数据收集答案:D2. 在数学建模中,模型的验证通常不包括以下哪一项?A. 模型的逻辑性检验B. 模型的适用性检验C. 模型的稳定性检验D. 模型的美观性检验答案:D3. 以下哪一项不是数学建模中常用的方法?A. 微分方程B. 线性规划C. 概率论D. 文学创作答案:D4. 在数学建模中,以下哪一项不是模型的要素?A. 模型的假设B. 模型的变量C. 模型的参数D. 模型的结论答案:D5. 数学建模中,以下哪一项不是模型的分类?A. 确定性模型B. 随机性模型C. 静态模型D. 动态模型答案:C6. 在数学建模中,以下哪一项不是模型的构建过程?A. 模型的假设B. 模型的建立C. 模型的求解D. 模型的发表答案:D7. 数学建模中,以下哪一项不是模型的分析方法?A. 数值分析B. 符号计算C. 图形分析D. 文字描述答案:D8. 在数学建模中,以下哪一项不是模型的优化方法?A. 线性规划B. 非线性规划C. 动态规划D. 统计分析答案:D9. 数学建模中,以下哪一项不是模型的应用领域?A. 工程技术B. 经济管理C. 生物医学D. 音乐艺术答案:D10. 在数学建模中,以下哪一项不是模型的评估标准?A. 模型的准确性B. 模型的简洁性C. 模型的可解释性D. 模型的复杂性答案:D二、填空题(每题4分,共20分)1. 数学建模的一般步骤包括:问题提出、模型假设、模型建立、模型求解、模型分析、模型验证和______。
答案:模型报告2. 在数学建模中,模型的假设应该满足______、______和______。
答案:科学性、合理性、可行性3. 数学建模中,模型的求解方法包括解析方法和______。
答案:数值方法4. 数学建模中,模型的分析方法包括______、______和______。
数学建模大作业

兰州交通大学数学建模大作业学院:机电工程学院班级:车辆093学号:200903812 姓名:刘键学号:200903813 姓名:杨海斌学号:200903814 姓名:彭福泰学号:200903815 姓名:程二永学号:200903816 姓名:屈辉高速公路问题1 实验案例 (2)1.1 高速公路问题(简化) (2)1.1.1 问题分析 (3)1.1.2 变量说明 (3)1.1.3 模型假设 (3)1.1.4 模型建立 (3)1.1.5 模型求解 (4)1.1.6 求解模型的程序 (4)1实验案例1.1 高速公路问题(简化)A城和B城之间准备建一条高速公路,B城位于A城正南20公里和正东30公里交汇处,它们之间有东西走向连绵起伏的山脉。
公路造价与地形特点有关,图4.2.4给出了整个地区的大致地貌情况,显示可分为三条沿东西方向的地形带。
你的任务是建立一个数学模型,在给定三种地形上每公里的建造费用的情况下,确定最便宜的路线。
图中直线AB显然是路径最短的,但不一定最便宜。
而路径ARSB过山地的路段最短,但是否是最好的路径呢?AB图8.2 高速公路修建地段1.1.1 问题分析在建设高速公路时,总是希望建造费用最小。
如果要建造的起点、终点在同一地貌中,那么最佳路线则是两点间连接的线段,这样费用则最省。
因此本问题是一个典型的最优化问题,以建造费用最小为目标,需要做出的决策则是确定在各个地貌交界处的汇合点。
1.1.2 变量说明i x :在第i 个汇合点上的横坐标(以左下角为直角坐标原点),i =1,2,…,4;x 5=30(指目的地B 点的横坐标)x=[x 1,x 2,x 3,x 4]Tl i :第i 段南北方向的长度(i =1,2, (5)S i :在第i 段上地所建公路的长度(i =1,2, (5)由问题分析可知,()()()()25425524324423223322122221211x x l S x x l S x x l S x x l S x l S -+=-+=-+=-+=+=C 1:平原每公里的造价(单位:万元/公里)C 2:高地每公里的造价(单位:万元/公里) C 3:高山每公里的造价(单位:万元/公里)1.1.3 模型假设1、 假设在相同地貌中修建高速公路,建造费用与公路长度成正比;2、 假设在相同地貌中修建高速公路在一条直线上。
数学建模通识课期末试题

1 我国公务员制度已实施多年,1993年10月1日颁布施行的《国家公务员暂行条例》规定:“国家行政机关录用担任主任科员以下的非领导职务的国家公务员,采用公开考试、严格考核的办法,按照德才兼备的标准择优录用”。
目前, 我国招聘公务员的程序一般分三步进行:公开考试(笔试)、面试考核、择优录取。
现有某市直属单位因工作需要,拟向社会公开招聘8名公务员,具体的招聘办法和程序如下:(一)公开考试:凡是年龄不超过30周岁,大学专科以上学历,身体健康者均可报名参加考试,考试科目有:综合基础知识、专业知识和“行政职业能力测验”三个部分,每科满分为100分。
根据考试总分的高低排序按1:2的比例(共16人)选择进入第二阶段的面试考核。
(二)面试考核:面试考核主要考核应聘人员的知识面、对问题的理解能力、应变能力、表达能力等综合素质。
按照一定的标准,面试专家组对每个应聘人员的各个方面都给出一个等级评分,从高到低分成A/B/C/D四个等级,具体结果见表1所示。
(三)由招聘领导小组综合专家组的意见、笔试成绩以及各用人部门需求确定录用名单,并分配到各用人部门。
该单位拟将录用的8名公务员安排到所属的7个部门,并且要求每个部门至少安排一名公务员。
这7个部门按工作性质可分为四类:(1)行政管理、(2)技术管理、(3)行政执法、(4)公共事业。
见表2所示。
招聘领导小组在确定录用名单的过程中,本着公平、公开的原则,同时考虑录用人员的合理分配和使用,有利于发挥个人的特长和能力。
招聘领导小组将7个用人单位的基本情况(包括福利待遇、工作条件、劳动强度、晋升机会和学习深造机会等)和四类工作对聘用公务员的具体条件的希望达到的要求都向所有应聘人员公布(见表2)。
每一位参加面试人员都可以申报两个自己的工作类别志愿(见表1)。
(1)如果不考虑应聘人员的意愿,择优按需录用,试帮助招聘领导小组设计一种录用分配方案;(2)在考虑应聘人员意愿和用人部门的希望要求的情况下,请你帮助招聘领导小组设计一种分配方案;2配件厂为装配线生产若干种产品,轮换产品时因更换设备要付生产准备费,产量大于需求时要付贮存费. 该厂生产能力非常大,即所需数量可在很短时间内产出.已知某产品日需求量100件,生产准备费5000元,贮存费每日每件1元. 试安排该产品的生产计划,即多少天生产一次(生产周期),每次产量多少,使总费用最小3最近在翠苑山麓发现了温泉资源,西乐旅游开发公司获得开发权,决定在此修建‘’翡翠温泉度假村‘’。
数学建模课后习题作业

选修课——数学建模部分习题详细解答【陈文滨】1、在稳定的椅子问题中,如设椅子的四脚连线呈长方形,结论如何?【模型假设】(1)椅子四条腿一样长,椅脚与地面接触处视为一点,四脚的连线呈长方形.(2)地面高度是连续变化的,沿任何方向都不会出现间断 (没有像台阶那样的情况),即从数学的角度看,地面是连续曲面.这个假设相当于给出了椅子能放稳的必要条件.(3)椅子在任何位置至少有三只脚同时着地.为保证这一点,要求对于椅脚的间距和椅腿的长度而言,地面是相对平坦的.因为在地面上与椅脚间距和椅腿长度的尺寸大小相当的范围内,如果出现深沟或凸峰(即使是连续变化的),此时三只脚是无法同时着地的。
【模型建立】在上述假设下,解决问题的关键在于选择合适的变量,把椅子四只脚同时着地表示出来.首先,引入合适的变量来表示椅子位置的挪动.生活经验告诉我们,要把椅子通过挪动放稳,通常有拖动或转动椅子两种办法,也就是数学上所说的平移与旋转变换.然而,平移椅子后问题的条件没有发生本质变化,所以用平移的办法是不能解决问题的.于是可尝试将椅子就地旋转,并试图在旋转过程中找到一种椅子能放稳的情形.注意到椅脚连线呈长方形,长方形是中心对称图形,绕它的对称中心旋转180度后,椅子仍在原地.把长方形绕它的对称中心O旋转,这可以表示椅子位置的改变。
于是,旋转角度θ这一变量就表示了椅子的位置.为此,在平面上建立直角坐标系来解决问题.如下图所示,设椅脚连线为长方形ABCD,以对角线AC所在的直线为x轴,对称中心O为原点,建立平面直角坐标系.椅子绕O点沿逆时针方向旋转角度θ后,长方形ABCD转至A1B1C1D1 的位置,这样就可以用旋转角θ(0≤θ≤π)表示出椅子绕点O旋转θ后的位置.其次,把椅脚是否着地用数学形式表示出来.我们知道,当椅脚与地面的竖直距离为零时,椅脚就着地了,而当这个距离大于零时,椅脚不着地.由于椅子在不同的位置是θ的函数,因此,椅脚与地面的竖直距离也是θ的函数.由于椅子有四只脚,因而椅脚与地面的竖直距离有四个,它们都是θ的函数.而由假设(3)可知,椅子在任何位置至少有三只脚同时着地,即这四个函数对于任意的θ,其函数值至少有三个同时为0.因此,只需引入两个距离函数即可.考虑到长方形ABCD是中心对称图形,绕其对称中心 O沿逆时针方向旋转180°后,长方形位置不变,但A,C和B,D对换了.因此,记A、B两脚与地面竖直距离之和为f(θ),C、D两脚与地面竖直距离之和为g(θ),其中θ∈[0,π],从而将原问题数学化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学建模通识课大作业题目注意事项:(1) 大型作业由学生组队完成,每队不超过3人;(2) 在17个题目中任选一题完成;(3) 答卷包括问题复述、建模假设与建立、模型求解与计算等部分组成,引用别人的成果或其他公开的资料(包括网上查到的资料) 必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出;(4) 答卷必须具有原创性,如发现抄袭和雷同,成绩计0分;(5) 答卷以电子版的形式发给各任课老师指定的邮箱,交卷截止时间为2012年12月20日晚上9:30。
题1:地下管线A 地和B 地之间准备修建一条地下管线,B 地位于A 地正南面20km 和正东30km 交汇处,它们之间有东西走向岩石带。
地下管线造价与地质特点有关,图1给出了整个地区的大致地质情况,显示可分为三条沿东西方向的地质带。
你的任务是建立一个数学模型,在给定三种地质条件上每千米的修建费用的情况下,确定最便宜的路线。
图中直线AB 显然是路径最短的,但不一定最便宜。
而路径ARSB 过岩石和沙石的路径最短,但是否是最好的路径呢?你怎样使你的模型进一步适合于下面两个限制条件的情况呢?1.当管线转弯时,角度至少为140°。
2.管线必须通过一个已知地点(如P )。
AC 1 C 1C 2 C 2C 3 图1题2:电子游戏中的数学近年来,随着电子游戏的日益普及,电子游戏业已成为横跨信息技术和文化的重要产业。
对电子游戏中的一些数学问题进行研究,成为数学界和相关人士的一个热门话题。
在某电子游戏中,玩家每次下注一元,由机器随机分配给玩家五张扑克牌,然后允许玩家有一次换牌的机会,即可以放弃其中的某几张牌,放弃的牌留下的空缺由机器在剩下的47张牌中再次随机分配。
玩家的奖金依据其最后所持有的牌型而定。
下面是一份典型的奖金分配表:牌型奖金(元)同花大顺(10到A)800同花顺50四张相同点数的牌25满堂红(三张同点加一对)8同花 5顺子 4三张相同点数的牌 3两对 2一对高分对(J及以上) 1其它0在上表中,玩家的牌型属于某一类型且不属于任何更高的类型,则赢得该牌型相应的奖金。
1、若某玩家采取以下策略,当原始的牌型构成一个顺子或更高的牌型时,则放弃换牌的机会;否则,除保留对子或三张相同点数的牌外,将手中其余的牌放弃,由机器再次随机分配。
根据上述游戏规则和策略,分析各类牌型出现的可能性,计算采取该策略能获得的期望奖金金额。
2、对上述策略进行评价。
3、是否存在更好的策略。
若有,请与上述策略进行比较。
题3:确定学术论文重要性排序随着现代科学技术的发展,每年都有大量的学术论文发表。
如何衡量学术论文的重要性,成为学术界和科技部门普遍关心的一个问题。
有一种确定学术论文重要性的方法是考虑论文被引用的状况,包括被引用的次数以及引用论文的重要性程度。
假如我们用有向图来表示论文引用关系,“A引用B”可用下图表示:现在有A、B、C、D、E、F六篇学术论文,它们的引用关系如下:要求:1)设计一个依据上述引用关系排出六篇论文重要性顺序的算法,并给出用该算法排得的结果。
2)将算法推广到任意N篇论文的情况。
题4:补考日程编排问题每年开学初,我校都要安排学生补考。
一方面,补考涉及人数较多,专业广泛,因此科目繁多;另一方面,参加同一门课程补考的学生来自全校各个专业,而且有些学生同时有多门课程需要补考。
补考不同于平常的期末考试,只能利用周末进行,并且考试周期不能拖得太长,假如由你来负责编排补考日程,请你建立相关模型,设计一种补考日程编排方案,使得任何一个学生的不同补考科目在时间上都不冲突,并且使整个补考周期尽可能短。
1.假如同一个时间段可供使用的考场个数没有限制,问如何编排考试日程表才能使整个考试过程在最短的时间内完成?2.假若能同时使用的考场数目是有限的(比如只有10个教室),问如何编排考试日程表才能使整个考试过程在最短的时间内完成?3.附件中是今年考试的部分考生信息,请你利用附件中的数据编制考试日程表。
题5: 两种房贷还款方式有无好坏之分最近,关于个人购房按揭贷款的还款方式引起了社会各界的关注。
银行目前有等额本息还款法和等本不等息递减还款法两种还款方式,且一般推荐提供等额本息还款法。
有人认为一笔20万元、20年的房贷,两种还款方式的差额有1万多元,认为银行在隐瞒信息,赚消费者的钱。
所谓等额本息还款法,即每月以相等的额度平均偿还贷款本息,直至期满还清;而等本不等息递减还款法(简称等额本金还款法),即每月偿还贷款本金相同,而利息随本金的减少而逐月递减,直至期满还清。
1.请你建立数学模型讨论这两种房贷还款方式是否有好坏之分;2.是否可以设计一些其它房贷还款方式,并作讨论;3.给报社写一篇稿子,介绍你的研究成果。
题6: 高校教师升职加薪问题某民办大学教师的职称分为助教、讲师、副教授、教授四个级别,其中助教从在读博士生中聘用,当取得博士学位后自动升为讲师,而讲师、副教授均需至少任职7年才可申请晋升上一级职称。
所有教师每年领取10个月(每年9月至次年6月)工资(年薪),助教为27000美元,讲师为32000美元,副教授为40000美元,教授为52000美元。
每年教师的工资都会增加,涨工资总是在9月初生效。
若教师职称得到及时晋升,则应增部分等于未晋升而连续工作7年每年应增部分的总合。
得到及时晋升且工作满25年以上的教授退休时的工资为64000美元。
同样职称但具有更多经验的教师应比经验较少的教师工资高一点,但工资增长随任职年数增加而逐年下降。
外校调入教师的在外校的教龄可折算为本校教龄,但最多只能按7年计。
试分别考虑生活费用有无增加两种情况,设计一个公平合理的加薪规则。
题7: 适当换车真的省钱吗?上海市出租车收费制度在1998年进行了调整,由原来5公里起步价14.4元、每公里车费1.8元变为3公里起步价10元、每公里2元,并且10公里以上每公里增收50%、特殊时段(23:00—6:00)每公里增收30% 。
制度改变后,一些精明的乘客在行驶一定里程后,利用换车或让司机重新计价的方法来节省车费。
可现在,这种乘客越来越少见了。
请问适当换车真的省钱吗?建立数学模型解释上述现象。
题8: 银行准备金问题银行各储蓄所每天都需要有一定的现金作为准备金,以供人们前来取款。
如果储蓄所准备金太多,则对于银行来说是一种损失(本来这部分现金可以贷款出去以赚去贷款利息),如果储蓄所准备金太少,则到时候有人要取钱时不够了,则要损害银行信誉,此时银行可以到附近其他银行的网点拆借,但是拆借的利息比较高。
当然没有还有人来存款,存款的钱可以作为取款人取的钱。
存款人与取款人的人数以及金额都是相互独立的。
所以对于银行来说,合适的银行准备金是银行必须考虑的一个问题。
下面以某个储蓄所为例,考虑该储蓄所每天该如何准备现金。
假设每5分钟内前来取款的人数服从参数为1的possion分布,取款金额服从参数为(1500,550)的正态分布,存款的人数服从参数为0.2的possion分布,存款金额服从参数为(2000,670)的正态分布。
存款人和取款人的到来相互独立。
银行的存款利率r1,贷款利率是r2,拆借利率是r3,r3>r2>r1。
要考虑的问题是:1、该储蓄所的最佳准备金是多少?2、为了使至少95%的顾客都能取到钱,每天至少该准备多少现金?3、如果银行要求取钱金额超过5万必须提前一天预定,那样准备金又该如何准备?题9:导弹发射问题1、我防空指挥部的雷达发现有一架来路不明的飞机,经分析确认是一架敌机后,即命令正处在指挥部上空处于同一高度进行巡逻的我方战斗机发射I型空对空追踪导弹将其击毁(追踪导弹可针对目标随时自动调节追踪方向)。
假定雷达发现敌机时,该机正位于我防空指挥部正东N公里高空处,并欲在同一高度上向位于其正北方向M公里处的安全区逃窜(由于电子干扰的作用,敌机一旦进入安全区后.导弹将失去追踪目标,无法将其击毁)。
在适当的假设下,确定导弹追踪敌机的轨迹及发射I型空对空导弹击毁敌机的条件。
2、若当时命令设在防空指挥部的地面导弹基地发射II型地对空追踪导弹截击敌机,假定敌机始终距地面高度为h公里飞行,其他假定同情况1中所述,重新确定此时II型地对空导弹追踪敌机的轨迹及击毁敌机的条件。
3、若敌机的飞行速度 v 、其位置 N 和追踪导弹速度 u 均为给定的常数;针对情况1中敌机被导弹击中的条件下,给出一个计算机编程的算法及相关程序,以计算出敌机被击中的时刻以及当时敌机的位置。
据此,在 v = 1 马赫数 , N = 100公里 , u = 2马赫数 时,利用上述的程序算出具体敌机被击中的时刻以及当时敌机被击毁的位置。
4、若追踪轨迹确定时,导弹击毁敌机还存在随机性,导弹飞行的路程越长,其击毁敌机的概率越小,试重新讨论情况1中的问题。
题10: 考虑航天飞机上固定在飞机墙上供宇航员使用的水箱。
水箱的形状为在直圆锥顶上装一个球体(像冰淇淋的形状,见图)。
如果球体的半径限定为正好6英尺,设计的水箱表面积为450平方英尺,x 1为直圆锥的高,x 2为球冠的高,请确定x 1, x 2的尺寸,使水箱容积最大,并讨论模型的敏感性。
题11: 总部位于俄亥俄州阿克伦城的Firestone 公司在南卡罗来纳州佛罗伦萨有一座工厂,生产两种类型的轮胎(SUV225和SUV205)。
由于最近轮胎市场回暖,需求量很大。
每批100个SUV225轮胎需要100加仑的复合塑料和5磅的橡胶,每批100个SUV205轮胎需要60加仑的复合塑料和2.5磅的橡胶。
每种类型的每个轮胎需要1美元的劳动成本。
该制造商每周有660加仑的复合塑料、750美元的资金、300磅的橡胶。
公司估计每个SUV225轮胎的利润是3美元,每个SUV205轮胎的利润是2美元。
a) 为了最大化利润,公司每周每种轮胎分别应该生产多少?b)假设该制造商有机会与一个轮胎销售商签订一份供货合同,向销售商提供至少500个SUV225轮胎和至少300个SUV205轮胎,该制造商是否应该签这份合同?请给出支持你的建议的理由。
c)如果该制造商可以以50美元的总成本额外获得1000加仑的复合塑料,他是否应该购买这些复合塑料?请给出支持你的建议的理由。
题12: 社会学家发现了一种被称为社会流传的现象,指的是一条信息、一种技术创新或一种文化时尚在人群中的传播。
这样的人群可以分为两类:一类接受到该信息,另一类没有。
在一个人口数量已知的固定人群中,有理由假设流传率与已接收到信息的人数和待接收的人数的乘积成正比。
若X表示N个人的居民中已接收到信息的人数,那么关于社会流传的数学模型为d X/d t = kX(N -X),其中t表示时间,k是正常数。
a)解这个模型,并证明它的解是一条Logistic曲线。