数学建模大作业
数学建模_大作业1

数学建模大作业姓名1:赵成宏学号:201003728姓名2:吴怡功学号:201003738姓名3:蒲宁宁学号:201004133专业:车辆工程2013年5 月28 日直升机运输公司问题一家运输公司正考虑用直升机从某城市的一摩天大楼运送人员。
你被聘为顾问,现在要确定需要多少架飞机。
按照建模过程仔细分析,建模。
为了简化问题,可以考虑升机运输公司问题。
基本假设如下:假设运载的直升机为统一型号; 假设每架飞机每次载人数相同;假设飞机运送的人员时互不影响;假定人员上了飞机就安全,因此最后一次运输时,只考虑上飞机所花时间。
1、按照数学建模的全过程对本题建立模型,并选用合理的数据进行计算(模型求解); 2、本问题是否可以抽象为优化模型;除了考虑建立优化模型之外,是否可以采用更简单的方法建立模型。
注意考虑假设条件。
甚至基于不同的假设建立多个模型。
归纳起来,有以下假设:(H1)所有飞机的飞行高度度均为10 000m ,飞行速度均为800km/h 。
(H2)飞机飞行方向角调整幅度不超过6,调整可以立即实现;(H3)飞机不碰撞的标准是任意两架飞机之间的距离大于8km; (H4)刚到达边界的飞机与其他飞机的距离均大于60km; (H5)最多考虑N 架飞机;(H6)不必考虑飞机离开本区域以后的状况. 为方便以后的讨论,我们引进如下记号: D 为飞行管理区域的边长;S 为飞行管理区域取直角坐标系使其为[0,D ]×[0,D]; v 为飞机飞行速度,v=800km/h;(x 0i ,y i)第i 架飞机的初始位置;()(),(t t y x ii )为第i 架飞机在t 时刻的位置;θ0i为第i 架飞机的原飞行方向角,即飞行方向与x 轴夹角,0≤θ≤2π;θi ∆第i 架飞机的方向角调整,-6π≤i θ∆≤6π; i θ﹦i 0i θθ∆+为第i 架飞机调整后的飞行方向角;一、两架飞机不碰撞的条件1、两架飞机距离大于8km 的条件设第i 架和第j 架飞机的初始位置为(0i 0i y x ,),(0j 0j y x ,),飞行方向角分别为错误!未找到引用源。
数学建模案例作业

数学建模案例作业作业1 商人过河问题三名商人各带一个随从乘船渡河,一只小船只能容纳二人,由他们自己划行(六个人都会划船)。
随从们密谋,无论何时,一旦随从的人数比商人多,就杀人越货。
但是如何乘船渡河的决定权掌握在商人手中。
商人们怎样才能安全渡河?示意图如下: 随从:商人: 一、状态变量一次决策),(k k k y x S = 3,2,1=k 表示第k 次渡河时,此岸的商人数,随从数. 最初 )3,3(0=S 且为整数)3,0(≤≤k k y x)}0,0(),1,0(),2,0(),3,0(),0,1(),1,1(),2,1(),3,1(),0,2(),1,2(),2,2(),3,2(),0,3(),1,3(),2,3(),3,3{(=S要安全过河,需保证彼岸此岸都安全,及随从数不能大于商人数,所以安全的情况有10种,即)}0,0(),1,0(),2,0(),3,0(),1,1(),2,2(),0,3(),1,3(),2,3(),3,3{(=S ② 二、决策变量设),(k k k v u d =2,0(≤≤k k v u 且)21≤+≤k k v u 表示第k 次渡河时,船上的商人数和随从数 )}1,0(),0,1(),2,0(),1,1(),0,2{(=D与状态变量相结合,安全的情况有三种,即 )}1,0(),2,0(),1,1{((=D ③ 三、状态转移方程奇数次(此案到彼岸)k k k d S S -=+1 偶数次(彼岸到此案)k k k d S S +=+1 即k k k k d S S )1(1-+=+ ① 数学建模:由①确定的转移方程下,经过n 次决策,将初始状态转移到最终状态)0,0(=n S . 每次的决策取自③式,每次到达的状态在②中. 图解法:①从右上角移到左下角,每次最多移两步;②奇数次渡河往左下方,偶数次渡河往右下方。
建立平面直角坐标系如图:n S 过河方案:从A 点)3,3(0=S 出发到D 点)0,0(=n S 结束① 小船一次最多能载两人,所以每次最多移动两个格子② 由此岸即彼岸时人员减少,即奇数遍时向左下方行走;有彼岸及此岸时人员增加,即偶数遍时向右上方行走。
数学建模期末大作业

数学建模承诺书
我们仔细阅读了数学建模作业的对应规则。
我们完全明白,在开始做题后不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反规则的。
如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守规则,以保证公正、公平性。
如有违反规则的行为,我们将受到严肃处理。
我们选择的题号是(A/B/C/D题): D
参赛队员:
1. 专业年级软件工程姓名段永春学号201410413112 成绩
2. 专业年级软件工程姓名殷福贵学号201410413113 成绩
3. 专业年级软件工程姓名高培富学号201410413107 成绩
日期: 2015 年 6 月 15 日。
数学建模第四套

徐州工程学院个性化教育数学建模(大作业)试卷班级 学号 姓名 得分1、某农场饲养的某种动物所能达到的最大年龄为15岁,将其分成三个年龄组:第一组,0~5岁;第二组,6~10岁;第三组,11~15岁。
动物从第二年龄组开始繁衍后代,经过长期统计,第二组和第三组的繁殖率分别为4和3,第一年龄和第二年龄组的动物能顺利进入下一个年龄组的存活率分别为1/2和1/4。
假设农场现有三个年龄段的动物各100头,问15年后农场三个年龄段的动物各有多少头?解:由于年龄分为五岁一段,所以时间周期取5年。
设(k)i x 表示第k 个时间周期,第i 组年龄阶段动物的数量。
因为某一时间周期第二年龄组和第三年龄组的动物数量是由上一周期上一年龄组存活下来的动物的数量决定的,所以有(k)(k 1)(k)(k 1)213211,22x x x x --== 又因为某一时间周期,第一年龄组的动物数量是由上一时间周期各个年龄组出生的动物数量决定的,所以有(k)(k 1)(k 1)12343x x x --=+由此得到递推关系式: (k)(k 1)(k 1)123(k)(k 1)21(k)(k 1)32431214x x x x x x x ----⎧=+⎪⎪⎪=⎨⎪⎪=⎪⎩ 用矩阵表示为: (k)(k 1)11(k)(k 1)22(k)(k 1)3304310021004x x x x x x ---⎡⎤⎢⎥⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎣⎦即(k)(k 1)x Lx -=,其中(n)043100100,10021001004L x ⎡⎤⎢⎥⎡⎤⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦则有()()()(3)(2)(1)(0)1437.5137.587.5x Lx L Lx L L Lx ⎡⎤⎢⎥====⎢⎥⎢⎥⎣⎦计算过程代码如下: >> x0=[100;100;100];>> L=[0,4,3;1/2,0,0;0,1/4,0]; >> x1=L*x0; >> x2=L*x1; >> x3=L*x2x3 =1.0e+03 * 1.4375 0.1375 0.0875结果分析:由于动物的数量不可能出现小数,所以根据实际,15年后农场饲养动物的数量2、深洞的估算: 假如你站在洞口且身上仅带着一只具有跑秒功能的计算器,你出于好奇心想用扔下一块石头听回声的方法来估计洞的深度,假定你捡到一块质量是1KG 的 石头,并准确的测定出听到回声的时间T=5S ,就下面给定情况,分析这一问题,给出相应的数学模型,并估计洞深。
数学建模通识课大作业题目

数学建模通识课大作业题目注意事项:(1) 大型作业由学生组队完成,每队不超过3人;(2) 在17个题目中任选一题完成;(3) 答卷包括问题复述、建模假设与建立、模型求解与计算等部分组成,引用别人的成果或其他公开的资料(包括网上查到的资料) 必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出;(4) 答卷必须具有原创性,如发现抄袭和雷同,成绩计0分;(5) 答卷以电子版的形式发给各任课老师指定的邮箱,交卷截止时间为2012年12月20日晚上9:30。
题1:地下管线A 地和B 地之间准备修建一条地下管线,B 地位于A 地正南面20km 和正东30km 交汇处,它们之间有东西走向岩石带。
地下管线造价与地质特点有关,图1给出了整个地区的大致地质情况,显示可分为三条沿东西方向的地质带。
你的任务是建立一个数学模型,在给定三种地质条件上每千米的修建费用的情况下,确定最便宜的路线。
图中直线AB 显然是路径最短的,但不一定最便宜。
而路径ARSB 过岩石和沙石的路径最短,但是否是最好的路径呢?你怎样使你的模型进一步适合于下面两个限制条件的情况呢?1.当管线转弯时,角度至少为140°。
2.管线必须通过一个已知地点(如P )。
AC 1 C 1C 2 C 2C 3 图1题2:电子游戏中的数学近年来,随着电子游戏的日益普及,电子游戏业已成为横跨信息技术和文化的重要产业。
对电子游戏中的一些数学问题进行研究,成为数学界和相关人士的一个热门话题。
在某电子游戏中,玩家每次下注一元,由机器随机分配给玩家五张扑克牌,然后允许玩家有一次换牌的机会,即可以放弃其中的某几张牌,放弃的牌留下的空缺由机器在剩下的47张牌中再次随机分配。
玩家的奖金依据其最后所持有的牌型而定。
下面是一份典型的奖金分配表:牌型奖金(元)同花大顺(10到A)800同花顺50四张相同点数的牌25满堂红(三张同点加一对)8同花 5顺子 4三张相同点数的牌 3两对 2一对高分对(J及以上) 1其它0在上表中,玩家的牌型属于某一类型且不属于任何更高的类型,则赢得该牌型相应的奖金。
数学建模 大作业1

N
( 1, 2 ,..... N )= i 的极小值。通常表示为 i 1
N
min F( 1, 2 ,..... N )= i , i 1
s.t. rij2 (t)>64 ,t tij ,i,j=1,2,….N,i≠j
i
6
,i=1,2,….N.
由于在这个及消化问题中目标函数可约束条件关于变量 1, 2 ,..... N 均为非 线性的,因此上述方程组是一个有约束的非线性的规划模型。
数学建模大作业
姓名 1:廉文秀 学号:200904745 姓名 2:沙吾列 学号:200903952 姓名 3:索海娟 学号:200903951 专业:车辆工程 班级:094 指导老师:张仲荣
2012 年 5 月 22 日
升机运输公司问题
一家运输公司正考虑用直升机从某城市的一摩天大楼运送人员。你被聘为顾 问,现在要确定需要多少架飞机。按照建模过程仔细分析,建模。为了简化问题, 可以考虑升机运输公司问题。 基本假设如下:
由于约束条件 ri2j (t)>64, t t ij ,i,j=1,2,…N,i j
有较强的非线性,特别是 tij 的表达式比较复杂,我们可以将问题进一步简化。注
(t)=vtcos
+
x
0 j
(t)=vtsin
+
y
0 j
若记时刻 t 他们距离为 (t),则他们之间距离的平方为
ri2j (t)=(xi(t)-xj(t))2+(yi(t)-yj(t))2
经简单计算可得
ri2j ( t ) =v2 [(cos i -cos j )2+(sin i -sin j )2] t2
i
架飞机的方向角调整,-
数学建模期末大作业

数学建模期末大作业论文题目:A题美好的一天组长:何曦(2014112739)组员:李颖(2014112747)张楚良(2014112740)班级:交通工程三班指导老师:陈崇双美好的一天摘要关键字:Dijkstra算法多目标规划有向赋权图 MATLAB SPSS1 问题的重述Hello!大家好,我是没头脑,住在西南宇宙大学巨偏远的新校区(节点22)。
明天我一个外地同学来找我玩,TA叫不高兴,是个镁铝\帅锅,期待ing。
我想陪TA在城里转转,当然是去些不怎么花钱的地方啦~~。
目前想到的有林湾步行街(节点76)、郫郫公园(节点91),大川博物院(节点72)。
交通嘛,只坐公交车好了,反正公交比较发达,你能想出来的路线都有车啊。
另外,进城顺便办两件事,去老校区财务处一趟(节点50),还要去新东方(节点34)找我们宿舍老三,他抽奖中了两张电影票,我要霸占过来明晚吃了饭跟TA一起看。
电影院嘛,TASHIWODE电影院(节点54)不错,比较便宜哈。
我攒了很久的钱,订了明晚开心面馆(节点63)的烛光晚餐,额哈哈,为了TA,破费一下也是可以的哈。
哦,对了,老三说了,他明天一整天都上课,只有中午休息的时候能接见我给我票。
我主要是想请教一下各位大神:1)明天我应该怎么安排路线才能够让花在坐车上的时间最少?2)考虑到可能堵车啊,TA比较没耐心啊,因为TA叫不高兴嘛。
尤其是堵车啊,等车啊,这种事,万一影响了气氛就悲剧了。
我感觉路口越密的地方越容易堵,如果考虑这个,又应该怎么安排路线呢?3)我们城比较挫啊,连地图也没有,Z老师搞地图测绘的,他有地图,跟他要他不给,只给了我一个破表格(见附件,一个文件有两页啊),说“你自己画吧”。
帮我画一张地图吧,最好能标明我们要去的那几个地方和比较省时的路线啊,拜托了~2 问题的分析2.1 对问题一的分析问题一要求安排路线使得坐车花费的时间最少。
对于问题一,假设公交车的速度维持不变,要使花费的时间最少,则将问题转化为对最短路径的求解。
数学建模大作业

兰州交通大学数学建模大作业学院:机电工程学院班级:车辆093学号:200903812 姓名:刘键学号:200903813 姓名:杨海斌学号:200903814 姓名:彭福泰学号:200903815 姓名:程二永学号:200903816 姓名:屈辉高速公路问题1 实验案例 (2)1.1 高速公路问题(简化) (2)1.1.1 问题分析 (3)1.1.2 变量说明 (3)1.1.3 模型假设 (3)1.1.4 模型建立 (3)1.1.5 模型求解 (4)1.1.6 求解模型的程序 (4)1实验案例1.1 高速公路问题(简化)A城和B城之间准备建一条高速公路,B城位于A城正南20公里和正东30公里交汇处,它们之间有东西走向连绵起伏的山脉。
公路造价与地形特点有关,图4.2.4给出了整个地区的大致地貌情况,显示可分为三条沿东西方向的地形带。
你的任务是建立一个数学模型,在给定三种地形上每公里的建造费用的情况下,确定最便宜的路线。
图中直线AB显然是路径最短的,但不一定最便宜。
而路径ARSB过山地的路段最短,但是否是最好的路径呢?AB图8.2 高速公路修建地段1.1.1 问题分析在建设高速公路时,总是希望建造费用最小。
如果要建造的起点、终点在同一地貌中,那么最佳路线则是两点间连接的线段,这样费用则最省。
因此本问题是一个典型的最优化问题,以建造费用最小为目标,需要做出的决策则是确定在各个地貌交界处的汇合点。
1.1.2 变量说明i x :在第i 个汇合点上的横坐标(以左下角为直角坐标原点),i =1,2,…,4;x 5=30(指目的地B 点的横坐标)x=[x 1,x 2,x 3,x 4]Tl i :第i 段南北方向的长度(i =1,2, (5)S i :在第i 段上地所建公路的长度(i =1,2, (5)由问题分析可知,()()()()25425524324423223322122221211x x l S x x l S x x l S x x l S x l S -+=-+=-+=-+=+=C 1:平原每公里的造价(单位:万元/公里)C 2:高地每公里的造价(单位:万元/公里) C 3:高山每公里的造价(单位:万元/公里)1.1.3 模型假设1、 假设在相同地貌中修建高速公路,建造费用与公路长度成正比;2、 假设在相同地貌中修建高速公路在一条直线上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
兰州交通大学数学建模大作业学院:机电工程学院班级:车辆093学号:********* 姓名:刘键学号:********* 姓名:杨海斌学号:********* 姓名:彭福泰学号:********* 姓名:程二永学号:********* 姓名:屈辉高速公路问题1 实验案例 (2)1.1 高速公路问题(简化) (2)1.1.1 问题分析 (3)1.1.2 变量说明 (3)1.1.3 模型假设 (3)1.1.4 模型建立 (3)1.1.5 模型求解 (4)1.1.6 求解模型的程序 (4)1实验案例1.1 高速公路问题(简化)A城和B城之间准备建一条高速公路,B城位于A城正南20公里和正东30公里交汇处,它们之间有东西走向连绵起伏的山脉。
公路造价与地形特点有关,图4.2.4给出了整个地区的大致地貌情况,显示可分为三条沿东西方向的地形带。
你的任务是建立一个数学模型,在给定三种地形上每公里的建造费用的情况下,确定最便宜的路线。
图中直线AB显然是路径最短的,但不一定最便宜。
而路径ARSB过山地的路段最短,但是否是最好的路径呢?AB图8.2 高速公路修建地段1.1.1 问题分析在建设高速公路时,总是希望建造费用最小。
如果要建造的起点、终点在同一地貌中,那么最佳路线则是两点间连接的线段,这样费用则最省。
因此本问题是一个典型的最优化问题,以建造费用最小为目标,需要做出的决策则是确定在各个地貌交界处的汇合点。
1.1.2 变量说明i x :在第i 个汇合点上的横坐标(以左下角为直角坐标原点),i =1,2,…,4;x 5=30(指目的地B 点的横坐标)x=[x 1,x 2,x 3,x 4]Tl i :第i 段南北方向的长度(i =1,2, (5)S i :在第i 段上地所建公路的长度(i =1,2, (5)由问题分析可知, ()()()()25425524324423223322122221211x x l S x x l S x x l S x x l S x l S -+=-+=-+=-+=+=C 1:平原每公里的造价(单位:万元/公里)C 2:高地每公里的造价(单位:万元/公里)C 3:高山每公里的造价(单位:万元/公里) 1.1.3 模型假设1、 假设在相同地貌中修建高速公路,建造费用与公路长度成正比;2、 假设在相同地貌中修建高速公路在一条直线上。
在理论上,可以使得建造费用最少,当然实际中一般达不到。
1.1.4 模型建立在A 城与B 城之间建造一条高速公路的问题可以转化为下面的非线性规划模型。
优化目标是在A 城与B 城之间建造高速公路的费用。
()4,3,2,1300..)(min 5142332211=≤≤++++=i x t s S C S C S C S C S C x f i1.1.5模型求解这里采用Matlab编程求解。
模型求解时,分别取C i(i=1,2,3)如下。
平原每公里的造价C1=400万元/公里;高地每公里的造价C2=800万元/公里;高山每公里的造价C3=1200万元/公里。
输入主程序model_p97.m,运行结果如下:model_p97optans =2.2584e+004len =38.9350ans =12.1731 14.3323 15.6677 17.8269求解程序见附录。
注:实际建模时必须查找资料来确定参数或者题目给定有数据)6.模型结果及分析通过求解可知,为了使得建造费用最小。
建造地点的选择宜采取下列结果。
x1=12.1731,x2=14.3233,x3=15.6677,x4=17.8269建造总费用为2.2584亿元。
总长度为38.9350公里1.1.6求解模型的程序(1)求解主程序model_p97function x=model_p97 %数学建模教材 P97 高速公路clear allglobal C LC=[400 800 1200];L=[4 4 4 4 4];x=fmincon('objfun_97',[1,1,1,1],[],[],[],[],zeros(1,4),ones(1,4)* 30,'mycon_p97');optans=objfun_97(x)C=ones(3,1);len = objfun_97(x)(2)模型中描述目标函数的Matlab程序objfun_97.mfunction obj=objfun_97(x)global C Lobj=C(1)*sqrt(L(1)^2+x(1)^2) + C(2)*sqrt(L(2)^2+(x(2)-x(1))^2) + ... C(3)*sqrt(L(3)^2+(x(3)-x(2))^2)C(2)*sqrt(L(4)^2+(x(4)-x(3))^2)+C(1)*sqrt(L(5)^2+(...30-x(4))^2); (3)模型中描述约束条件的Matlab函数mycon_p97.mfunction [c,ceq]=mycon_p97(x)c(1)=x(1)-x(2);c(2)=x(2)-x(3);c(3)=x(3)-x(4);c(4)=x(4)-30;ceq=[];综合实验:施肥效果分析【问题提出】施肥效果分析(1992年全国大学生数学模型联赛题A)某地区作物生长所需的营养素主要是氮(N)、钾(K)、磷(P)。
某作物研究所在某地区对土豆与生菜做了一定数量的实验,实验数据如下列表所示,其中ha表示公顷,t表示吨,kg表示公斤。
当一个营养素的施肥量变化时,总将另两个营养素的施肥量保持在第七个水平上,如对土豆产量关于N的施肥量做实验时,P与K的施肥量分别取为196kg/ha与372kg/ha。
试分析施肥量与产量之间关系,并对所得结果从应用价值与如何改进等方面做出估计。
土豆:N P K生菜:N P K数据拟合方法[1]在数学建模问题中常常有着重要的应用。
根据实验数据来求出实际问题中变量之间的经验公式[1~2],然后再根据经验公式来讨论模型的最优解,是许多数学建模问题中的一种重要方法。
下面就利用这种方法来讨论一个数学建模问题[3~4]。
某地区作物生长所需的营养素主要是氮(N)、磷(P)、钾(K)。
某作物研究所在该地区对土豆与生菜做了一定数量的实验,实验数据可参见文献[3],其中ha表示公顷,t表示吨,kg表示公斤。
当一个营养素的施肥量变化时,总将另两个营养素的施肥量保持在第七个水平上,如对土豆产量关于N的施肥量做实验时,P与K的施肥量分别取为196kg/ha与372kg/ha。
我们来分析施肥量与产量之间的关系,并对所得结果从应用价值与如何改进等方面作出估价。
首先,将题中的数据用MA TLAB软件[5]作出图形:从图上可看出,N、P、K的取值范围不一样,可以将它们的取值范围转化成区间[0,1],这样它们的变化范围就都一样了。
转化后的数据图形如下:1模型的建立及求解要分析施肥量与产量之间的关系,首先要建立施肥量与产量之间的函数关系。
可以用数据拟合的方法来建立这种函数关系。
这又需要确定拟合的函数的形式,即所谓经验公式。
施肥量与产量之间的函数可以是每一种肥料的施用量与产量的关系,也可以是三种肥料共同的施用量与产量的关系。
按一般常识,N、P、K是作物生长的三种基本肥料要素,它们用量的多少将直接影响农作物的产量。
这种对作物产量的“影响”通常是这三种肥料的共同影响,而不应是单一某一种肥料对作物产量的“影响”。
但每一种肥料的用量对于不同的作物产量的影响效果又有不同。
例如,N肥的施用量对有些农作物产量的影响是:当N肥施用量较少时,随着N肥用量的增加,农作物的产量会增加,到一定用量后产量达到最大,然后,当N肥用量继续增加时,农作物的产量反而会降低。
这从上面的土豆和生菜产量与N肥用量的数据图上也可以看到这样的规律。
而在一定的范围内,P肥和K肥的用量对农作物产量的影响将随着其用量的增加而一直增加,只是当P肥和K肥的用量较少时,随着其用量的增加,农作物产量增加较快,而当P肥和K肥的用量较多时,随着其用量的增加,农作物产量增加不大。
从上面的土豆和生菜产量与P肥或K肥用量的数据图上可以看到这样的规律。
具有这种特点的函数关系在数学上用二次多项式就能较好地反映出来。
当然也可以考虑用分段函数来描述。
为简单起见,下面在拟合这些函数时都用二次多项式。
在实验数据中,K肥料施用量与生菜产量的实验数据波动性较大,这种产量与肥料的施用量的关系在农作物中是很少出现的现象。
如果从数据图形的整体来看,其实K肥料施用量与生菜产量的实验数据的特点还是与上面所说的情况相似的,其波动性可看作是实验误差。
要利用实验数据来拟合出这些函数关系,显然,如果实验数据越多、数据分布越合理,则拟合的效果就越好。
这样拟合出来的函数,其所反映出来的规律就越符合实际情况。
例如,应当给出充分多的数据,且这些数据应当是在N、P、K三种肥料的不同用量下的产量数据。
又比如,应该有这样的数据:当N、P、K三种肥料中某两种肥料限制在不同的固定值时,相应地,第三种肥料取不同值时的产量数据,这样才有可能反映出N、P、K 三种肥料在对农作物产量的共同影响时的相互影响的规律。
但事实上,这里所给出的实验数据非常有限,而且很不均匀,所以用现有的数据来拟合N、P、K的施用量与产量之间的函数关系,并根据这些函数的性质所推断出的施肥量与产量之间的关系,其可信性是有限的。
另外,拟合每一种肥料的施用量与产量的函数时,其余两种肥料的用量都是限制在一个数值上的,其结果通常也只能得到,当相应的另两肥料的用量在所限制的数值下的情况。
虽然我们得到的结果可能有一定的局限性,但这里所用到的方法却是处理这类问题的常用方法,从建立模型的角度来说,还是值得讨论的。
如果要想得到更精确的结果,只需要有更多的产量施肥量实验数据,再用本文中给出的模型讨论即可。
用这些函数来讨论施肥效果产量与施肥量的函数关系,有两种方式,一种是对三种肥料施用量与产量分别来拟合相应的函数,这需要拟合三个函数,每个函数都是一元函数,这种做法可以使拟合的效果较好。
另一种是考虑三种肥料共同对产量的影响,这只需要拟合出一个函数,这是一个三元函数,且由于数据量偏少且不均匀等的原因,拟合效果要差一些,但这是讨论肥料施用量与产量的全局最优解所必须的。
下面分别来讨论。
1.1模型1对三种肥料的用量与土豆和生菜产量分别拟合相应的函数讨论一种肥料的用量与产量的关系时,其它两种肥料的用量都固定在第7种水平,三种肥料的用量分别是:土豆n07=0.5499,p07=k07=0.5714;生菜n17=0.57149,p17=0.5708,k17=0.5714。
先考虑土豆与每一种肥料用量的函数关系,我们利用所给数据来拟合这些函数关系。