排列 组合 二项式定理公式

合集下载

35:排列组合和二项式定理高三复习数学知识点总结(全)

35:排列组合和二项式定理高三复习数学知识点总结(全)

排列、组合与二项式定理1.两个计数原理(1)分类计数定理(加法原理):如果完成一件事,有n 类方式,在第1类方式中有1m 种不同的方法,在第2类方式中有2m 种不同的方法,......,在第n 类方式中有n m 种不同的方法,那么完成这件事共有n m m m N +++=...21种不同的方法.(2)分步计数定理(乘法原理):如果完成一件事,需要完成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,......,做第n 步有n m 种不同的方法,那么完成这件事共有n m m m N ⨯⨯⨯= 21种不同的方法.(3)两个计数原理的区别分类计数原理与分步计数原理的区别关键在于看事件能否完成,事件完成了就是分类,分类后要将种数相加;事件必须要连续若干步才能完成的则是分步,分步后要将种数相乘.2.排列(1)排列的定义:一般地,从n 个不同元素中取出)(n m m ≤个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.(2)排列数的定义:一般地,从n 个不同元素中取出)(n m m ≤个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用符号m n A 表示.(3)排列数公式:)1()2)(1()!(!+---=-=m n n n n m n n A m n .特别地:①(全排列).123)2)(1(!⋅⋅--== n n n n A n n ②.1!0=3.组合(1)组合的定义:一般地,从n 个不同元素中取出)(n m m ≤个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合.(2)组合数的定义:一般地,从n 个不同元素中取出)(n m m ≤个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用符号m n C 表示.(3)组合数公式:()()()()121!!!!m m n n m m n n n n m A n C A m m n m ---+===- .特别地:01n C =.(4)组合数的性质:①m n n m n C C -=;②11-++=m n m n m n C C C ;③11--=kn k n nC kC .4.解决排列与组合问题的常用方法通法:先特殊后一般(有限制条件问题),先组合后排列(分组问题),先分类后分步(综合问题).例:某校开设9门课程供学生选修,其中A 、B 、C 三门由于上课时问相同,至多选一门,学校规定,每位同学选修4门,共有多少种不同的选修方案?答:.75461336=+C C C (1)特殊元素、位置优先安排法:对问题中的特殊元素或位置优先考虑排列,然后排列其他一般元素或位置.例4-1:0、2、3、4、5这五个数字,组成没有重复数字的三位数,其中偶数共有几个?答:.3013131224=+C C C A (2)限制条件排除法:先求出不考虑限制条件的个数,然后减去不符合条件的个数.也适用于解决“至多”“至少”的排列组合问题.例4-2:从7名男同学和5名女同学中选出5人,若至少有2名女同学当选,问有多少种情况?答:.596)(471557512=+-C C C C(3)相邻问题“捆绑法”:将必须相邻的元素“捆绑”在一起,当作一个元素进行排列,待整个问题排好之后再考虑它们内部的排列数,它主要用于解决相邻问题.例4-3:5个男生3个女生排成一列,要求女生排一起,共有几种排法?答:6363A A =4320(4)不相邻问题“插空法”:先把无位置要求的元素进行排列,再把规定不相邻的元素插入已排列好的元素形成的“空档”中(注意两端).例4-4:5个男生3个女生排成一列,要求女生不相邻且不可排两头,共有几种排法?答:5354A A (5)元素相同“隔板法”:若把n 个不加区分的相同元素分成m 组,可通过n 个相同元素排成一排,在元素之间插入1-m 块隔板来完成分组,共11--+m m n C 种方法.例4-5:10张参观公园的门票分给5个班,每班至少1张,有几种选法?答:.49C (6)元素不多“列举法”:即把符合条件的一一列举出来.例4-6:将数字1、2、3、4填入标号为1、2、3、4的四个方格内,每个方格填一个,则每个方格的标号与所填的数字均不相同的填法种数有种。

排列组合、二项式定理与概率统计

排列组合、二项式定理与概率统计

排列组合、二项式定理与概率统计
概率统计与排列组合和二项式定理是数学中的重要知识。

它们主要用来解释和计算物理实验的概率,以及理解事件出现的概率统计规律。

排列组合是概率统计的基础,是指在一组数中,每个数字的位置不同的可能的组合数。

它的公式有:A(n,m)=n(n-1)...(n-m+1)。

这里的A表示从n个中取出m个的排列数。

二项式定理(亦称二项分布定理)是研究一个随机变量满足二项分布的定理。

它是推导概率统计解决一些问题的重要方法,它通过如下公式来计算事件发生的概率:
C(n,k)=An,m/k!,其中n表示试验次数,m表示成功的次数,k表示重复的次数。

概率统计用来研究不同事件出现的可能性和规律。

这些规律会告诉我们正发生的事件的可能性有多大,并帮助我们更好地解释现象。

概率统计的计算和分析是一个复杂的过程,需要全面的、简易的的方法。

排列组合、二项式定理等工具是进行概率统计分析的有力帮助,它们可以帮助我们了解不同事件出现的概率,并对现象加以解释和推断。

排列组合基本公式大全

排列组合基本公式大全

排列组合基本公式大全排列和组合是数学中常用的概念,用于计算在特定条件下的可能性和选择数。

掌握排列组合的基本公式是解决许多与计数有关的问题的关键。

下面将提供一些常见的排列组合基本公式,以帮助读者更好地理解和应用它们。

一、排列排列是指从一组元素中选取若干个进行有序排列。

常见的排列基本公式有:1. 全排列公式:对于n个元素的全排列,共有n!种不同的排列方式,其中n!表示n的阶乘,即n! = n × (n-1) × (n-2) × ... × 3 × 2 × 1。

例如,对于3个元素的全排列,共有3! = 3 × 2 × 1 = 6种不同的排列方式。

2. 部分排列公式:对于n个元素中选取m个进行有序排列,共有A(n, m)种排列方式,其中A(n, m)表示从n个元素中选取m个元素进行有序排列的总数,计算公式如下: A(n, m) = n! / (n-m)!例如,从5个元素中选取3个进行有序排列,共有A(5, 3) = 5! / (5-3)! = 5! / 2! = 60种不同的排列方式。

二、组合组合是指从一组元素中选取若干个进行无序组合。

常见的组合基本公式有:1. 无重复元素组合公式:对于n个不重复元素中选取m个进行无序组合,共有C(n, m)种组合方式,其中C(n, m)表示从n个元素中选取m个元素进行无序组合的总数,计算公式如下:C(n, m) = n! / (m! × (n-m)!)例如,从8个不重复元素中选取4个进行无序组合,共有C(8, 4) = 8! / (4! ×(8-4)!) = 70种不同的组合方式。

2. 有重复元素组合公式:当元素中存在重复元素时,选取m个进行无序组合的总数可以通过排列数除以重复元素的排列数得到。

计算公式如下:有重复元素组合总数 = 无重复元素组合总数 / 重复元素的排列数例如,从6个元素中选取3个进行无序组合,其中2个元素重复,共有C(6,3) / 2! = (6! / (3! × (6-3)!)) / 2! = 10种不同的组合方式。

排列组合二项式定理

排列组合二项式定理

排列:表达的是事件中元素是有顺序的或有区分的例如(1)在袋子中逐个取出。

排队有先后之分。

表达式:!()!n m n nn m n m A n A A n m --==-(表达n 个中选m 个进行排序)计算:1.解方程:3322126xx x A A A +=+ 2. 解不等式:2996x x AA -> (1)已知101095mA =⨯⨯⨯,那么m = ; (2)已知9!362880=,那么79A = ;(3)已知256n A =,那么n = ; (4)已知2247n n A A -=,那么n = .情况次数讨论:互斥分类——分类法 先后有序——位置法 反面明了——排除法相邻排列——捆绑法 分离排列——插空法 排列中“相邻”问题可以用“捆绑法”;“分离”问题可能用“插空法”例1求不同的排法种数:(1)6男2女排成一排,2女相邻; (2)6男2女排成一排,2女不能相邻; (3)4男4女排成一排,同性者相邻; (4)4男4女排成一排,同性者不能相邻.例2 某小组6个人排队照相留念.(1)若分成两排照相,前排2人,后排4人,有多少种不同的排法?(2)若分成两排照相,前排2人,后排4人,但其中甲必须在前排,乙必须在后排,有多少种排法?(3)若排成一排照相,甲、乙两人必须在一起,有多少种不同的排法? (4)若排成一排照相,其中甲必在乙的右边,有多少种不同的排法?(5)若排成一排照相,其中有3名男生3名女生,且男生不能相邻有多少种排法? (6)若排成一排照相,且甲不站排头乙不站排尾,有多少种不同的排法?例3 7位同学站成一排(1)甲、乙两同学必须相邻的排法共有多少种? (2)甲、乙和丙三个同学都相邻的排法共有多少种?(3)甲、乙两同学必须相邻,而且丙不能站在排头和排尾的排法有多少种? (4例4 (1)一个火车站有8股岔道,停放4列不同的火车,有多少种不同的停放方法(假定每股岔道只能停放1列火车)?(2)将4位司机、4位售票员分配到四辆不同班次的公共汽车上,每一辆汽车分别有一位司机和一位售票员,共有多少种不同的分配方案?组合:表达事件中元素没有顺序或相互之间没有区分 例如(1)在袋子中一次拿出3个小球(没有顺序)(2)将三个相同的黄色小球排成一列(没有区分)表达式:(1)(2)(1)!m m n nm m A n n n n m C A m ---+== 规定: 01n C =.m n nmnC C -=. m n C 1+=m n C +1-m n C 计算:(1)设,+∈N x 求321132-+--+x x x x C C (2)解方程:3213113-+=x x C C ; (3)解方程:333222101+-+-+=+x x x x x A C C . 情况次数讨论:例1 (1)平面内有10 个点,以其中每2 个点为端点的线段共有多少条?(2)平面内有 10 个点,以其中每 2 个点为端点的有向线段共有多少条?例2 在 100 件产品中,有 98 件合格品,2 件次品.从这 100 件产品中任意抽出 3 件 .(1)有多少种不同的抽法?(2)抽出的 3 件中恰好有 1 件是次品的抽法有多少种? (3)抽出的 3 件中至少有 1 件是次品的抽法有多少种?例3 (1)6本不同的书分给甲、乙、丙3同学,每人各得2本,有多少种不同的分法?(2)从5个男生和4个女生中选出4名学生参加一次会议,要求至少有2名男生和1名女生参加,有多少种选法?】例4 4名男生和6名女生组成至少有1个男生参加的三人社会实践活动小组,问组成方法共有多少种?1注意区别“恰好”与“至少”从6双不同颜色的手套中任取4只,其中恰好有一双同色的手套的不同取法共有多少种 2特殊元素(或位置)优先安排将5列车停在5条不同的轨道上,其中a 列车不停在第一轨道上,b 列车不停在第二轨道上,那么不同的停放方法有种3“相邻”用“捆绑”,“不邻”就“插空”七人排成一排,甲、乙两人必须相邻,且甲、乙都不与丙相邻,则不同的排法有多少种 4、混合问题,先“组”后“排”对某种产品的6件不同的正品和4件不同的次品,一一进行测试,至区分出所有次品为止,若所有次品恰好在第5次测试时全部发现,则这样的测试方法有种可能? 5、分清排列、组合、等分的算法区别(1)今有10件不同奖品,从中选6件分给甲一件,乙二件和丙三件,有多少种分法?(2) 今有10件不同奖品, 从中选6件分给三人,其中1人一件1人二件1人三件, 有多少种分法?(3) 今有10件不同奖品, 从中选6件分成三份,每份2件, 有多少种分法? 6、分类组合,隔板处理从6个学校中选出30名学生参加数学竞赛,每校至少有1人,这样有几种选法?二项式定理:⑴22202122222()2a b a ab b C a C ab C b +=++=++;⑵33223031222333333()33a b a a b ab b C a C a b C ab C b +=+++=+++二项式定理:01()()nn nr n r rn nn n n n a b C a C a b C a b C b n N -*+=+++++∈(1)右边的多项式叫()na b +的二项展开式, (2)它有1n +项,各项的系数(0,1,)rn C r n =叫二项式系数,(3)rn rr n C ab -叫二项展开式的通项,用1r T +表示,即通项1r n r rr nT C a b -+=. (4)二项式定理中,设1,ab x ==,则1(1)1n r rnn n x C x C x x +=+++++计算:(1)展开41(1)x+. 展开6. (2)求12()x a +的展开式中的倒数第4 求9(3x +的展开式常数项; 求9(3x +求7(12)x +的展开式的第4项的系数;求91()x x-的展开式中3x求60.998的近似值,使误差小于0.001. 解:66011666660.998(10.002)(0.002)(0.002)C C C =-=+-++-,展开式中第三项为2260.0020.00006C =,小于0.001,以后各项的绝对值更小,可忽略不计,∴66011660.998(10.002)(0.002)0.998C C =-≈+-=,一般地当a 较小时(1)1na na +≈+二项式定理的性质:(1)对称性.与首末两端“等距离”的两个二项式系数相等(∵mn mn nC C -=). 直线2nr=是图象的对称轴. (2)增减性与最大值.∵1(1)(2)(1)1!kk nn n n n n k n k C C k k----+-+==⋅,∴k n C 相对于1k n C -的增减情况由1n k k -+决定,1112n k n k k -++>⇔<,当12n k +<时,二项式系数逐渐增大.由对称性知它的后半部分是逐渐减小的,且在中间取得最大值;当n 是偶数时,中间一项2n n C 取得最大值;当n 是奇数时,中间两项12n nC -,12n nC+取得最大值.(3)各二项式系数和: ∵1(1)1nr rn n n x C x C x x +=+++++,令1x =,则0122n r nn n n n nC C C C C =++++++例1 在()na b +证明:在展开式01()()n n nr n r rn nn n n n a b C a C a b C a b C b n N -*+=+++++∈中,令1,1a b ==-,则0123(11)(1)n n nn n n n nC C C C C -=-+-++-, 即02130()()n n n n C C C C =++-++,∴0213n n n n C C C C ++=++,例2.已知7270127(12)x a a x a x a x -=++++,求:(1)127a a a +++; (2)1357a a a a +++; (3)017||||||a a a +++.解:(1)当1x=时,77(12)(12)1x -=-=-,展开式右边为0127a a a a ++++∴0127a a a a ++++1=-,当0x =时,01a =,∴127112a a a +++=--=-,(2)令1x =, 0127a a a a ++++1=- ①令1x=-,7012345673a a a a a a a a -+-+-+-= ②①-② 得:713572()13a a a a +++=--,∴ 1357a a a a +++=7132+-.(3)由展开式知:1357,,,a a a a 均为负,0248,,,a a a a 均为正, ∴由(2)中①+② 得:702462()13a a a a +++=-+,∴ 70246132a a a a -++++=,∴017||||||a a a +++=01234567a a a a a a a a -+-+-+-702461357()()3a a a a a a a a =+++-+++= 例3 设()()()()231111nx x x x ++++++++=2012n n a a x a x a x ++++,当012254n a a a a ++++=时,求n例4 (江西卷)已知n展开式中,各项系数的和与其各项二项式系数的和之比为64,则n 等于( ) A.4B.5C.6D.7(安徽卷)若(2x 3+x1)a的展开式中含有常数项,则最小的正整数n 等于 .例5 在10)32(y x -的展开式中,求:①二项式系数的和; ②各项系数的和;③奇数项的二项式系数和与偶数项的二项式系数和; ④奇数项系数和与偶数项系数和; ⑤x 的奇次项系数和与x 的偶次项系数和.分析:因为二项式系数特指组合数rn C ,故在①,③中只需求组合数的和,而与二项式y x 32-中的系数无关.解:设10102829110010)32(y a y x a y x a x a y x ++++=- (*),各项系数和即为1010a a a +++ ,奇数项系数和为0210a a a +++,偶数项系数和为9531a a a a ++++ ,x 的奇次项系数和为9531a a a a ++++ ,x 的偶次项系数和10420a a a a ++++ .由于(*)是恒等式,故可用“赋值法”求出相关的系数和. ①二项式系数和为1010101100102=+++C C C .②令1==y x ,各项系数和为1)1()32(1010=-=-.③奇数项的二项式系数和为910102100102=+++C C C ,偶数项的二项式系数和为99103101102=+++C C C .④设10102829110010)32(y a y x a y x a x a y x ++++=- ,令1==y x ,得到110210=++++a a a a …(1),令1=x ,1-=y (或1-=x ,1=y )得101032105=++-+-a a a a a (2)(1)+(2)得10102051)(2+=+++a a a ,∴奇数项的系数和为25110+;(1)-(2)得1093151)(2-=+++a a a ,∴偶数项的系数和为25110-.⑤x 的奇次项系数和为251109531-=++++a a a a ;x 的偶次项系数和为2511010420+=++++a a a a .。

二项式定理百科

二项式定理百科

二项式定理百科二项式定理(Binomial theorem)是数学中的一个重要定理,它描述了如何展开一个二项式的幂。

这个定理在代数、组合数学、概率论等领域都有广泛应用。

本文将详细介绍二项式定理及其应用。

一、二项式定理的定义二项式定理是指对于任意实数a和b以及非负整数n,都有以下等式成立:$$(a+b)^n=\sum_{k=0}^{n}\binom{n}{k}a^{n-k}b^k$$其中,$\binom{n}{k}$表示组合数,计算公式为$$\binom{n}{k}=\frac{n!}{k!(n-k)!}$$式中的$\binom{n}{k}$可以读作n选择k,它表示从n个元素中选择k个元素的组合数。

二项式系数$\binom{n}{k}$决定了二项式展开后各项的系数。

二、二项式定理的展开式通过二项式定理,可以将一个二项式的幂展开成多个项的和。

例如,对于$(a+b)^3$,应用二项式定理,展开式为:$$(a+b)^3=\binom{3}{0}a^3b^0+\binom{3}{1}a^2b^1+\binom{3}{2}a ^1b^2+\binom{3}{3}a^0b^3$$化简得:$$a^3+3a^2b+3ab^2+b^3$$可以看出,展开后的每一项的指数和为3,且系数由组合数$\binom{3}{k}$确定。

三、二项式定理的应用1. 代数应用二项式定理常用于代数运算中,特别是求解多项式的展开式和系数。

通过二项式定理,可以快速计算高次幂的二项式展开式,简化复杂计算过程。

同时,二项式定理也可用于证明其他代数恒等式。

2. 组合数学组合数学研究的是离散结构和计数问题。

二项式定理的组合数$\binom{n}{k}$用于计算从n个元素中选择k个元素的方法数。

这对于排列组合、概率计算等问题都具有重要意义。

3. 概率论在概率论中,二项分布是一种重要的离散概率分布,它描述了一系列独立重复实验中成功次数的概率分布。

二项式定理可以用于计算二项分布的概率,判断在一定概率下,事件发生k次的概率。

排列组合

排列组合

16. 某班选出的7名班委进行分工, 每人只担任一个职务,且每个职务 都不相同,其中 A 不当班长, B 不当文娱委员,这样的分配方案有 多少种?
17. 7名学生中每次选出5人排成一列, 其中A不能排在第一位,B不能排在 末位,共有多少种不同的排列方法?
18. f是集合 A={a,b,c,d},B={0,1,2} 的映射,如果B中的元素在A中都有 原象,求这样的映射的个数。若不 要求都有原象呢?
19. 6本不同的书分给甲、乙、丙三 人。 (1)甲得2本,乙得2本,丙得2 本有几种不同的分配方法; (2)甲得3本,乙得2本,丙得1 本有几种不同的分配方法; (3)一人得3本,一人得2本,一 人得1本有几种不同的分配方法。
20. 在连结凸五边形的三个顶点构成 的三角形中,求与原凸五边形没有 公共边的三边形的个数。凸六边形 呢?凸n边形呢?
• 13.把四本不同的书分给九个人中的四 人,每人一本,不同的分法有 种。
4 4 C9 P4
• 练习: 1.把三本不同的书分给十人中的三人, 3 3 种。 每人一本,不同的分法有 C10 P 3 2.把五本不同的书分给五名同学,每人 5 P 一本,共有 5 种分法。
• 15.投掷三枚相同的硬币,可能出现 4 种 结果; • 投掷三枚不同的硬币,可能出现 8 种结 果。
6. 有8本互不相同的书,其中数 学书3本,外文书2本,其他书3本.若将 这些书排成一列放在书架上,则数学 书恰好排在一起,外文书也恰好排在 一起的排法共有_____ 种 (结果用数 值表示).
7. 由数字 0 , 1 , 2 , 3 ,4 , 5 组成 没有重复数字的六位数,其中个位数 字小于十位数字的共有多少个?
8. 用0、1、2、3、4、5、6这七个 数字,可以组成多少个没有重复 数字的六位奇数?

排列、组合、二项式定理精讲

排列、组合、二项式定理精讲

排列、组合、二项式定理1.排列、组合、二项式知识相互关系表2.两个基本原理(1)分类计数原理中的分类; (2)分步计数原理中的分步;正确地分类与分步是学好这一章的关键。

3.排列(1)排列定义,排列数 (2)排列数公式:系mn A =)!(!m n n -=n·(n -1)…(n -m+1);(3)全排列列:nn A =n!;(4)记住下列几个阶乘数:1!=1,2!=2,3!=6,4!=24,5!=120,6!=720; 4.组合(1)组合的定义,排列与组合的区别; (2)组合数公式:C n m =)!(!!m n m n -=12)1(1)m -(n 1)-n (⨯⨯⨯-⨯+ m m n ;(3)组合数的性质 ①C n m =C n n-m ;②r n r n r nC C C 11+-=+;③rC n r =n·C n-1r-1;④C n 0+C n 1+…+C n n =2n ;⑤C n 0-C n 1+…+(-1)n C n n=0,即 C n 0+C n 2+C n 4+…=C n 1+C n 3+…=2n-1;5.二项式定理(1)二项式展开公式:(a+b)n=C n 0a n+C n 1a n-1b+…+C n k a n-k b k+…+C n n b n; (2)通项公式:二项式展开式中第k+1项的通项公式是:T k+1=C n k a n-k b k; 6.二项式的应用(1)求某些多项式系数的和; (2)证明一些简单的组合恒等式;(3)证明整除性。

①求数的末位;②数的整除性及求系数;③简单多项式的整除问题;四.典例解析题型1:计数原理例1.完成下列选择题与填空题(1)有三个不同的信箱,今有四封不同的信欲投其中,则不同的投法有种。

A.81 B.64 C.24 D.4(2)四名学生争夺三项冠军,获得冠军的可能的种数是()A.81 B.64 C.24 D.4(3)有四位学生参加三项不同的竞赛,①每位学生必须参加一项竞赛,则有不同的参赛方法有;②每项竞赛只许有一位学生参加,则有不同的参赛方法有;③每位学生最多参加一项竞赛,每项竞赛只许有一位学生参加,则不同的参赛方法有。

第讲排列组合和二项式定理概率(2022高考数学---新东方内部

第讲排列组合和二项式定理概率(2022高考数学---新东方内部

第讲排列组合和二项式定理概率(2022高考数学---新东方内部第十一章排列、组合和二项式定理1.排列数公式mAnn(n1)(n2)(nm1)n!n(mn);Ann!n(n1)(n2)21。

(nm)!如①1!+2!+3!+…+n!(n4,nN某)的个位数字为;(答:3)②满足A8某6A8某2的某=(答:8)组合数公式mAnn(n1)(nm1)n!0Cm(mn);规定0!1,Cn1.Amm(m1)21m!nm!mnmnm如已知CnCm1An6,求n,m的值.(答:m=n=2)(了解)排列数、组合数的性质①CnmCnnm;1②CnmCnm1Cnm1;kk1③kCn;nCn11④CrrCrr1Crr2CnrCnr;1⑤nn!(n1)!n!;n11⑥.(n1)!n!(n1)!2.解排列组合问题的依据是:分类相加(每类方法都能独立地完成这件事,它是相互独立的,一次的且每次得出的是最后的结果,只需一种方法就能完成这件事),分步相乘(一步得出的结果都不是最后的结果,任何一步都不能独立地完成这件事,只有各个步骤都完成了,才能完成这件事,各步是关联的),有序排列,无序组合.如①将5封信投入3个邮筒,不同的投法共有种;(答:35)②从4台甲型和5台乙型电视机中任意取出3台,其中至少要甲型与乙型电视机各一台,则不同的取法共有种;(答:70)③从集合1,2,3和1,4,5,6中各取一个元素作为点的坐标,则在直角坐标系中能确定不同点的个数是_;(答:23)④72的正约数(包括1和72)共有个;(答:12)⑤A的一边AB上有4个点,另一边AC上有5个点,连同A的A顶点共10个点,以这些点为顶点,可以构成_____个三角形;(答:CB90)⑥用六种不同颜色把右图中A、B、C、D四块区域分开,允许同一颜色涂不同区域,但相邻区域不能是同一种颜色,则共有D种不同涂法;(答:480)⑦同室4人各写1张贺年卡,然后每人从中拿1张别人送出的贺年卡,则4张贺年卡不同的分配方式有种;(答:9)⑧f是集合Ma,b,c到集合N1,0,1的映射,且f(a)f(b)f(c),则不同的映射共有个;(答:7)3.解排列组合问题的方法有:(1)特殊元素、特殊位置优先法元素优先法:先考虑有限制条件的元素的要求,再考虑其他元素;位置优先法:先考虑有限制条件的位置的要求,再考虑其他位置)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分 类 计 数 原 理 分 步 计 数 原理
做一件事,完成它有n 类不同的办法。

第一类办法中有m1种方法,第二类办法中有m2种方法……,第n 类办法中有mn 种方法,则完成这件事共有:N=m1+m2+…+mn 种方法。

做一件事,完成它需要分成n 个步骤。

第一步中有m1种方法,第二步中有m2种方法……,第n 步中有mn 种方法,则完成这件事共有:N=m1 m2 … mn 种方法。

注意:处理实际问题时,要善于区分是用分类计数原理还是分步计数原理,这两个原理的标志是“分类”还是“分步骤”。

排列 组合 从n 个不同的元素中取m(m≤n)个元素,按照一定的顺序排成一排,叫做从n 个不同的元素中
取m 个元素的排列。

从n 个不同的元素中,任取m(m≤n)个元素并成一组,叫做从n 个不同的元素中取m 个元素的组合。

排列数 组合数
从n 个不同的元素中取m(m≤n)个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,记为Pnm
从n 个不同的元素中取m(m≤n)个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,记为Cnm
选排列数 全排列数
二项式定理
二项展开式的性质 (1)项数:n+1项
(2)指数:各项中的a 的指数由n 起依次减少1,直至0为止;b 的指出从0
起依次增加1,直至n 为止。

而每项中a 与b 的指数之和均等于n 。

(3)二项式系数:
各奇数项的二项式数之和等于各偶数项的二项式的系数之和。

相关文档
最新文档