组合与组合数公式
高中数学 组合与组合数公式

(2)列出所有冠亚军的可能情况。
(1) 中国—美国 美国—古巴 中 美 中 古 中 俄 美 中 中国—古巴 美国—俄罗斯 美 古 美 俄 古 中 古 美 古 俄 中国—俄罗斯 古巴—俄罗斯 俄 中 俄 美 俄 古
(2) 冠 军 亚 军
组合数: 从n个不同元素中取出m(m≤n)个元素的所有组 合的个数,叫做从n个不同元素中取出m个元素的 m 组合数,用符号 C 表示
判断下列问题是组合问题还是排列问题?
(1)设集合A={a,b,c,d,e},则集合A的含有3个元素的 子集有多少个? 组合问题 (2)某铁路线上有5个车站,则这条铁路线上共需准备 多少种车票? 排列问题 有多少种不同的火车票价? 组合问题
(3)10名同学分成人数相同的数学和英语两个学习小组, 共有多少种分法? 组合问题 (4)10人聚会,见面后每两人之间要握手相互问候, 组合问题 共需握手多少次? (5)从4个风景点中选出2个安排游览,有多少种不同的方法? 组合问题 (6)从4个风景点中选出2个,并确定这2个风景点的游览 顺序,有多少种不同的方法? 排列问题
abc abd acd bcd
求A 可分两步考虑: 3 4 求 可分两步考虑:
P4
第一步, C 4 ( 4)个;
第二步, A3 ( 6)个;
根据分步计数原理, A4
3
3
3
3
CA
3 4
3 3
.
P A 从而C 4 C3 3 P3
3
3
A
3 4 4
3 4
3
从 n 个不同元中取出m个元素的排列数
如:从 a , b , c三个不同的元素中取出两个元素的 所有组合分别是: ab , ac , bc (3个) 如:已知4个元素a , b , c , d ,写出每次取出两个 元素的所有组合.
组合与组合数公式

步骤2
假设n=k时公式成立,推导n=k+1时的公式。
步骤3
由数学归纳法,得出结论对于所有正整数n, 组合数公式成立。
利用二项式定理的证明
步骤1
将组合数公式重写为与二项式定理形式相似的形式。
步骤2
利用二项式定理展开式中的系数与组合数公式中的系 数进行比较。
02
加密算法
组合数公式可以用于设计加密算法,通过计算不同字符或符号的组合数
量,增强信息的安全性。
03
信息传输
在无线通信和网络传输中,利用组合数公式可以优化信息的传输效率和
可靠性。通过对信号的不同组合方式进行编码和解码,可以提高通信系
统的性能。
感谢您的观看
THANKS
组合数表示从n个不同元素中取出m个 元素的组合的个数,记作C(n, m)或C(n, m),其中C(n, m) = n! / (m!(n-m)!)。
组合的特性
无序性
组合只考虑元素的排列顺序,不考虑元素的具体 位置。
可重复性
在组合中,可以重复选取同一个元素。
独立性
组合数不受元素数量的影响,只与选取的元素个 数有关。
01
概率分析
利用组合数公式,可以对彩票的概率进 行分析,帮助彩民更好地理解彩票的随 机性和公平性。
02
03
优化投注
通过计算不同组合下的中奖概率,彩 民可以优化自己的投注策略,提高中 奖的可能性。
在遗传学中的应用
基因组合
在遗传学中,基因的组合方式可以用组合数公式来表示。通过计算 基因组合的数量,可以了解生物体的遗传多样性。
组合数的上标和下标规则
上标和下标规则
组合与组合数公式 课件

(4)是组合问题,因为三个代表之间没有顺序的区别,组合数为
C130 120.
(5)是排列问题,因为三个人中,担任哪一科的课代表是有顺序 区别的,排列数为 A130 720.
【想一想】区分排列和组合的关键是什么?区分有无顺序的方 法是什么? 提示:(1)判断一个问题是排列问题还是组合问题的关键是正 确区分事件有无顺序. (2)区分有无顺序的方法是:把问题的一个选择结果解出来, 然后交换这个结果中任意两个元素的位置,看是否产生新的变 化.若有新变化,即说明有顺序;若无新变化,即说明无顺序.
C
m n
乘 积
Cmn
A
m n
A
m m
式 n n 1n 2n m 1
m!
阶 乘
Cmn
n!
m!n
m!
式
性质 备注
Cmn
Cnnm,Cmn1
Cmn
Cm1 n
①n,m N * 且m n ②规定:C0n 1
1.在 Cmn 中有m,n∈N*,且m≤n,为什么有 C0n 1? 提示:C0n 是1 为了运算需要规定的,没有实际意义. 2.什么是两个相同的组合?
(A) C42 013
(B) C52 013
(C) C42 013 1 (D) C52 013 1
2.计算:C37 C74 C85 C96 =________.
3.求证:Cnm2
有关组合数的计算和证明
关于组合数计算公式的选取
关于组合数计算公式的选取
(1)涉及具体数字的可以直接用公式
Cmn
A
m n
A
m m
n n 1n 2
m!
(2)涉及字母的可以用阶乘式
n Cmn
m
如何计算出所有组合

如何计算出所有组合计算所有可能的组合是一种数学问题,可以使用不同的方法来解决。
下面将介绍几种常用的计算组合的方法以及其应用场景。
1.排列组合法排列组合法是一种基本方法,用于计算给定集合中的所有可能的组合。
对于给定的n个元素,可以使用排列组合法计算它们的组合数。
(a)计算组合数:组合数是n个元素中选取r个元素的排列数,可以根据以下公式计算:C(n,r)=n!/((n-r)!*r!)其中n!表示n的阶乘,即n!=n*(n-1)。
例如,C(4,2)=4!/(2!*2!)=6 (b)列举所有组合:可以使用递归方法列举给定集合中的所有组合。
具体步骤如下:-选择第一个元素,并将其与剩下的n-1个元素的所有组合进行组合。
-重复上述步骤,直到选择了r个元素,则每次得到一个组合。
2.二进制法二进制法是一种简单且高效的方法,适用于计算二进制组合。
对于给定的n个元素,可以使用二进制法列举它们的所有组合。
具体步骤如下:-将n个元素用二进制表示成长度为n的二进制串,例如n=4,则有0000~1111-对于每个二进制串,将其对应位置上为1的元素加入组合中。
例如,对于n=4个元素,可以使用二进制法得到以下组合:0000000100100011...111011113.递归法递归法是一种常用的方法,适用于计算元素个数较少的组合。
对于给定的n个元素,可以使用递归法列举它们的所有组合。
具体步骤如下:-选择第一个元素,并将其与剩下的n-1个元素的所有组合进行组合。
-重复上述步骤,直到选择了r个元素,则每次得到一个组合。
例如,对于n=4个元素,可以使用递归法得到以下组合:(1,2)(1,3)(1,4)(2,3)(2,4)(3,4)4.位图法位图法是一种高效的方法,适用于计算元素个数较多的组合。
对于给定的n个元素,可以使用位图法列举它们的所有组合。
具体步骤如下:-创建一个长度为n的二进制位图,所有位都设为0。
-遍历所有的组合:-将一些设为1,表示该元素在组合中。
数学课件:1.2.2.1 组合及组合数公式

(2)当取出3个数字后,如果改变三个数字的顺序,会得到不同的三 位数,此问题不但与取出元素有关,而且与元素的安排顺序有关,是 排列问题.
反思 区别排列与组合的关键是看取出元素之后,在安排这些元 素时,是否与顺序有关,“有序”则为排列,“无序”则为组合.
m!
计算;公式Cnm
=
m
n! !(n-m
)!(m∈N,n∈N+,且
m≤n),一般用于化简证
明.
12
【做一做 2-1】 计算:C52 + C54=
.
解析:C52
+
C54
=
5×4 2×1
+
54××43××32××21=10+5=15.
答案:15
【做一做 2-2】 若 6C������������--37=10A2������-4,则 x 的值为
第一课时 组合及组 合数公式
1.理解组合的概念及组合数公式. 2.会利用组合数公式解决一些简单的组合问题.
12
1.组合的有关概念 (1)一般地,从n个不同元素中,任意取出m(m≤n)个元素并成一组, 叫做从n个不同元素中任取m个元素的一个组合.从排列和组合的 定义可知,排列与取出元素的顺序有关,而组合与取出元素的顺序 无关. (2)从n个不同元素中,任意取出m(m≤n)个元素的所有组合的个数, 叫做从n个不同元素中,任意取出m个元素的组合数,用符号 C������������表示.
∵m∈{m|0≤m≤5,m∈N},∴m=2.
1234 5
1.给出下面几个问题:
①由1,2,3,4构成的含两个元素的集合; ②五个队进行单循环比赛的分组情况; ③由1,2,3组成的不同两位数; ④由1,2,3组成无重复数字的两位数.
《组合与组合数公式》课件

3
详细解答
我们将逐步解答例题并给出详细的推导过程和计算方法。
组合公式的拓展
排列组合
排列组合是组合数学的一个重要 拓展,它涉及考虑元素的顺序的 排列方式。
分而治之
组合数学可以与分治算法结合, 解决具有组合性质的问题。
组合优化
组合数学在网络优化和组合优化 问题中发挥着重要作用。
总结与收尾
பைடு நூலகம்
1 重要性
组合与组合数公式对现实 世界和数学领域具有重要 意义。
《组合与组合数公式》 PPT课件
在这个PPT课件中,我们将深入探讨组合与组合数公式的概念、应用和推导过 程。让我们一起探索这个有趣而有用的数学领域!
什么是组合
组合的基本概念
组合是从一组元素中选择特定数 量的元素,不考虑顺序的排列。
组合的应用
组合数学在化学、信息论、概率 统计等领域有着广泛的应用。
组合的例题讲解
让我们通过一些有趣的情境和实 际问题来深入了解组合的运用。
组合公式的推导
阶乘公式
阶乘是组合数公式推导的基础,它表示从1到n的所有正整数的乘积。
组合数公式的推导
通过数学归纳法和排列组合的原理,我们可以推导出组合数公式。
二项式定理
二项式定理描述了如何将一个二项式(两个项的和或差的表达式)扩展为幂次多项式。
组合公式的应用
概率与统计
组合数公式在概率和统计中用于计算事件的可能性和样本空间的大小。
计算组合数
我们可以使用组合数公式快速计算出给定条件下的组合数量。
密码学
组合数学在密码学中被用于设计和分析密码系统的安全性。
组合公式的例题讲解
1
问题提出
我们将通过一个实际问题引入本节的例题讲解。
1.3.1组合与组合数公式课件

[思路探索] 属于组合与排列的区分问题,看问题有无次序要求. 解 (1)集合中的元素具有无序性,顺序无关是组合问题. (2)两人握手与顺序无关是组合问题.
(3)学习小组的人与顺序无关是组合问题.
(4)将名额分给5个班,只与每班分得名额个数有关,属组合问题.
规律方法
区分排列还是组合问题的关键是看取出元素后是按顺
又∵0≤m-1≤8,且0≤m≤8,m∈N, 即7≤m≤8,∴m=7或8. (3)证明 n-1! n n m C-= · n-m n 1 n-m m!n-1-m!
n! = =C m n. m!n-m! 规律方法 求解与组合数有关的方程,不等式及证明问题时,要
应用组合数的公式,并注意其成立的条件.
序排列还是无序地组在一起,区分有无顺序的方法是把问题的一 个选择结果解出来,然后交换这个结果的任意两个元素的位置,
看是否会产生新的变化,若有新变化,即说明有顺序,是排列问
题;若无新变化,即说明无顺序,是组合问题.
【变式1】 有8盆不同的花, (1)从中选出2盆分别送给甲、乙两人每人一盆; (2)从中选出2盆放在教室里. 以上问题中,哪一个是组合问题?哪一个是排列问题? 解 (1)从8盆花中,选出2盆送给甲、乙两人每人一盆的送法 与顺序有关,故属排列问题. (2)从8盆花中,选出2盆放在教室的放法与顺序无关,故属组 合问题.
ห้องสมุดไป่ตู้
3.组合数公式
m nn-1n-2…n-m+1 n! A n m Cn =Am= = m! m!n-m! m
规定:C0 n=1. 试一试 找出从n个不同元素中取出m个元素的所有组合的个数 与从n个不同元素中取出m个元素的所有排列的个数的关系式.
m A n m m m 提示 Cm · A = A ,即: C = . m n m n n Am
组合与组合数公式课件

超几何分布的概率值可以通过组合数公式进行计 算,特别是当总体大小远大于样本大小时。
二项式系数与组合数的关系
二项式系数
二项式系数表示在n次独立实验中成功k次的概率,通常表 示为C(n, k) = binomial(n, k) / k!
组合数公式
组合数公式是计算从n个不同元素中选取k个元素的不同方 式的数量。
关系
二项式系数是组合数的一种特例,当n次实验中每次成功 的概率为p时,二项式系数可以表示为C(n, k) = p^k * (1p)^(n-k)。
组合数与卡特兰数的关系
卡特兰数
卡特兰数是组合数学中的一类特殊数,通常用于计数排列、组合等 问题的解中选取k个元素的不同方式的数量 。
组合数的定义
总结词
组合数表示从n个不同元素中取出 m个元素的组合方式数量,记作 C(n, m)或C_n^m。
详细描述
组合数的定义基于组合的定义, 通过数学公式表示为C(n, m) = n! / (m!(n-m)!),其中"!"表示阶乘 。
组合数的性质
总结词
组合数具有一些重要的性质,包括组合数的递推关系、对称性、非负性等。
组合数的计算公式具有对称性 ,即C(n,m)=C(n,n-m),同 时还有C(n,0)=C(n,n)=1的 特殊性质。
组合数的性质在计算中的应用
利用组合数的性质可以简化组合数的计算,例如利用对称性可以避免一些不必要的 计算。
利用组合数的性质可以推导出一些重要的组合恒等式,例如二项式定理、帕斯卡三 角等。
当m=n时,排列就是组合;当取出元素不同时,排列和组合是不同的。
组合数的计算公式
组合数的计算公式为C(n, m)=n!/(m!(n-m)!),其中n是 总的元素个数,m是需要取出 的元素个数,C(n,m)表示从n 个元素中取出m个元素的组合 数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例5、6本不同的书,按下列要求各有多少种不同的分 法:
(1)分给甲、乙、丙三人,每人2本; (2)分为三份,每份2本; (3)分为三份,一份1本,一份2本,一份3本: (4)分给甲、乙、丙三人,一人1本,一人2 本,一人 3本。
a a a 推广:从
1,
2,
n1这n+1个不同的元素中,
取出m个元素的组合数
c,m 这些组合可以分成两类: n1
a a a a a a 一类含 ,一1类不含 。含1 的组1 合是从
2, 3,
n1
这n个不同元素中取出m-1个元素的组合数为 m1;不
a a a a c 含 1的组合是从
2,
C
x3 x2
1 10
Ax33
⑸ 计算:C50 C51 C52 C53 C54 C55
推广:
C
0 n
C
1 n
C
2 n
C n1 n
C
n n
2n
例3、12件产品中有3件次品,9件正品,从中抽取5 件,
(1) 5件产品中没有次品的取法有多少种? (2) 5件产品中有2件次品的取法有多少种?
例6、某省的福利彩票中,不考虑次序的7个数码组 成一注,7个数码中没有重复,每一个数码都选自 数码1,2,…,36,如果电视直播公开摇奖时只有 一个大奖,计算:
(1)公开摇奖时最多可以摇出多少不同的注;
(2)购买一注时的中奖率。
作业
P26
3,4,5,8
例3 平面内有12个点,任何3点不在 同一直线上,以每3点为顶点画一个三 角形,一共可画多少个三角形?
C ) m1 n
C C m1
m
C C mn1
mn
n1
n1
m
Cmn1 Cn2
..
练习:
C ⑴
⑵
计算: 求证:
C73 C74
Cn m2
=
Cn85
m
C96
+
2C
n1 m
+
C n2 m
⑶
解方程:
C x1 13
C 2x3 13
⑷
解方程:
C
x2 x2
证明:
C
m n
m(! nn!m)!,
Cnm n
(n
ห้องสมุดไป่ตู้n! m)![n (n
m)]!
n! m!(n m)!
Cmn
Cnm n
.
其逆命题为:如果Cnm Cnk ,则m k或m n k
3、性质1的应用
c n
m
(的1)计当算m简> 2化时,利用这个公式,可使 n
c c c 7 97 2 9 8 36
3,
n
n1 这n个不同的元素中取
c 出m个元素的组合数为 m ,再由加法原理,得 n
c c c 性质2 m m m1
n1
n
n
定理2 :
Cm n1
Cmn
Cmn 1.
证明:
Cmn
Cm1 n
n!
n!
m!(n m)! (m 1)![n (m 1)]!
n!(n m 1) n!m (n m 1 m)n!
C 43
C 43 4
推广:
从 n个不同元素中取出 m个元素的每一个 组合,与剩下的n-m个元素的每一个组合一一 对应,所以从 n个不同元素中取出 m个元素的 组合数,等于从这n 个元素中取出n-m 个元素 的组合数,即
c c m n
nm n
组合数的两个性质
定理1:
Cmn
Cnm n
.
m!(n m 1)!
m!(n 1 m)!
(n 1)! m![(n 1) m]!
C
m n1
.
c c c m m m1
n1
n
n
注:1 公式特征:下标相同而上标差1的两个组合数之 和,等于下标比原下标多1而上标与原组合数上标较
大的相同的一个组合数.
2 此性质的作用:恒等变形,简化运算.在今后学 习“二项式定理”时,我们会看到它的主要应用.
复习
一、组合的定义 二、组合数公式
Cnm
Pnm Pmm
n(n 1)(n 2)(n m 1) m!
Cm n
n! m!(n
m) !
abc abd acd bcd C34 4
d
c
b
a C14 4
从4个不同元素中每次取出3个的一个组合, 和剩下的(4-3)个元素的组合是一一对应的。
解:(1) C83 56 ⑵
⑶ C73 35
C72 21
我们发现:
C83
C
2 7
C
3 7
为什么呢
我们可以这样解释:从口袋内的 8个球中所取出的3个球,可以分为 两类:一类含有1个黑球,一类不含 有黑球.因此根据分类计数原理, 上述等式成立.
从a1, a2 , a3,, an1这n 1个不同元素中, 每次取出m个元素。 (1)可以有多少个不同的组合? (2)在这些组合里有多少个是含有a1的? (3)在这些组合里有多少个是不含有a1的? (4)从上面的结果可以得到一个怎样的公式?
9
9
9 12
c c 98 2 100 99 4950
100
100
1 2
c c (2)当m=n时, 有 n 0 1 所以规定 nn
c0 1 n
性质2
1、一个口袋内装有大小相同的7个白球和1个黑 球.
⑴ 从口袋内取出3个球,共有多少种取法? ⑵ 从口袋内取出3个球,使其中含有1个黑球, 有多少种取法? ⑶ 从口袋内取出3个球,使其中不含黑球,有 多少种取法?
例1 计算:
( 1) (2)
C ; 198 200
(C
2 2
00
200199 21
19900)
C3 99
C2 99
;
C1300 100 99 98 161700
3 21
( 3 ) 2C83 C39 C82 .
2C83 (C83 C82) C82 C83 56
计算:
(1)C22
C32
C42
C
2 10
(2)C19080
例2 求证:
( 1)
C C C C ; m
m1
m
m1
n1
n
n1
n1
( 2)
Cm1 n
Cm1 n
2Cmn
Cm1 n2
.
证明:
( 2) (1)
C
m1 n
C
m1 n
2C
m n
C(Cmn mn11 CCmnmn1)C(mnC11mn
C3 12
1 2 1 1 1 0
220
3 21
答:一共可画220个三角形.