人教版五年级数学下册 3-1长方体和正方体认识和表面积 同步拓展讲与练 奥数培优(无答案)

合集下载

人教版五年级数学下册3-1长方体和正方体认识和表面积同步拓展讲与练+奥数培优(无答案)

人教版五年级数学下册3-1长方体和正方体认识和表面积同步拓展讲与练+奥数培优(无答案)

长方体和正方体的认识和表面积知识引入:一、长方体和正方体的认识:例题1:填空。

(1)长方体有( )个面、( )条棱和( )个顶点。

它的每个面都是( )形,也可能有两个相对的面是( )形,它的( )的面完全相同; ( )的棱长度相等。

(2)相交于一个顶点的三条棱的长度分别叫做长方体的 ( )、( )、( )。

(3)如果一个长方体的长、宽、高分别是a、b、h,那么这个长方体的棱长总和是( )。

(4)正方体是由6个( )的正方形围成的立体图形。

(5)正方体和长方体一样也有( )个面,( )个顶点,( )条棱。

(6)一个棱长是3 m的正方体,它的棱长总和是( ) m。

(7)一个正方体的棱长之和是84 cm,它的一条棱长是( ) cm。

(8)在右图中,与a平行的棱有( )条,与a相交且垂直的棱有( )条。

例题2:选择。

(1)要做一个底面周长为18厘米,高为3厘米的长方体框架,至少要铁丝( )厘米。

A.54 B.84 C.48 D.96(2)(难题)用一根52 cm长的铁丝,正好可以做成一个长为6 cm、宽为4 cm、高为( ) cm 的长方体框架。

A.2 B.3 C.4 D.5(3)( )描述的立体图形是正方体。

(单位:厘米)A.三条棱的长是3、3、2 B.三条棱的长是3、2、2C.三条棱的长是3、3、3 D.长、宽、高都是2(4)(易错题)至少用( )个小正方体可以搭成一个较大的正方体。

A.4 B.8 C.12 D.3 (5)一根长288厘米的铁丝刚好围成一个正方体,则这个正方体的棱长是( )厘米。

A.19 B.24 C.38 D.3知识精讲1:长方体和正方体的认识(1)长方体的特征:有个面(个面都是长方形或者个面是正方形,个面是长方形),相对的面完全;有条棱,相对的棱长度;有个顶点。

(2)正方体的特征:正方体的个面是完全相同的正方形;条棱长度都相等;有个顶点。

(3)长方体长、宽、高的意义:相交于同一顶点的三条棱的长度分别叫做长方体的长、宽、高。

五年级数学下册第3单元《长方体和正方体》长方体和正方体的认识(长方体)一课一练新人教版

五年级数学下册第3单元《长方体和正方体》长方体和正方体的认识(长方体)一课一练新人教版

《长方体的表面积》同步练习一、单选题1.如果一个长方体有4个面的形状大小都相等,那么其余两个面一定是()A. 正方形B. 长方形 C. 长方形或正方形2.长方体共有()个面.A. 4B. 5C. 63.把一个长方体截成两个小长方体,棱的条数比原来增加了()条.A. 4B. 8C. 124.下列物体中,形状不是长方体的是()A. 火柴盒 B. 红砖 C. 茶杯5.下面几种说法中,错误的是()A. 长方体和正方体都有6个面,12条棱,8个顶点B. 长方体的12条棱中,长、宽、高各有4条C. 正方体不仅相对面的面积相等,而且所有相邻面的面积也都相等D. 长方体除了相对面的面积相等,不可能有两个相邻面的面积相等6.一个长方体中,如果有四个面的面积相等,其余两个面()A. 都是长方形B. 都是正方形C. 一个是长方形,一个是正方形D. 不能确定7.一个长方体(不含正方体)最多有()条棱长度相等.A. 12B. 8C. 4D. 2[8.6个面都是长方形的长方体的12条棱按长度可以分成()组.A. 2B. 3C. 4D. 69.用一根长()铁丝正好可以做一个长6厘米、宽5厘米、高3厘米的长方体框架。

A. 28厘米B. 126平方厘米 C. 56厘米10.我们在画长方体时一般只画出三个面,这是因为长方体()。

A. 只有三个面B. 只能看到三个面 C. 最多只能看到三个面11.一个长方体水池,长20米,宽10米,深2米,这个水池占地()平方米。

A. 200B. 400C. 52012.用一根52厘米长的铅丝,正好可以焊成长6厘米,宽4厘米,高()厘米的长方体教具。

A. 1B. 2C. 313.如图,一个长方体,它的长、宽、高分别是25厘米,3厘米,9厘米,相交于一个顶点的三条棱长和是()厘米。

A. 12B. 37C. 7414.一个长方体(不包括正方体),最多有()个面的正方形。

A. 1B. 2C. 015.一种汽车上的油箱可装汽油60()A. 升B. 毫升 C.方16.下图中能表示长方体和正方体关系的是()。

最新人教版小学数学五年级下册《长方体和正方体的体积》同步拓展讲与练+奥数培优(无答案)

最新人教版小学数学五年级下册《长方体和正方体的体积》同步拓展讲与练+奥数培优(无答案)

长方体和正方体的体积知识引入:一、体积和体积单位例题1:填空。

(1)我们常用的体积单位有( )、 ( )、( ),用字母表示是( )、( )、( )。

(2)棱长是1 cm、1 dm和1 m的正方体的体积分别是1( )、1( )和1( )。

例题2:连线。

学校升旗台的体积 24立方厘米书包的体积 24立方米健胃消食片包装盒的体积 24立方分米例题3:下面图中的每个木块都一样,哪堆的体积大?为什么?知识精讲1:体积和体积单位1.物体所占空间的大小叫做物体的体积。

2.计量体积要用体积单位,常用的体积单位有立方厘米、立方分米和立方米,可以分别写成cm3、dm3、m3。

二、长方体和正方体的体积例题4:填空。

(1)用( )个棱长1 cm的小正方体可以拼成一个长3 cm,宽2 cm,高5 cm的长方体,这个长方体的体积是( )cm3。

(2)一个长方体铁块,长50厘米,宽30厘米,高2.5厘米。

它的体积是( )立方厘米。

(3)棱长为4厘米的正方体的体积是( )立方厘米。

(4)正方体的棱长扩大为原来的3倍,体积扩大为原来的( )倍。

(5)一个正方体的棱长总和是36米,体积是( )立方米。

例题5:计算下面长方体和正方体的体积。

例题6:中心广场要建一个喷水池,施工时要挖长15 m、宽7 m、深5 m的长方体土坑,一共挖出多少方的土(“1 m3”的土、石、沙称为“1方”)?知识精讲2:长方体和正方体的体积。

1.长方体的体积=长×宽×高 V=a b h2.正方体的体积=棱长×棱长×棱长V=a33.长方体(或正方体)的体积=底面积×高V=S h4.当长方体的长、宽、高都扩大到原来的n倍时,它的体积扩大到原来的倍;5.当正方体的棱长扩大到原来的n倍时,它的体积扩大到原来的倍。

用表格比较长方体和正方体的体积计算公式名称体积计算公式需要的条件长方体长方体的体积=长×宽×高长方体的长、宽和高正方体正方体的体积=棱长×棱长×棱长正方体的棱长长方体(或正方体)长方体(或正方体)的体积=底面积×高长方体(或正方体)的底面积和高三、体积单位间的进率例题7:填空。

(完整word版)五年级奥数《长方体与正方体的表面积与体积》

(完整word版)五年级奥数《长方体与正方体的表面积与体积》

长方体和正方体的表面积和体积一、方法讲解我们学习了长方体和正方体,运用长方体和正方体的表面积和体积公式一般可以简单长方体和正方体问题,解决较复杂的立体图形问题要注意几点:1、必须以基本概念和方法为基础,同时吧构成几何图形的诸多条件融合贯通起来。

2、依赖已经积累的空间观念,观察经过割、补后物体的表面积或体积所发生的变化。

3、求一些不规则的物体的体积时,可以通过变形的方法来解决。

二、例题讲解1、一个零件形状大小如右图所示:算一算,它的体积是多少立方厘米?表面积是多少平方厘米?(单位:厘米)2、有一个长方体形状的零件,中间挖去一个正方体的孔(如图所示),你能算出它的体积和表面积吗?(单位:厘米)3、一个长方体沿着长的方向切掉一个小正方体,剩下的长方体的表面积比原来减少24平方厘米,求所切下的正方体的表面积是多少平方厘米?4、长方体不同的三个面的面积分别为10平方厘米、15平方厘米和6平方厘米。

这个长方体的体积是多少立方厘米?5、一个凌长为6厘米的正方体木块,如果把它锯成凌长为2厘米的正方体若干块,表面积增加多少平方厘米?三、达标练习1、一个长5厘米、宽1厘米、高3厘米的长方体,被切去一块后(如图所示),剩下部分的表面积和体积各是多少?2、把一根长2米的长方体木料锯成1米长的两段,表面积增加了2平方分米,求这根木料原来的体积.3、有一个长8厘米、宽1厘米、高3厘米的长方体,在它的左右两个角各切掉一个正方体(如图所示),求切掉正方体后的表面积和体积各是多少?4、有一个形状如上图所示的零件,求它的体积和表面积。

(单位:厘米)5、如果把上题中挖下的小正方体粘在另一个面上,(如图所示)那么得到的物体的体积和表面积各是多少?6、一个正方体和一个长方体刚好拼成新的长方体,其表面积比原来的长方体的表面积增加了60平方厘米,原来正方体的表面积是多少立方厘米?7、一根长1米,宽和高都是8厘米的长方体钢材,从钢材的一端锯下一个最大的正方体后,它的表面积减少了多少平方厘米?8、把两个完全相同的长方体木块拼成一个正方体,表面积比原来两个长方体的表面积的和减少了40 平方厘米,求原来每个长方体的表面积是多少平方厘米?9 。

人教版五年级下册奥数专讲:长方体与正方体的表面积教案

人教版五年级下册奥数专讲:长方体与正方体的表面积教案
重点难点及解决办法
重点:长方体与正方体表面积计算公式的理解和应用。
难点:空间想象力不足导致对表面积概念的理解困难,以及在实际问题中运用表面积公式时的策略选择。
解决办法及突破策略:
1.通过直观教具和三维模型展示,增强学生的空间感知,帮助他们建立起长方体和正方体的直观形象。
2.设计阶梯式问题,从简单到复杂,逐步引导学生理解和掌握表面积计算公式,并在每个阶段提供反馈和纠正。
过程:
选择几个典型的案例,如包装设计、房屋装修中等涉及表面积计算的问题。
详细介绍每个案例的背景、特点以及如何应用表面积知识解决实际问题。
引导学生思考这些案例对实际生活的影响,并探讨如何优化解决方案。
4.学生小组讨论(10分钟)
目标:培养学生的合作能力和解决问题的能力。
过程:
将学生分成若干小组,每组选择一个与长方体和正方体表面积相关的实际问题进行讨论。
教学方法:
1.讲授法:通过生动的语言和形象的比喻,对长方体与正方体的表面积计算公式进行深入讲解,确保学生对概念的理解准确无误。
2.讨论法:组织学生进行小组讨论,鼓励他们提出问题、分享思路,解决在表面积计算过程中遇到的难题,促进知识的内化。
3.实验法:设计动手操作活动,如让学生制作长方体和正方体模型,通过折叠、剪裁等实验活动,直观感受表面积的形成和计算。
小组内讨论问题的现状、挑战以及可能的解决方案。
每组选出一名代表,准备向全班展示讨论成果。
5.课堂展示与点评(15分钟)
目标:锻炼学生的表达能力,同时加深全班对长方体和正方体表面积的认识和理解。
过程:
各组代表依次上台展示讨论成果,包括问题的现状、挑战及解决方案。
其他学生和教师对展示内容进行提问和点评,促进互动交流。

人教版五年级数学下册同步讲练测第三单元第3课长方体和正方体的表面积

人教版五年级数学下册同步讲练测第三单元第3课长方体和正方体的表面积

第三课长方体和正方体的表面积(1)开心回顾1.正方体有()个面,每个面都是()形。

【答案】6;正方【解析】解:正方体有6个面,每个面都是正方形。

2.因为正方体的长、宽、高都(),所以正方体是()的长方体。

【答案】相等;特殊【解析】解:正方体是特殊的长方体,特殊就在于当长方体长宽高都相等的时候就是正方体。

3.两个一样的正方体可拼成一个体,它有个面是正方形,共有个面是长方形.【答案】长方,两,四【解析】试题分析:把两个一样的正方体拼成一个长方体后,所占的空间没变,但是表面积变了,减少了两个面的面积,它有两个面是正方形,有四个面是长方形.解:把两个一样的正方体拼成一个长方体后,它有两个面是正方形,有四个面是长方形;故答案为:长方,两,四.4.长方体和正方体都有个面,个顶点,条棱.长方体每个面都是形,特殊情况有两个面是形,长方体最多有个面是长方形,长方形的12条棱可以分成组,相对的棱的相等.【答案】6,8,12,长方,正方,6,4,长度【解析】试题分析:根据长方体的特征进行解答即可.解:长方体和正方体都有6个面,8个顶点,12条棱.长方体每个面都是长方形,特殊情况有两个面是正方形,长方体最多有6个面是长方形,长方形的12条棱可以分成4组,相对的棱的长度相等;故答案为:6,8,12,长方,正方,6,4,长度.课前导学学习目标:1.学生通过操作掌握长方体和正方体的表面积的概念,并初步掌握长方体和正方体表面积的计算方法。

2.会用求长方体和正方体表面积的方法解决生活中的简单问题。

3.培养学生分析能力,发展学生的空间概念。

知识讲解:【例题1】如图所示是一个长方体纸盒的展开图.请计算这个长方体纸盒的表面积.(单位:dm)【解析】试题分析:由展开图得出:长方体的长是5厘米,宽是4厘米,高是7﹣5=2厘米,根据长方体表面积=长×宽×2+长×高×2+宽×高×2,带数计算即可.解:5×4×2+5×2×2+4×2×2,=40+20+16,=76(平方厘米);答:这个纸盒的表面积是76平方厘米.【答案】76平方厘米【例题2】求表面积:单位:厘米.【解析】试题分析:根据正方体的表面积=棱长×棱长×6,即可解答.解:8×8×6=384(平方厘米);答:正方体的表面积是384平方厘米.【答案】384平方厘米新知总结:长方体或正方体6个面的总面积,叫做它的表面积。

五年级下长方体正方体表面积体积精讲例题

五年级下长方体正方体表面积体积精讲例题

正方体长方体重点题型精讲(一)知识1:长方体和正方体的认识注意:长方体至少可以有两个面是正方形,最多可以有6个面是正方形,但不会存在3个、4个、5个面是正方形 练习:(1)判断和填空:长方体的六个面一定是长方形; ( ) 正方体的六个面面积一定相等; ( )一个长方体(非正方体) 最多有四个面面积相等; ( )相交于一个顶点的三条棱相等的长方体一定是正方体。

( ) 一个长方体中,可能有4个面是正方形。

( ) 正方体是特殊的长方体。

( )有两个面是正方形的长方体一定是正方体。

( )一个长方体中最少有4条棱长度相等,最多有8条棱长度相等。

( )(2)一个长方体(非正方体)最多有( )个面是正方形,最多有( )条棱长度相等。

(3)一个长方体(非正方体)的底面是一个正方形,则它的4个侧面是( )形。

(4)正方体不仅相对的面相等,而且所有相邻的面( ),它的六个面都是相等的( )形。

(5)把长方体放在桌面上,最多可以看到( )个面。

最少可以看到( )个面。

知识2:棱长和公式变形长方体棱长和=(长+宽+高)×长+宽+高=棱长和÷4 长方体棱长和=右面周长×2+长×4长方体棱长和=下面周长×2+高×4 长方体棱长和=前面周长×2+宽×4 正方体棱长和=棱长×12 棱长=棱长和÷12 例题:1、一只鱼缸,棱长和为280cm ,其中,底面周长为50cm ,右面周长为40cm ,前面周长为50cm ,鱼缸的长、宽、高各是多少?2、有一个礼盒需要用彩带捆扎,捆扎效果如图,打结部分需要10厘米彩带,一共需要多长的彩带?练习1、一个长方体的棱长总和是 80厘米,其中长是 10厘米,宽是 7厘米,高是()厘米。

2、有一个长方体的鱼缸,长50厘米,宽30厘米,高30厘米,需要在用铝合金包裹玻璃连接处,需要()米的铝合金3、把两个棱长 1厘米的正方体拼成一个长方体,这个长方体的棱长总和是()厘米。

小学五年级下册数学讲义第三章 长方体和正方体 人教新课标版(含解析)

小学五年级下册数学讲义第三章 长方体和正方体 人教新课标版(含解析)

人教版小学五年级数学下册同步复习与测试讲义第三章长方体和正方体【知识点归纳总结】1. 长方体的特征1.长方体有6个面.有三组相对的面完全相同.一般情况下六个面都是长方形,特殊情况时有两个面是正方形,其他四个面都是长方形,并且这四个面完全相同.2.长方体有12条棱,相对的四条棱长度相等.按长度可分为三组,每一组有4条棱.3.长方体有8个顶点.每个顶点连接三条棱.三条棱分别叫做长方体的长,宽,高.4.长方体相邻的两条棱互相垂直.【经典例题】1.长方体中至少有()条棱的长度相等.A.2B.4C.6D.8【分析】根据长方体的特征,长方体的6个面多少长方形(特殊情况有两个相对的面是正方形),一般情况长方体的12条棱分为互相平行的3组,每组4条棱的长度相等.据此解答.【解答】解:长方体的12条棱分为互相平行的3组,每组4条棱的长度相等.答:长方体中至少有4条棱的长度相等.故选:B.【点评】此题考查的目的是理解掌握长方体的特征及应用.2. 正方体的特征①8个顶点.②12条棱,每条棱长度相等.③相邻的两条棱互相垂直.【经典例题】2.在一个正方体中,最多能找到()组互相垂直的线段.A.12B.18C.24【分析】根据互相垂直的定义:在同一平面内,当两条直线相交成90度时,这两条直线互相垂直;据此进行解答.【解答】解:据分析解答如下:垂直:AB⊥AD AB⊥BC AB⊥AE AB⊥BF;BC⊥CD BC⊥BF BC⊥CG;CD⊥AD CD⊥DH CD⊥CG;AD⊥DH AD⊥AEBF⊥FG BF⊥FEAE⊥FE AE⊥EH;CG⊥FG CG⊥GH;DH⊥GH DH⊥HE;FG⊥GH GH⊥EHHE⊥EF EF⊥FG.故选:C.【点评】本题考查的是垂线的定义,熟知正方体的性质是解答此题的关键.3. 长方体和正方体的表面积长方体表面积:六个面积之和.公式:S=2ab+2ah+2bh.(a表示底面的长,b表示底面的宽,h表示高)正方体表面积:六个正方形面积之和.公式:S=6a2.(a表示棱长)【经典例题】3.如下图,用三个完全相同的正方体拼成一个长方体后,表面积减少了100dm2,原来每个正方体的表面积是150dm2,长方体的表面积是350dm2.【分析】三个正方体一拼成一个长方体减少了4个面,减少的面积就是100dm2,可以求出一个面的面积,即100dm2除以4等于25dm2,再根据正方体的表面积公式S=6a2进行计算,再用一个正方体的表面积乘以3减去100dm2可求长方体的表面积.【解答】解:100÷4=25(dm2)25×6=150(dm2)150×3﹣100=450﹣100=350(dm2)答:原来每个正方体的表面积是150dm2,长方体的表面积350dm2.故答案为:150,350.【点评】本题是一道关于立体图形的拼接问题,考查了学生长方体的表面积公式及正方体的表面积公式的灵活运用.4. 长方体、正方体表面积与体积计算的应用(1)长方体:底面是矩形的直平行六面体,叫做长方体.长方体的性质:六个面都是长方形,(有时有两个面是正方形);相对的面面积相等;12条棱相对的4条棱长相等;8个顶点;相交于一个顶点的三条棱的长度分别叫长、宽、高;两个面相交的边叫做棱;三条棱相交的点叫做顶点.长方体的表面积:等于它的六个面的面积之和.如果长方体的长、宽、高、表面积分别用a、b、h、S表示,那么:S表=2(ab+ah+bh)长方体的体积:等于长乘以宽再乘以高.如果把长方体的长、宽、高、体积分别用a、b、h、V表示,那么:V=abh(2)正方体:长宽高都相等的长方体,叫做正方体.正方体的性质:六个面都是正方形;六个面的面积相等;有12条棱,棱长都相等;有8个顶点;正方体可以看做特殊的长方体.正方体的表面积:六个面积之和.如果正方体的棱长、表面积分别用a、S表示,那么:S表=6a2正方体的体积:棱长乘以棱长再乘以棱长.如果把正方体的棱长、体积分别用a、V表示,那么:V=a3【经典例题】4.礼堂里有一根用作支撑的长方体柱子,底面是一个边长为0.4米的正方形,柱子高4.5米.油漆这根柱子,求总共油漆面积的算式是0.4×4.5×4.√.(判断对错)【分析】要油漆这根柱子,两个底面接触地面和楼层,只求出每根柱子的4个侧面即可,侧面的长就是高4.5米,宽是底面的边长0.4米,代入长方形面积公式“长×宽”,然后乘4个面,即可得解.【解答】解:0.4×4.5×4=1.8×4=7.2(平方米).答:油漆面积是7.2平方米.故答案为:√.【点评】解答有关长方体计算的实际问题,一定要搞清所求的是什么,再进一步选择合理的计算方法进行计算解答问题.5. 长方体和正方体的体积长方体体积公式:V=abh.(a表示底面的长,b表示底面的宽,h表示高)正方体体积公式:V=a3.(a表示棱长)【经典例题】5.计算下面图形的体积和表面积.【分析】(1)长方体的长、宽、高均已知,根据长方体的体积计算公式“V=abh”即可求出这个长方体的体积;根据长方体的表面积计算公式“S=2(ah+bh+ab)”即可求出这个长方体的表面积.(2)这个正方体的棱长已知,根据正方体的体积计算公式“V=a3”即可求出这个正方体的体积;根据正方体的表面积计算公式“S=6a2”即可求出这个正方体的表面积.【解答】解:(1)15×8×7=120×7=840(15×7+8×7+15×8)×2=(105+56+120)×2=281×2=562答:这个长方体的体积是840,表面积是562.(2)3×3×3=9×3=2732×6=9×6=54答:这个正方体的体积是27,表面积是54.【点评】解答此题的关键是记住并会运用长方体、正方体的体积、表面积计算公式.【同步测试】单元同步测试题一.选择题(共10小题)1.一个正方体的棱长总和是24cm,每条棱长()A.1cm B.2cm C.3cm2.如图是用边长1cm的小正方体拼成的长方体.下列图形()是这个长方体中的一个面.A.B.C.3.用一根72厘米的铁丝正好可以焊成一个长8厘米、宽()厘米、高4厘米的长方体框架.A.4B.5C.64.正方体有___个面,相对应的两个面______.()A.6个,大小不同,形状一样B.6,大小相同形状一样C.6,大小不同形状不同5.一种长方体盒装牛奶,从包装盒的外面量,长6厘米,宽3厘米,高12厘米.它标注的净含量可能是()毫升.A.200B.220C.2506.一个长方体的集装箱,从里面测量长12m、宽4m、高3m,如果要装一批棱长2m的正方体货箱,最多能装()个.A.12B.18C.367.一团橡皮泥,妙想第一次把它捏成长方体,第二次把它捏成正方体.捏成的两个物体体积()A.长方体大B.正方体大C.一样大D.无法确定8.一张长方形纸板长80厘米,宽10厘米,把它对折、再对折.打开后,围成一个高10厘米的长方体纸箱的侧面.如果要为这个长方体纸箱配一个底面,这个底面的面积是()A.200平方厘米B.400平方厘米C.800平方厘米9.有两个表面积都是60平方厘米的正方体,把它们拼成一个长方体.这个长方体的表面积是()平方厘米.A.90B.100C.110D.12010.把一根长2m的长方体木材平均截成3段,表面积增加了100dm2,原来木材体积是()dm3.A.50B.100C.500D.1000二.填空题(共8小题)11.小军在一个无盖的长方体玻璃容器内摆了一些棱长1分米的小正方体(如图).做这个玻璃容器至少要用玻璃平方分米,它的容积是立方分米.(玻璃的厚度忽略不计)12.长方体和正方体都有个面,条棱.长方体最多有个面是正方形.13.粉笔盒的形状是,红领巾的形状是.14.在如图的长方体中,和a平行的棱有条,和a垂直的棱有条.15.手工课上,小辉把三块小正方体方木粘在一起,如图:表面积比原来减少16平方厘米,原来1个小正方体的表面积是平方厘米.16.把一根长48厘米的铁丝焊成一个宽2厘米,高1厘米的长方体框架,这个框架的长是厘米.17.一个长方体的上面是面积为25平方厘米的正方形,前面是面积为30平方厘米的长方形,这个长方体的表面积是平方厘米.18.有一个长12厘米,宽8厘米,高4厘米的长方体,把高增加3厘米,则体积增加立方厘米,表面积增加平方厘米.三.判断题(共5小题)19.长方体长和宽可以相等,长、宽、高也可以相等.(判断对错)20.长方体和正方体的表面积就是求它6个面的面积之和,也就是它所占空间的大小.(判断对错)21.加工一个油箱要用多少铁皮,是求这个油箱的体积.(判断对错)22.正方体是长、宽、高都相等的长方体.(判断对错)23.两个长方体体积相等,底面积不一定相等.(判断对错)四.操作题(共1小题)24.一个无盖纸盒的长、宽、高分别是4厘米、3厘米和2厘米.图中画出的是纸盒展开图的后面和右面,请在方格纸上画出另外3个面.这个纸盒的容积是立方厘米.五.应用题(共6小题)25.五(二)班要做一个长1.5米、宽0.6米、高0.8米的长方体书架,现要在书架各边都安上装饰木条,做这个书架要多少米的装饰木条?26.两个棱长和均为18厘米的正方体拼成一个长方体,这个长方体的表面积是多少平方厘米?27.在长40厘米、宽30厘米的长方形铁皮的四个角上,分别剪去一个边长5厘米的正方形后,正好折成一个无盖的铁盒.如果每毫升汽油重0.75克,那么这个铁盒最多能装多少克汽油?28.用铁丝悍接一个正方体框架,一共用了180分米长的铁丝,这个正方体的棱长是多少分米?29.一个房间长8米,宽6米,高4米.除去门窗22平方米,房间的墙壁和房顶都贴上墙纸,这个房间至少需要多大面积的墙纸?30.明明家有一个长方体金鱼缸,长6分米,宽5分米,高4.5分米.他不小心把鱼缸的右侧面的玻璃打碎了,需要重配一块.(1)重新配上的这块玻璃的面积是多少平方分米?(2)玻璃配好后,他往鱼缸内倒入54升水,水深多少分米?参考答案与试题解析一.选择题(共10小题)1.【分析】正方体的棱长总和=棱长×12,用24除以12即可.【解答】解:24÷12=2(厘米),答:它的每条棱长是2厘米.故选:B.【点评】此题考查的目的是掌握正方体以及棱长总和公式.2.【分析】如图是用边长1cm的小正方体拼成的长方体,它的长是4cm,宽是3cm,高是2cm;据此解答.【解答】解:因为拼成的长方体的长是4cm,宽是3cm,高是2cm;所以只有选项C是这个长方体中的一个面.故选:C.【点评】此题考查了长方体面的认识,确定出长宽高是关键.3.【分析】用一根72厘米长的铁丝正好可以焊成长方体,这个长方体的棱长总和就是72厘米,长方体的棱长总和=(长+宽+高)×4,用棱长总和除以4减去长和高,即可求出宽.据此解答.【解答】解:72÷4﹣(8+4)=18﹣12=6(厘米)答:宽6厘米.故选:C.【点评】此题主要考查长方体的棱长总和公式的灵活运用.4.【分析】正方体有6个面,6个面都是完全相同的正方形;据此解答.【解答】解:正方体有6个面,相对应的两个面大小相同形状一样.故选:B.【点评】此题考查了对正方体特征的掌握.5.【分析】根据同一个容器的体积一定大于它的容积,首先根据长方体的体积公式:V=abh,把数据代入公式求出这个牛奶盒的体积,进而确定它的容积.【解答】解:6×3×12=18×12=216(立方厘米)216立方厘米=216毫升所以它标注的净含量一定小于216毫升.答:它标注的净含量可能是200毫升.故选:A.【点评】此题主要考查长方体的体积(容积)公式的灵活运用,关键是熟记公式.6.【分析】用长方体集装箱的每条棱的长除以正方体的棱长,然后用去尾法取整数,再相乘就是最多能装的个数.据此解答.【解答】解:12÷2=6,4÷2=2,3÷2≈1,6×2×1=12(个).答:最多能装12个.故选:A.【点评】本题的关键是让学生走出用长方体的体积除以正方体的体积就是能装个数的误区.7.【分析】根据体积的意义,物体所占空间的大小叫做物体的体积.由此可知:一团橡皮泥,第一次捏成长方体,第二次捏成正方体.这两次捏成的物体的体积相比较一样大.【解答】解:一团橡皮泥,第一次捏成长方体,第二次捏成正方体.只是形状变了,但体积不变,所以这两次捏成的物体的体积相比较一样大.故选:C.【点评】此题考查的目的是理解掌握体积的意义.8.【分析】根据题意可知,把这张长80厘米,宽10厘米的纸板对折、再对折.打开后,围成一个高10厘米的长方体纸箱的侧面,也就是这个长方体纸箱的底面边长是2厘米,根据正方形的面积公式:S=a2,把数据代入公式解答.【解答】解:80÷4=20(厘米)20×20=400(平方厘米)答:这个底面的面积是400平方厘米.故选:B.【点评】此题考查的目的是理解掌握长方体的特征、长方体表面积的意义,以及正方形面积公式的灵活运用.9.【分析】两个表面积都是60平方厘米的正方体拼成一个长方体,长方体的表面积就比原来两个正方体减少了2个面,那么长方体的表面积等于正方体10个面的面积,所以先求出正方体一个面的面积,然后即可求出长方体的表面积.【解答】解:60÷6=10(平方厘米)10×10=100(平方厘米)答:这个长方体的表面积是100平方厘米.故选:B.【点评】此题解答关键是理解两个正方体拼成长方体后,表面积会减少2个面,由此即可解决问题.10.【分析】根据题意可知:把这根长方体木材平均截成3段,表面积增加的是4个截面的面积,由此可以求出长方体的底面积,再根据长方体的体积公式:V=sh,把数据代入公式解答.【解答】解:2米=20分米,100÷4×20=25×20=500(立方分米),答:原来木材的体积是500立方分米.故选:C.【点评】此题主要考查长方体的表面积公式、体积公式的灵活运用,关键是熟记公式,注意长度单位相邻单位之间的进率及换算.二.填空题(共8小题)11.【分析】通过观察图形可知,这个玻璃容器的长是4分米,宽是3分米,高是5分米,根据长方体的表面积公式:S=(ab+ah+bh)×2,由于玻璃容器无盖,所以只求它的5个面的总面积,根据长方体体积(容积)公式:V=abh,把数据代入公式解答.【解答】解:4×3+4×5×2+3×5×2=12+40+30=82(平方分米)4×3×5=60(立方分米)答:做这个玻璃容器至少要用玻璃82平方分米,它的容积是60立方分米.故答案为:82、60.【点评】此题主要考查长方体的表面积公式、体积(容积)公式在实际生活中的应用,关键是熟记公式.12.【分析】根据长方体和正方体的共同特征,长方体和正方体都有6个面、12条棱、8个顶点,长方体的6个面都是长方形(特殊情况下有两个相对的面是正方形),当长方体有两个相对的面是正方形时,其余四个面的面积相等,形状完全相同.【解答】解:根据分析可得:长方体和正方体都有6个面,12条棱.长方体最多有2个面是正方形.故答案为:6,12,2.【点评】此题主要考查了长方体的特征,要正确理解和掌握长方体的特征,平时注意基础知识的积累.13.【分析】长方体的特征:长方体有6个面,相对的面完全相同,一般情况下六个面都是长方形,特殊情况时有两个面是正方形,其他四个面都是长方形,并且这四个面完全相同,所以粉笔盒的形状是长方体;三角形的含义:由三条边首尾相连围城的图形,所以红领巾的形状是三角形;据此解答即可.【解答】解:粉笔盒的形状是长方体,红领巾的形状是三角形.故答案为:长方体,三角形.【点评】明确长方体和三角形的特征,是解答此题的关键.14.【分析】根据长方体的特征,长方体有12条棱分为三组,每组4条棱的长度相等且互相平行,据此解答.【解答】解:如图:和a平行的棱有3条,和a垂直的棱有4条.故答案为:3、4.【点评】此题考查的目的是理解掌握长方体的特征及应用.15.【分析】通过观察图形可知,把三个小正方体拼成一个长方体,表面积比原来减少了16平方厘米,表面积减少是小正方体4个面的面积,由此可以求出小正方体一个的面的面积,根据正方体的表面积公式:S=6a2,把数据代入公式解答.【解答】解:16÷4=4(平方厘米)4×6=24(平方厘米)答:原来1个小正方体的表面积是24平方厘米.故答案为:24.【点评】此题考查的目的是理解掌握长方体、正方体表面积的意义,以及正方体表面积公式的灵活运用,关键是熟记公式.16.【分析】长方体所有的棱长之和就等于铁丝的长,再根据长方体的棱长和=(长+宽+高)×4,用棱长和除以4,求出长宽高的和,再减去宽和高,即可求出长方体的长,列式解答即可.【解答】解:48÷4﹣2﹣1=12﹣2﹣1=9(厘米)答:这个框架的长是9厘米.故答案为:9.【点评】此题考查了长方体棱长和公式的灵活运用,知道长方体所有的棱长之和就等于铁丝的长是解题的关键.17.【分析】一个上面是正方形的长方体,它的上面面积是25平方厘米,可求出这个正方形的边长是5厘米,用30除以5,可求出这个长方体的高,再根据长方体表面积公式S=2(ab+ah+bh)计算即可.【解答】解:因这个长方体的上面是正方形,且面积是25平方厘米,可知这个正方形的边长是5厘米.30÷5=6(厘米)5×5×2+5×6×4=50+120=170(平方厘米)答:这个长方体的表面积是170平方厘米.故答案为:170.【点评】本题的关键是求出这个长方体底面的边长和它的高.然后再根据表面积公式进行计算.18.【分析】根据长方体的体积公式:V=abh,表面积公式:S=(ab+ah+bh)×2,高增加3米,体积增加部分是以原来的长、宽为长、宽高是3厘米的长方体的体积,即(12×8×3)立方厘米,表面积增加部分是长12厘米、宽8厘米,高3厘米的长方体的4个侧面的面积,即(12×3×2+8×3×2)平方厘米.【解答】解:12×8×3=288(立方厘米)12×3×2+8×3×2=72+48=120(平方厘米)答:体积增加288立方厘米,表面积增加120平方厘米.故答案为:288、120.【点评】此题主要考查长方体的体积公式、表面积公式的灵活运用,关键是熟记公式.三.判断题(共5小题)19.【分析】长方体有6个面,有三组相对的面完全相同,一般情况下六个面都是长方形,特殊情况时有两个面是正方形,其它四个面都是长方形,并且这四个面完全相同.据此解答.【解答】解:由长方体的特征可知,长方体发的长、宽、高三个量中可以有两个量相等,不能三个量都相等;所以原题说法错误.故答案为:×.【点评】解答此题的关键:根据正方体和长方体的特征进行解答即可.20.【分析】根据长方体的表面积、体积的意义,长方体的6个面总面积叫做长方体的表面积;物体所占空间的大小叫做物体的体积.据此解答即可.【解答】解:长方体的6个面的面积之和叫做长方体的表面积;物体所占空间的大小叫做物体的体积.题干的说法是错误的.故答案为:×.【点评】此题考查的目的是理解掌握立体图形的表面积、体积的意义及应用.21.【分析】根据油箱的特点,加工一个长方体油箱要用多少铁皮,是求这个长方体的表面积,由此判断.【解答】解:加工一个油箱要用多少铁皮,是求这个油箱的表面积,而不是体积;原题说法错误.故答案为:×.【点评】根据物体表面积、体积、容积的含义可知:加工一个长方体油箱要用多少铁皮,是求这个长方体的表面积;油箱所占空间的大小是指油箱的体积,油箱内能容纳油的体积是指油箱的容积.22.【分析】根据长方体和正方体的共同特征:它们都有6个面,12条棱,8个顶点.正方体可以看作长、宽、高都相等的长方体.【解答】解:长方体和正方体都有6个面,12条棱,8个顶点.因此正方体可以看作长、宽、高都相等的长方体.故答案为:√.【点评】此题主要考查长方体和正方体的特征,以及长方体和正方体之间的关系,长方体包括正方体,正方体是特殊的长方体.23.【分析】根据长方体的体积公式:V=sh,长方体的体积是由底面积和高两个条件决定的,由此可知:虽然两个长方体的体积相等,但是这两个长方体的底面积不一定相等.据此判断.【解答】解:长方体的体积是由底面积和高两个条件决定的,虽然两个长方体的体积相等,但是这两个长方体的底面积不一定相等.所以,两个长方体体积相等,底面积不一定相等.这种说法是正确的.故答案为:√.【点评】此题考查的目的是理解掌握长方体的体积公式及应用.四.操作题(共1小题)24.【分析】根据长方体的特征,长方体相对面的面积相等,据此画出其他三个面.根据长方体的容积(体积)公式:V=abh,把数据代入公式解答.【解答】解:作图如下:4×3×2=24(立方厘米)答:这个纸盒的容积是24立方厘米.故答案为:24.【点评】此题考查的目的是理解掌握长方体展开图的特征,以及长方体的容积(体积)公式的灵活运用,关键是熟记公式.五.应用题(共6小题)25.【分析】根据长方体的特征,12条棱分为互相平行的3组,每组4条棱的长度相等.由题意可知,求做这个书架要多少米的装饰木条,也就是求这个长方体的棱长总和.长方体的棱长总和=(长+宽+高)×4,由此列式解答.【解答】解:(1.5+0.6+0.8)×4=2.9×4=11.6(米)答:做这个书架要11.6米的装饰木条.【点评】此题属于长方体的棱长总和的实际应用,根据长方体的棱长总和的计算方法解决问题.26.【分析】根据正方体的棱长总和=棱长×12,已知正方体的棱长总和是18厘米,由此可以求出正方体的棱长,根据正方体的表面积公式:S=6a2,把数据代入公式求出两个正方体的表面积和,拼成的长方体的表面积比两个正方体的表面积和减少了正方体的两个面的面积,据此解答即可.【解答】解:18÷12=1.5(厘米)1.5×1.5×6×2﹣1.5×1.5×2=2.25×6×2﹣2.25×2=13.5×2﹣4.5=27﹣4.5=22.5(平方厘米)答:这个长方体的表面积是22.5平方厘米.【点评】此题主要考查正方体的棱长总和公式、表面积公式的灵活运用,关键是熟记公式.27.【分析】求铁皮盒的容积,需知道长方体的长、宽、高,长方形铁皮的长与宽各减去2个正方形边长即长方体的长与宽,高是5厘米,根据长方体的体积=长×宽×高,代入公式列式解答求得铁皮盒的容积,再乘0.75就是铁盒最多能装多少克汽油.【解答】解:(40﹣5×2)×(30﹣5×2)×5=30×20×5=3000(立方厘米)=3000(毫升)3000×0.75=2250(克)答:这个铁盒最多能装2250克汽油.【点评】此题主要考查长方体的体积公式及其计算,关键要理解铁皮盒的长与宽.28.【分析】根据正方体的特征,正方体的12条棱的长度都相等,由此可知:用焊这个正方体需要铁丝的长度除以12即可求出正方体的棱长,据此列式解答.【解答】解:180÷12=15(分米)答:这个正方体的棱长是15分米.【点评】此题考查的目的是理解掌握正方体的特征,以及正方体棱长总和公式的灵活运用.29.【分析】长方体有6个面,在房间的墙壁和房顶都贴上墙纸,贴墙纸的面是上面,前后面和左右面,就是求这5个面的面积和是多少,然后再减去门窗的面积就是这个房间至少需要多大面积的墙纸.长方体的长、宽、高已知,用长×宽=上面的面积,用长×高×2=前、后面的面积,用宽×高×2=左、右面的面积,然后相加再减去门窗的面积即可解答.【解答】解:8×6+8×4×2+6×4×2﹣22=48+64+48﹣22=138(平方米)答:这个房间至少需要138平方米大面积的墙纸.【点评】解答有关长方体计算的实际问题,一定要搞清所求的是什么,再进一步选择合理的计算方法进行计算解答问题.30.【分析】(1)根据题意可知,打碎右侧玻璃的长是5分米,宽是4.5分米,可用长方形的面积公式:S =长×宽进行解答即可;(2)根据长方体体积公式:长方形体积=长×宽×高,因此可用鱼缸内的水的体积除以分别除以长方体的长、宽即可得到水深.【解答】解:(1)5×4.5=22.5(平方分米)答:重新配上的这块玻璃的面积是22.5平方分米;(2)54升=54立方分米54÷6÷5=1.8(分米)答:水深1.8分米.【点评】此题主要考查的是长方形面积公式和长方体体积公式的灵活应用,解答时分清右侧面长方形的长、宽,然后再利用长方形的面积公式解答.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

长方体和正方体的认识和表面积
知识引入:
一、长方体和正方体的认识:
例题1:填空。

(1)长方体有( )个面、( )条棱和( )个顶点。

它的每个面都是( )形,也可能有两个相对的面是( )形,它的( )的面完全相同;( )的棱长度相等。

(2)相交于一个顶点的三条棱的长度分别叫做长方体的( )、( )、( )。

(3)如果一个长方体的长、宽、高分别是a、b、h,那么这个长方体的棱长总和是( )。

(4)正方体是由6个( )的正方形围成的立体图形。

(5)正方体和长方体一样也有( )个面,( )个顶点,( )条棱。

(6)一个棱长是3 m的正方体,它的棱长总和是( ) m。

(7)一个正方体的棱长之和是84 cm,它的一条棱长是( ) cm。

(8)在右图中,与a平行的棱有( )条,与a相交且垂
直的棱有( )条。

例题2:选择。

(1)要做一个底面周长为18厘米,高为3厘米的长方体框架,至少要铁丝( )厘米。

A.54 B.84 C.48 D.96
(2)(难题)用一根52 cm长的铁丝,正好可以做成一个长为6 cm、宽为4 cm、高为( ) cm 的长方体框架。

A.2 B.3 C.4 D.5
(3)( )描述的立体图形是正方体。

(单位:厘米)
A.三条棱的长是3、3、2 B.三条棱的长是3、2、2
C.三条棱的长是3、3、3 D.长、宽、高都是2
(4)(易错题)至少用( )个小正方体可以搭成一个较大的
正方体。

A.4 B.8 C.12 D.3 (5)一根长288厘米的铁丝刚好围成一个正方体,则这个正
方体的棱长是( )厘米。

A.19 B.24 C.38 D.3
知识精讲1:长方体和正方体的认识
(1)长方体的特征:有个面(个面都是长方形或者个面是正方形,
个面是长方形),相对的面完全;有条棱,
相对的棱长度;有个顶点。

(2)正方体的特征:正方体的个面是完全相同的正方形;条棱长度
都相等;有个顶点。

(3)长方体长、宽、高的意义:
相交于同一顶点的三条棱的长度分别叫做长方体的长、宽、高。

一个长方体有条长、条宽和条高。

长方体的棱长总和=
正方体的棱长的总和=
(4)正方体是特殊的长方体。

二、长方体和正方体的表面积
例题3:填空。

(1)如图所示,这个展开图能折成一个长方体(字母露在外面),
如果F面在前面,从左面看是B面,那么( )面在上面,
( )面在后面。

(2)上、下每个面的长是( ),宽是( ),面积是( )。

(3)右侧面的长是( ),宽是( ),面积是( )。

例题4:选择题。

(1)(易错题)下列图形中,能折成正方体的是( )。

(2)选项中有4个立方体,其中是用右边图形折成的是( )。

(3)(易错题)如图,是一个立方体展开图,如果将展开图还原成立方体,A点将与( )点重合。

A.N B.R C.H D.G
例题5:计算下列图形的表面积。

(单位:cm)
例题6:应用题。

(1)某款立式空调的形状是一个长0.8 m、宽0.5 m、高2 m的长方体,如果要给它做一个防尘罩,至少需要布料多少平方米?
(2)一个长方体游泳池,长20米,宽15米,深2米,现要将它的每个面先抹上水泥,如果每平方米用水泥5千克,要用去多少水泥?
知识精讲2:长方体和正方体的表面积
1.表面积的意义:长方体或正方体6个面的总面积叫做它的表面积。

2.长方体表面积的计算方法:
①长方体的表面积=(长×宽+长×高+宽×高)×2
用字母表示为:S=(ab+ah+bh)×2
②长方体的表面积=长×宽×2+长×高×2+宽×高×2
用字母表示为:S=2ab+2ah+2bh
3.正方体表面积的计算方法:
正方体的表面积=棱长×棱长×6
用字母表示为:S=6a2
拓展:如果长方体的长、宽、高扩大到原来的n倍,它的表面积就扩大到原来的倍;
如果正方体的棱长扩大到原来的n倍,它的表面积就扩大到原来的倍。

巩固练习:
一.填空。

1.要焊接一个长10cm,宽8cm、高6cm的长方体框架,要准备10cm、8cm、6cm长的铁丝各()根。

2.一个长方体的长是8dm,高和宽都是5dm,这个长方体有()个面是正方形,每个正方形的面的面积是()dm2;有()个面是长方形,每个长方形的面的面积是()dm2。

它的表面积是()dm2。

3.一个正方体每个面的面积都是9cm2,这个正方体的棱长之和是()cm。

4.一个长方体的长是6cm,宽是5cm,高是3cm,它所有棱长和是()cm,表面积是()cm2。

5.一个魔方的表面积是54cm2,它的一个面的面积是()cm2。

6.一个正方体的棱长是2cm,把它的棱长扩大到原来的3倍,现在这个正方体的表面积是()cm2。

7.一个长方体的长是10cm,宽是8cm,高是4cm,这个长方体的6个面中最大的面的面积是()cm2,最小的面的面积是()cm2。

二.解决问题。

1.用一根48cm的铁丝围成一个长方体,这个长方体长5cm,宽4cm,它的高是多少厘米?
2.一根铁丝可扎成一个长5cm、宽4cm、高3cm的长方体框架,如果用这根铁丝扎成一个正方体,这个正方体的棱长是多少厘米?
3.礼品店有一种长方体的礼品盒,如图用彩带捆扎起来,需要多少厘米长的彩带?(接头延长25cm)
4.一个正方体的礼品盒,棱长总和是96cm,包装这个礼品盒至少需要多少平方厘米的包装纸?
5.做一个长是1m、宽5dm、高8dm的长方体无盖铁盒,至少需要多少平方米铁皮?
6.一个长方体游泳池长20m、宽15m、深2m,现要将它的每个面抹上水泥,再贴上边长为4dm的正方形瓷砖,需要这样的瓷砖多少块?如果每平方米用水泥5kg,要用去多少水泥?
7.一个正方体木块,把它分成3个大小相同的长方体后,表面积增加了36cm2,这个木块原来的表面积是多少平方厘米?
8.把三个完全一样的正方体拼成一个长方体,这个长方体的表面积是350cm2,则每个正方体的表面积是多少平方厘米?
9.一个零件的形状如右图所示,如果要在零件的表面涂上一层防锈剂。

防锈剂的面积是多少?(单位:cm)
10.求下图所示的大正方体被截去一个小正方体后的表面积。

(单位:m)
奥数思维拓展:运用画图法解决正方体拼组长方体的问题
1.渗透两种数学思想:推理思想、转化思想。

2.学习两种思维方法:图示法、推理法。

思维提升:
[例]用两个相同的正方体拼成一个长方体,棱长之和减少了16cm,这两个正方体原来的棱长总和是多少?
[分析]
拼成长方体的棱长总和比两个正方体的棱长总和减少了,是因为两个正方体拼成一个长方体,少了2个面,也就是少了8条棱。

如下图所示:
[解答]
16÷8=2(厘米)
2×12×2=48(厘米)
答:这两个正方体原来的棱长总和是48厘米。

[技巧]解决此类问题时,可以通过画图把题目中的隐含条件表示出来,化难为易。

当把两个相同的长方体或正方体拼在一起时,要明确他们减少了几个面,推算出相应的减少了几条棱。

举一反三:
1.用两个相同的正方体木块拼成一个长方体木块,棱长之和减少了24cm,这两个正方体木
块原来的棱长总和是多少?
2.有一个长为16cm、宽为8cm、高为8cm的长方体模型,如下图。

把它分割成两个完全相同的正方体,这两个正方体的棱长总和比原来长方体的棱长总和增加了多少厘米?
3.用三个完全相同的正方体拼成一个长方体,这个长方体的棱长之和是240cm。

原来一个正方体的棱长之和是多少厘米?。

相关文档
最新文档