公路复杂曲线放样

公路复杂曲线放样
公路复杂曲线放样

公路复杂曲线匝道的放样

时间:2011-01-10 19:35:32 来源:本站作者:焦贵强我要投稿我要收

藏投稿指南

摘要:通过用全站仪的先进测量功能进行外业放样,并利用电子计算机进行内业计算相结合,能够准确快捷的完成线形复杂的匝道的测量放样工作。

关键词:匝道极坐标放样 Excel程序

前言:随着测量事业的发展,测量仪器有了长足的进步,全站仪已经广泛使用在市政工程建设中,全站仪的激光测距的精度很高,使得极坐标放样的方法变得简单易行,应用全站仪机带的极坐标放样程序,现场放样时只需要控制点和放样的坐标数据,计算中只需计算放样点点位坐标就可以了,测量工作的重点由外业的放样转移到内业计算上。在全互通式立交工程中,匝道曲线组成比较复杂,一般有多条缓和曲线、圆曲线连接组成,测量数据的计算也主要集中在匝道上。在工程中我总结出利用计算机内业计算配合全站仪现场放样的方法,大大的提高了测量工作的准确性和效率,为工程的顺利完成起到了重要的作用。

在金钟河大街立交工程中,共有左右转的8条匝道,曲线半径从40米至617米不等,曲线由多条复曲线、S型曲线、卵形曲线组成,测量数据的计算量很大,现场放样的工作量也很大,我充分利用仪器设备的资源优势,利用自编的计算机程序和先进的测量放样方法很好的完成了工程的测量任务,为工程的质量进度起到了保驾护航的作用。

一、金钟河大街立交工程线形图

图1 金钟河大街立交工程平面图

二、曲线简介

金钟河大街工程分为一期工程和二期工程,一期工程包括金钟河大街桥和中环线桥两个直行桥,二期工程包括A、B、C、D四条左转弯匝道和E、F、G、H四条右转弯匝道。其中以A、B、C、D匝道的线形组成最为复杂,以B线为例,整条线路由3条直线,8条缓和曲线,4条圆曲线组成,曲线形式包括基本型(即圆曲线两侧缓和曲线对称布置)、回头曲线、S型曲线。

三、放样点坐标的计算

整条线路可分为直线、圆曲线、缓和曲线三种基本形式,在对线路的中心坐标进行计算时也分直线元、圆曲线元、缓和曲线元来分别进行计算。以二期工程的B 线为例把我的工作方法进行介绍,在计算中我采用自己编写的Excel程序对测量数据进行计算,测量数据同时打印提供给现场施工使用。由于计算机计算的数据容易因输入数据或个别符号的输入错误导致系统性错误。为避免这种情况的发生,我采用Casio4800计算器对计算的数据进行复核,起到了很好的把关作用,做到了自我复核,也保证了测量数据的准确。Casio 4800计算器的测量程序也是我结合测量工作的需要自己编写的,编写过程中参考了?全站仪与高等级公路测量?书中的数学模型和计算公式.

(一)、直线元的计算

直线可以看作曲率半径为无穷大的曲线,直线的计算也很简单。计算直线上点的

坐标只要知道起点坐标X

0,Y

,起点方位角F,起点里程S

就可以了。

1、数学模型

图2 直线平面示意图坐标计算公式:

X=X

0+(S-S

)cos F

Y=Y

0+(S-S

)sin F

2、Excel程序

下表程序中显示为数字的单元格是起算数据,需要由测量人员在图纸中将这些数据提取出来,然后手动输入到计算机中。在输入计算点里程时可以充分利用Excel的数据自动计算功能,提高工作效率.其他有公式的单元格内为自动计算,在实际操作时显示为数据。如果需要计算更多的数据只需要复制公式即可。

表1 直线坐标计算表(Excel)

上表的程序适用于直线上平面坐标的计算,在金钟河大街立交工程中使用,并使用此程序复核金钟河大街工程的定线图,核对无误

3、Casio 4800计算程序

此程序为本人自编,在广州新机场高速路、津滨轻轨工程、金钟河大街立交工程中广泛使用。实践证明此程序能方便、快捷、准确的计算直线上的平面坐标。

程序名:ZX(直线坐标计算)

X:Y:F:S

N=X+ScosF◣

E=Y+SsinF◣

(二)、圆曲线元的计算

圆曲线是曲率半径不变的曲线元,计算圆曲线上的坐标需要知道圆曲线的起点坐

标X

0,Y

,起点切线方位角F

,起点半径R,起点里程S

1、数学模型

圆曲线坐标计算公式:

X=X

0+R(sin(F

+(S-S

)/R)-sin F

Y=Y

0+R(cos(F

+(S-S

)/R)-cos F

图3 圆曲线平面示意图

2、Excel 程序

下表的程序适用于圆曲线上平面坐标的计算,在金钟河大街立交工程中计算了所有匝道的圆曲线位置的平面坐标,法线方位角。经现场测量使用,能满足测量工作中关于圆曲线的测量计算工作。

表2圆曲线坐标计算表(Excel)

3、Casio 4800程序

YUAN QU XIAN (圆曲线坐标计算)

X:Y:R:L:F

I "FXYP→1,ZP→-1"

D=90L/πR

S=2RsinD

A=F-90I+DI

X=X+ScosA◣

Y=Y+SsinA◣

F=F+2DI

此程序为本人自编,在广州新机场高速路、津滨轻轨工程、金钟河大街立交工程中广泛使用。实践证明此程序能方便、快捷、准确的计算圆曲线上的平面坐标、法线方位角。

(三)、缓和曲线元的计算

缓和曲线作为不同曲率半径的两点之间的连接曲线,一般采用回旋曲线,基本公式为:L=C/ρ式中L为曲线上任一点至回旋曲线起点的曲线长度,ρ为该点的曲率半径,C为曲率半径变化率。

1、数学模型

图4 缓和曲线平面示意图

缓和曲线坐标计算公式

X=X

+McosT-NsinT

+ MsinT-NcosT

Y=Y

其中 M=L-L5/(40C2)+L9/(3456C4)

N= L3/6C-L7/(336C3)+L9/(42240C5)

-L2/2C

T=F

2、Excel程序

下表的程序为本人自编,参考了聂让编著的?全站仪与高等级公路测量?,适用于缓和曲线上平面坐标的计算,在金钟河大街立交工程中计算了所有匝道的缓和曲线位置的平面坐标,法线方位角。经现场测量使用,能满足测量工作中关于缓和曲线的测量计算工作。

表3 缓和曲线坐标计算表(Excel)

3、Casio 4800程序

缓和曲线坐标计算

1.I"FX _YP=1 , ZP= -1

2.A"ZHX": B"ZHY":O"JDX":Q"JDY":R:V"L0":G"ZHK="

3.M=V/2-V^3/(240R^2):P=V^2/(24R)-V^4/(2688R^3):T=90/(πR)

4.C=tan^-1((Q-B)/(O-A)):O-A

5.C<0→C=C+360

6.LbL 1

7.{K}:K"DHK=":H=ABS(K-G):H≥V=GOTO3△

8.LbL 2

9.E=H-H^5/(40R^2V^2)+H^9/(3456R^4V^4)-H^13/(599040R^6V^6):

F=H^3/(6RV)-H^7/(336R^3V^3)+H^11/(42240R^5V^5)-H^15/(9031680R^7V^7)

10.D=√(E^2+F^2):J=tan^-1(F/E):N=90IH^2/(ΠRV)+90+C▲

11.GOTO4

12.LbL 3

13.Z=180(H-V)/(πR)+T:E=RsinZ+M:F=R(1-cosZ)+P:

D=√(E^2+F^2):J=tan^-1(F/E):N=180I(H-V)/(πR)+C+90+IT▲

14.GOTO 4

15.LbL 4

16.X=A+Dcos(C+IJ)

17.Y=B+Dsin(C+IJ)

18.GOTO 1

此程序为本人自编,在广州新机场高速路、津滨轻轨工程、金钟河大街立交工程中广泛使用。实践证明此程序能方便、快捷、准确的计算缓和曲线上的平面坐标、法线方位角。

四、现场放样

测量放样工作就是将桥梁的每一个部位实地的放样在地上,平面放样工作由全站仪采用极坐标放样的方法完成。测量过程中只需将控制点的坐标输入到全站仪中,设置完方向后再将放样点的坐标输入到全站仪中就可以进行放样工作了。

图5 全站仪测量放样示意图

由上图可以看出无论是什么样的曲线形式利用全站仪的极坐标放样功能都将其转换成一种简单的放样过程,而测量工作的中心也由外业放样转移到内业计算上。

在金钟河大街工程中,全站仪的先进功能的开发使用使得外业放样变得简单了,内业计算中用计算机的Excel程序和Casio4800程序配合使用计算测量数据在工程施工中起到了非常好的效果,不仅在时间上保证了测量工作的顺利实施,加快了测量工作的效率,还通过两种计算方法的校核增加了测量数据计算的准确性,有效地解决了匝道曲线复杂引起的测量过程中的困难,测量工作得以顺利完成。同时也为工程质量进度的全面高效的完成起到了保驾护航的作用。

结束语:测量事业的发展是飞速的,充分挖掘利用仪器的先进功能可以很好的节约劳动力,计算机和先进测量仪器的结合会极大的提高生产力。

道路放样坐标计算

全站仪道路放样、方位角及左右偏移坐标计算(直线、缓和曲线<南方NTS-362R6L>) 一、根据直线、曲线要素表 列1:JD5—x=4340430.518 JD6—x=4339782.179 y=441418.4621 y=441651.8123 方位角计算=POl(4339782.179-4340430.518,441651.8123-441418.4621 r=689.0543 Θ=160.2051794 转160°12″18.65′ ∴JD5—JD6直线段长689.0543m,方位角=160°12″18.65′,已知JD5半径=1500,曲线长度248.7908;(JD5桩号K3+328.548,JD6桩号K4+017.030) 利用全站仪进行道路放样:选择程序——道路——水平定线——(新建水平 定线文件)——起始点(输入桩号3328.548,坐标JD5)——水平定线(1、直线-方位角160°12′19″ 2、圆弧—半径1500,弧长497.58 3、缓和曲线-半径1500,弧长497.58)——道路放样——选择文件(水平定线)——设置放样点(依次输入起始桩号-桩间距-左偏差-右偏差)——放样《DHR角度值,HD水平距离》(编辑可以桩号可放样任意一点坐标,编辑偏差左右偏移“左负右正”)见附图 二、道路坐标计算(列1) JD5——JD6坐标计算{x+Cos(方位角)*距离} {y+Sin(方位角)*距离 JD6X=4340430.518+Cos(160.2052)*689.0543=4339782.179 JD6Y=441418.4621+Sin(160.2052)*689.0543=441651.8121 三、坐标距离计算2(列1) JD5—JD6其之间的距离计算【根号下{(JD6Y-JD5Y)2+(JD6X-JD5X)2}】如下: (441651.8123-441418.4621)+(4339782.179 -4340430.518 ) =233.3502 =-648.339 = (233.35022+648.3392)

道路工程测量(圆曲线缓和曲线计算)

内容:理解线路勘测设计阶段的主要测量工作(初测控制测量、带状地形图测绘、中线测设和纵横断面测量);掌握路线交点、转点、转角、里程桩的概念和测设方法;掌握圆曲线的要素计算和主点测设方法;掌握圆曲线的切线支距法和偏角法的计算公式和测设方法;了解虚交的概念和处理方法;掌握缓和曲线的要素计算和主点测设方法;理解缓和曲线的切线支距法和偏角法的计算公式和测设方法;掌握路线纵断面的基平、中平测量和横断面测量方;了解全站仪中线测设和断面测量方法。 重点:圆曲线、缓和曲线的要素计算和主点测设方法;切线支距法和偏角法的计算公式和测设方法;路线纵断面的基平、中平测量和横断面测量方法 难点:缓和曲线的要素计算和主点测设方法;缓和曲线的切线支距法和偏角法的计算公式和测设方法。 § 9.1 交点转点转角及里程桩的测设 一、道路工程测量概述 分为:路线勘测设计测量 (route reconnaissance and design survey) 和道路施工测量 (road construction survey) 。 (一)勘测设计测量 (route reconnaissance and design survey) 分为:初测 (preliminary survey) 和定测 (location survey) 1、初测内容:控制测量 (control survey) 、测带状地形图 (topographical map of a zone) 和纵断面图 (profile) 、收集沿线地质水文资料、作纸上定线或现场定线,编制比较方案,为初步设计提供依据。 2、定测内容:在选定设计方案的路线上进行路线中线测量 (center line survey) 、测纵断面图 (profile) 、横断面图 (cross-section profile) 及桥涵、路线交叉、沿线设施、环境保护等测量和资料调查,为施工图设计提供资料。 (二)道路施工测量 (road construction survey) 按照设计图纸恢复道路中线、测设路基边桩和竖曲线、工程竣工验收测量。 本章主要论述中线测量和纵、横断面测量。 二、中线测量 (center line survey) 1、平面线型:由直线和曲线(基本形式有:圆曲线、缓和曲线)组成。 2、概念:通过直线和曲线的测设,将道路中心线的平面位置测设到地面上,并测出其里程。即测设直线上、圆曲线上或缓和曲线上中桩。

超全道路工程平面线型设计说明

一、道路平面线型概述 一、路线 道路:路基、路面、桥梁、涵洞、隧道和沿线设施构成的三维实体。路线:是指道路中线的空间位置。 平面图:路线在水平面上的投影。 纵断面图:沿道路中线的竖向剖面图,再行展开。 横断面图:道路中线上任意一点的法向切面。 路线设计:确定路线空间位置和各部分几何尺寸。 分解成三步: 路线平面设计:研究道路的基本走向及线形的过程。 路线纵断面设计:研究道路纵坡及坡长的过程。

(二)平面线形要素 行驶中汽车的导向轮与车身纵轴的关系: 现代道路平面线形正是由上述三种基本线形构成的,称为平面线形三要素。 二、直线 一、直线的特点 1.优点: ①距离短,直捷,通视条件好。 ②汽车行驶受力简单,方向明确,驾驶操作简易。 ③便于测设。 2.缺点 ①线形难于与地形相协调 ②过长的直线易使驾驶人感到单调、疲倦,难以目测车间距离。 ③易超速 二. 最大直线长度问题: 《标准》规定:直线的最大与最小长度应有所限制。 德国:20V(m)。 美国:3mile(4.38km)

我国:暂无强制规定 景观有变化≧20V;<3KM 景观单调≦20V 公路线形设计不是在平面线形上尽量多采用直线,或者是必须由连续的曲线所构成,而是必须采用与自然地形相协调的线形。 采用长的直线应注意的问题: 公路线形应与地形相适应,与景观相协调,直线的最大长度应有所限制,当采用长的直线线形时,为弥补景观单调的缺陷,应结合具体情况采取相应的技术措施。 (1)直线上纵坡不宜过大,易导致高速度。 (2)长直线尽头的平曲线,设置标志、增加路面抗滑性能 (3)直线应与大半径凹竖曲线组合,视觉缓和。 (4)植树或设置一定建筑物、雕塑等改善景观。 三、直线的最小长度 直线的长度:前一个曲线终点到下一个曲线起点之间的距离。 YZ(ZH)-ZH(ZY) 之间的距离点击?工程资料免费下载 1.同向曲线间的直线最小长度 同向曲线:指两个转向相同的相邻曲线之间连以直线而形成的平面曲线 《规范》:当V≥60km时,Lmin≧6V; 当V≤40km时,参考执行

公路竖曲线计算

竖曲线及平纵线形组合设计 (纵断面上相邻两条纵坡线相交的转折处,为了行车平顺用一段曲线来缓和,这条连接两纵坡线的曲线叫竖曲线。) 竖曲线的形状,通常采用平曲线或二次抛物线两种。在设计和计算上为方便一般采用二次抛物线形式。 纵断面上相邻两条纵坡线相交形成转坡点,其相交角用转坡角表示。当竖曲线转坡点在曲线上方时为凸形竖曲线,反之为凹形竖曲线。 一、竖曲线 如图所示,设相邻两纵坡坡度分别为i 1 和i 2,则相邻两坡度的代数差即转坡角为ω= i 1-i 2 ,其中i 1、i 2为本身之值,当上坡时取正值,下坡时取负值。 当 i 1- i 2为正值时,则为凸形竖曲线。当 i 1 - i 2 为负值时,则为凹形竖曲线。 (一)竖曲线基本方程式 我国采用的是二次抛物线形作为竖曲线的常用形式。其基本方程为: Py x 22= 若取抛物线参数P 为竖曲线的半径 R ,则有: Ry x 22 = R x y 22= (二)竖曲线要素计算公式

竖曲线计算图示 1、切线上任意点与竖曲线间的竖距h 通过推导可得: ==PQ h )()(2112li y l x R y y A A q p ---=-R l 22= 2、竖曲线曲线长: L = R ω 3、竖曲线切线长: T= T A =T B ≈ L/2 =2 ωR 4、竖曲线的外距: E =R T 22 ⑤竖曲线上任意点至相应切线的距离:R x y 22= 式中:x —为竖曲任意点至竖曲线起点(终点)的距离, m ; R —为竖曲线的半径,m 。 二、竖曲线的最小半径 (一)竖曲线最小半径的确定 1.凸形竖曲线极限最小半径确定考虑因素 (1)缓和冲击 汽车行驶在竖曲线上时,产生径向离心力,使汽车在凸形竖曲线上重量减小,所以确定竖曲线半径时,对离心力要加以控制。 (2)经行时间不宜过短

道路工程曲线设计(DOC)

道路工程曲线设计实习

一、设计目的 二、设计任务 三、设计地点 某大学校园 四、仪器选取 全站仪一台、经纬仪一台、钢尺、花杆。 五、踏勘选点 选取学校控制点R 、S ,即RS 为起始导线边。R 的坐标X ,Y=,Z=,R 点位于学校活动中心西南角。S 的坐标X=,y=,Z=,S 点位于学校活动中心正南。 然后踏勘选点,根据校园实际情况,我分别选取点A 、B 、C 、D 、E ,放向是由西向东,从而构成一条支导线。具体图形见附图。 六、设计步骤 1、导线坐标计算 由于R 和S 点已知坐标,所以,我可以根据公式计算出坐标方位角RS α RS RS RS x y ??=arctan α 式中RS x ?、RS y ?计算公式如下: RS RS RS D x αcos =? RS RS RS D y αsin =? 式中RS D 为控制点R 、S 的水平距离,这个距离可以用全站仪测出,也可以用钢尺量距测出,由于用钢尺会产生较大的误差,而且操作麻烦,所以我选择用全站仪测距。 将全站仪架在控制点S 上,就可以测出RSA ∠和R 、S 的距离RS D ,以及S 、A 的距离SA D 。一次类推,分别将仪器架在导线点A 、B 、C 、D 上,就可以测出我们所需要的数据,如下:

SAB ∠、AB D 、ABC ∠、BC D 、BCD ∠、CD D 、CDE ∠、DE D 。 由于起使边方位角RS α已知,这样,就可以分别计算出SA α、AB α、BC α、CD α、DE α。具体计算公式如下: ?-∠+=180RSA RS SA αα ?-∠+=180SAB SA AB αα ?-∠+=180ABC AB BC αα ?-∠+=180BCD BC CD αα ?-∠+=180CDE CD DE αα 注:如果最后计算出来的坐标方位角不在(?0—?360)之间,就用这个坐标方位角减去?360。 由于R 、S 坐标已知,各导线点坐标方位角已知,导线点间距离已知,这样就可以计算出导线点A 、B 、C 、D 、E 的坐标。计算公式如下: A 点坐标计算: SA SA SA D x αcos =? SA SA SA D y αsin =? SA S A x x x ?+= SA S A y y y ?+= B 点坐标计算: AB AB AB D x αcos =? AB AB AB D y αsin =? AB A B x x x ?+= AB A B y y y ?+=

道路坐标计算公式

曲线坐标计算 1、曲线要素计算 (1)缓和曲线常数计算 内移距R l 24/p 2 s = 切垂距 23 s 240/2/m R l l s -= 缓和曲线角R l R l s s πβ/902/0??== (2)曲线要素计算 切线长 m R T ++=2/tan )p (α 曲线长 ?+=?-+=180/]180/)2([20απβαπR l R l L s s 外矢距 R R E -+=)]2/cos(/)p [(0α 切曲差 L T q -=2 2、主要点的里程推算

s s s S l YH HZ )/22l -(L QZ YH )/22l -(L HY QZ l +=+=+=+=-=ZH HY T JD ZH 检核: HZ T JD =-+q 3、方位角计算 根据已知JD1和JD2的坐标计算出 21JD JD -α 偏角βαα±=--211JD JD JD ZH ?±-=-18011JD ZH ZH JD αα 4、计算直线中桩坐标 (1)计算ZH 点坐标: ZH JD JD ZH ZH JD JD ZH T y y T x x --?+=?+=1111sin cos αα (2)计算HZ 点坐标: 2 11211cos cos JD JD JD HZ JD JD JD HZ T y y T x x --?+=?+=αα (3)计算直线上任意点中桩坐标 待求点到JD1的距离为i L 2 112 11sin cos -JD JD i JD i JD JD i JD i i L y y L x x HZ T L --?+=?+=+=αα里程 待求点里程 5、计算缓和曲线中桩坐标 (1)第一缓和曲线上任意点中桩坐标 在切线坐标系中的坐标为: s i s i Rl l y Rl l l x 6/)(40/3 25=-= ZH 到所求点方位角:

道路中线圆曲线放样方案

道路中线圆曲线放样方案 一、放样任务 根据《工程测量规范(GB50026-2007)》对二级公路的要求,已设计好的二级公路进行实地放样。 同时为达到对书本已学知识的巩固,本次放样采用切线支距法,偏角法和极坐标法三种方法分别对该段曲线进行放样。 二、放样精度选择 根据设计要求,道路中线圆曲线放样的精度要求为点位中误差小于20cm。在中线圆曲线设计图上,需放样的最长边长为100m,根据《工程测量规范(GB50026-2007)》对二级公路的要求知,本次放样的精度:在直线部分中线桩位测量限差及曲线部分中线桩测量限差,附表如下: 本次放样采用全站仪进行,所使用仪器标称精度为:测角中误差为5”,测距误差为2+2*D*ppm。完全满足本次中线曲线放样对测量误差的要求。 三、放样方案 1.放样数据 (1). 切线支距法放样的坐标 点号纵坐标(x)横坐标(y)备注 JD1 ———— ZD1 0.00 -46.41 ZY 0.00 0.00 原点 1 1.00 19.97 2 3.99 39.73 QZ 6.81 51.76 3 10.38 63.60 4 17.68 82.21 YZ 26.81 100.02 ZD2 ————

(2).偏角法放样的角度与距离 点号偏角(°′″)距离备注 JD1 ———— ZD1 ———— ZY 00 00 00 0.00 原点 1 02 51 52 19.99 2 05 4 3 4 4 39.93 QZ 07 29 57 52.21 3 09 16 1 4 64.44 4 12 08 06 84.09 YZ 15 00 00 103.55 ZD2 ———— (3).任意站极坐标法 点号角(°′″)距离备注 JD1 28 03 45 207.06 ZD1 00 00 00 205.31 ZY 13 03 51 200.00 1 18 47 35 200.00 2 24 31 19 200.00 QZ 28 03 45 200.00 3 31 36 10 200.00 4 37 19 54 200.00 YZ 43 03 58 200.00 ZD2 56 07 50 205.31 2.放样步骤 (一)切线支距法放样 放样部位:道路中线圆曲线。 ①详细放样步骤: 1,在地面上任选一点作为JD1点,任选一方向作为ZD1方向,放出 100米端点作为ZD1点。再放出ZD2方向使之与ZD1方向的夹角为150度。 2,在JD1—ZD1线段上放出ZY点,使JD1—ZY距离为53.59米。以ZY 点为原点,以ZY-JD1为y轴建立左手高斯平面坐标系。 3,将处理好的坐标数据文件导入全站仪。并将全站仪架在原点上,移动棱镜,逐点进行放样。 ②检核方法:放样完成后,使用全站仪作为主要工具对放样点进行坐标采集。与理论计算坐标进行比较。 ③归化调整:本次放样对精度要求较低,所有数据检核后,必要时可以使用角度和距离归化。 (二)偏角法放样 放样部位:道路中线圆曲线。 详细放样步骤:1,在地面上任选一点作为JD1点,任选一方向作为ZD1方向, 放出100米端点作为ZD1点。再放出ZD2方向使之与ZD1 方向的夹角为150度。 2,在JD1—ZD1线段上放出ZY点,使JD1—ZY距离为53.59

RTK-南方工程之星道路放样步骤.pdf

第六章道路设计和放样 道路设计以及放样也是我们比较常用的功能,本章主要介绍道路设计的步骤和道路放样。 §6.1 道路设计 “道路设计”功能是道路图形设计的简单工具,标准道路一般是由直线、圆曲线和综合 曲线组合而成,修建公路之前,首先设计单位需要设计出公路的《直曲表》,就是该条公路的参数数据,然后勘测方会根据该《直曲表》进行勘察放样工作,勘察放样前就需要使用道路设计,将设计方提供的《直曲表》在软件中输入生成道路设计文件,使用该道路设计文件进行勘测放样作业。道路设计菜单包括两种道路设计模式:元素模式和交点模式。 图6-1 道路设计 §6.1.1 道路基本要素以及特殊类型说明 在介绍设计的两种方法之前,我们先对道路的一些基础的东西做一下介绍, 《直曲表》中的主要项目: 坐标和桩号:起始点和各交点的里程和坐标 计算方位角:直线的方位角 曲线间直线长:直线长度 转角:Z表示左偏,Y表示右偏;元素法设计中,转角左偏时,半径需要输入负值。 半径:圆曲的半径 曲线长度:一般包含第一缓曲长、圆曲长和第二缓曲长。 曲线总长:第一缓曲长+圆曲长+第二缓曲长(某些直曲表中,只有第一、第二缓曲长和曲线总长,那么圆曲长就要通过计算的到了) 断链:因局部改线、分段测量或量距中发生错误等等均会造成里程桩号与实际距离不相符, 这种在里程中间不连续(桩号不相连接)的情况叫“断链” 长链:桩号重叠的称长链 短链:桩号间断的称短链。 对于断链的处理,一定要使用分段处理,生成两个道路设计文件。

卵形曲线:是指在两半径不等的同向圆曲线间插入一段缓和曲线。即圆缓圆的情况;也就是说:卵形曲线本身是缓和曲线的一段,只是在插入的时候去掉了靠近半径无穷大方向的一段, 而非是一条完整的缓和曲线。我们简单的理解,出现圆缓圆的情况,即是卵形曲线,必须使用元素法设计。一般高速公路的匝道都是卵形曲线。 回头曲线:曲线总转向角大于或接近180°的曲线称为回头曲线,也称套线。回头曲线也必须使用元素法设计,回头曲线在山区的公路建设中比较常见。 §6.1.2 元素模式 “元素模式”是道路设计里面惯用的一种模式,它是将道路线路拆分为各种道路基本元 素(点、直线、缓曲线、圆曲线等),并按照一定规则把这些基本元素逐一添加组合成线路, 从而达到设计整段道路的目的。 元素法输入的规则:点-直线-第一缓和曲线-圆曲线-第二缓和曲线-直线-第一缓和曲线-圆曲线-第二缓和曲线……按此依次循环。 各元素输入时有以下规定: 1、第一个元素必须是点,且除了第一个元素外后面的元素均不能为点。 2、第二个元素必须是直线,长度可以为零,但必须输入方位角。 3、不是第二个元素的直线,不知道方位角的可以不输,软件会自动计算。 4、输入时建议以直线元素结束,没有的输入零直线,软件会自动增加一个零直线结束。 5、卵形曲线和回头曲线,必须使用元素法 6、工程之星道路设计,不允许出现“圆圆”的情况。 7、如果碰到有曲线间直线为零的情况,有以下3中分析,以缓和曲线为基准 ①如果线路属于卵形曲线,卵形曲线的组合形式是圆缓圆,所以中间的零直线不 能输入。 ②如果是标准的线路形式,每个交点下都是标准的缓圆缓的情况,中间的零直线 可输可不输。 ③如果是回头曲线,中间的零直线必须输入(不输入就会出现“圆圆圆的错误情 况) 步骤依次为: 输入-道路设计-元素模式,进入元素模式主界面(图6-2)。

城市道路平面线形设计

第四章城市道路平面设计1 平面设计的内容 平曲线形设计2 3 行车视距 4 城市道路平面线形设计

第一节平面设计的内容—主要任务 道路线形——道路路幅中心线(又称中线)的立体形状。 道路平面线形——道路中线在水平面上的投影形状。 平面设计的主要任务: 1)根据道路网规划确定的道路走向和道路之间的方位关系,以道路中线为准,考虑地形、地物、城市建设用地的影响。 2)根据行车技术要求确定道路用地范围内的平面线形,以及组成这些线形的直线、曲线和它们之间的衔接关系 3)对于小半径曲线,还应当考虑行车视距、路段的加宽和道路超高设置等要求。

第一节平面设计的内容——基本原则 平面设计的原则: 1)遵循城市道路网规划原则; 2)符合各级道路的技术指标原则; 3)处理好直线与平曲线的衔接,科学设置缓和曲线和超高、加宽等,合理行车视距并辅以适当的保护措施原则; 4)根据道路类别、等级、合理设置交叉口、沿线建筑物入口、停车场出入口、分隔带断口、公交停靠站位置等; 5)平面线形标准需分期实施时,应满足近期使用要求,兼顾远期发展,使远期工程尽可能减少对前期工程的废弃。

第一节平面设计的内容—基本要求 平面设计的基本要求: 1)适应汽车行驶轨迹; 汽车行驶轨迹特征——“三个连续”: ◆行车迹线是连续的,任何一点上不出现错头、折点或间断; ◆迹线的曲率是连续的,即在迹线上任何一点不出现两个曲率值; ◆轨迹线的曲率对里程或时间的变化率是连续的,轨迹线上任何一点 不出现两个曲率变化值。 2)合理确定平曲线形三要素 直线—曲率为零;圆曲线—曲率为常数;缓和曲线—曲率为变数

圆曲线缓和曲线计算公式

圆曲线缓和曲线计算公式

圆曲线缓和曲线计算公式 2011-09-13 15:19:36| 分类:默认分类|字号订阅 第九章道路工程测量(圆曲线缓和曲线计算公式) 学习园地2010-07-29 13:10:53阅读706评论0 字号:大中小订阅 [教程]第九章道路工程测量(圆曲线缓和曲线计算公式)未知2009-12-09 19:04:30 广州交通技术学院第九章道路工程测量(road engineering survey) 内容:理解线路勘测设计阶段的主要测量工作(初测控制测量、带状地形图测绘、中线测设和纵横断面测量);掌握路线交点、转点、转角、里程桩的概念和测设方法;掌握圆曲线的要素计算和主点测设方法;掌握圆曲线的切线支距法和偏角法的计算公式和测设方法;了解虚交的概念和处理方法;掌握缓和曲线的要素计算和主点测设方法;理解缓和曲线的切线支距法和偏角法的

计算公式和测设方法;掌握路线纵断面的基平、中平测量和横断面测量方;了解全站仪中线测设和断面测量方法。 重点:圆曲线、缓和曲线的要素计算和主点测设方法;切线支距法和偏角法的计算公式和测设方法;路线纵断面的基平、中平测量和横断面测量方法 难点:缓和曲线的要素计算和主点测设方法;缓和曲线的切线支距法和偏角法的计算公式和测设方法。 § 9.1 交点转点转角及里程桩的测设一、道路工程测量概述 分为:路线勘测设计测量(route reconnaissance and design survey) 和道路施工测量(road construction survey) 。(一)勘测设计测量(route reconnaissance and design survey) 分为:初测(preliminary survey) 和定测(location survey) 1、初测内容:控制测量(control survey) 、测带状地形图(topographical map of a zone) 和纵断面图(profile) 、收集沿线地质水文资

道路设计规范要求

道路设计规范要求 篇一:道路设计规范 目录 第一章绪论 1.1地区概况 1.2沿线地理特征 第二章路线设计 2.1公路等级确定 2.2路线方案确定 2.3平面线形设计 2.4纵断面线形设计 2.5平、纵面线形的组合设计 第三章路基、路面设计 3.1设计原则 3.2路基横断面 3.3路基设计与防护 3.4路面设计 3.5路基路面排水设计 第四章涵洞与通道设计

4.1路线交叉设计 4.2涵洞和通道设计 环境保护 5.1设计原则 5.2绿化设计 第六章小结 6.1小结 6.2设计中的不足 6.3思考 附录:主要参考资料 第一章绪论 该公路修建意义 本公路的修建将给当地带来新的发展机遇,带动沿线旅游业的发展,对当地经济发展具有重要意义。 2沿线地理特征 该地区属于公路自然区划ⅠⅤ4区,漳州位于北纬度到25度之间,属于亚热带季风性湿润气候,年平均温度21℃。198 5年最高日气温℃,最低℃。无霜期达330天以上,年日照2000-2300小时;年积温℃。年降雨量1000-1700毫米,雨季集中在三至六月。年平均风力二级。漳州每年六至九月常有台风袭来,最大风力达12级,台风常来暴雨或大暴雨,造成洪涝灾害。但在高温季节,台风也有助于降低气温和解

除旱象。 漳州气候条件优越,位处南、北纬度(回归线)附近,属于亚热带季风性湿润气候的地方并不多,如非洲的撒哈拉沙漠和澳大利亚的大沙漠,属于热带沙漠气候,印度、巴基斯坦和缅甸,属于热风季风气候,西半球的智利属高山气候,而漳州则是少数属于亚热带季风性湿润气候的地区之一。它整修地形依山面海,呈倾斜状和台阶状,山势走向由西北向东南,西北有武夷山脉和戴云山脉挡住寒流入侵,东南面临开阔的大海,温湿气流源源而来,构成了一个得天独厚的堠域性气候。 第二篇路线设计 交通量计算及公路等级确定 道路等级的确定 道路等级的确定应根据公路网的规划和远景交通量,从全局出发,结合公路的使用任务和性质综合确定。 交通量计算及公路等级的选用 公路等级为二级,二车道,日交通量为712辆/昼夜,设计年限n=20年。 路线方案设计 相关指标和原则 1):选线原则 以平面线形为主,合理解决避让、穿越、趋就等问题。

道路放样曲线计算公式汇总

一、对称曲线 1、曲线要素计算(α表示偏角、l s 表示缓和曲线长,R 表示半径) 切线角:错误!未找到引用源。 内移值:错误!未找到引用源。R 242s l P = 切线增量: 错误 ! 未找到引用源。2R 2403s l -2s l q = 切线长:错误!未找到引用源。 曲线长:错误!未找到引用源。 外矢距:错误!未找到引用源。R -2 c os P R E 0α+= 切曲差:错误!未找到引用源。 2、曲线主点里程计算

3、曲线中桩计算 (1)当点在ZH →HY 之间时 错误!未找到引用源。 (l i 为该点里程减去 ZH 点里程) 任意点的切线角: 任意点的偏角:πβδ? ?==180l 6li 3/s 2i i R 任意点的弦的方位角:i i δγθ±=ZH (右+,左—) 任意点的弦长:2i Y 2i X i C += 任意点的坐标:i i i i sin cos θθ?+=?+=C Y Y C X X ZH ZH (2)当点在HY →YH 之间时 HY 点的切线方位角:0βγγ±=ZH HY (右+,左—) 任意点的切线角:π ??=?180R l i i (li 为该点里程减去HY 点里程) 偏角:π ??==18022/i i R l i ?δ 弦的方位角:i i δγθ±=HY (右+,左—) i i R X ?sin ?= 错误!未找到引用源。)(i i cos -1??=R Y 弦长:2 i 2i i Y X C +=

坐标:i i i i sin cos θθ?+=?+=C Y Y C X X HY HY (3)当点在YH→HZ 之间时 错误!未找到引用源。 (l i 为HZ 点里程减去该点里程) 任意点的切线角: 偏角:πβδ? ?==180l 6li 3/s 2i i R 弦的方位角i i δγθ±=HZ (右—,左+) 弦长:2i 2i i Y X C += 坐标:i i i i sin cos θθ?+=?+=C Y Y C X X HZ HZ

高等级道路竖曲线的计算方法

高速公路竖曲线计算方法 【摘要】本文从竖曲线的严密计算公式入手,推导竖曲线上点的设计高程和里程的精确计算方法。分析和比较了近似公式和严密公式的差别及对设计高 程和里程的影响。在道路勘测设计中用本方法可取得精确、方便、迅速的效果, 建议取代传统的近似方法。 一、引言 在传统的道路纵断面设计中,竖曲线元素及对应桩号里程和设计高程均采用 近似公式计算,在低等级道路及计算工具很落后的时代曾起到过很大的作用。 但是随着高级道路的快速发展,道路竖曲线半径的不断加大,设计和施工的精度要求越来越高,因此,对勘测设计工作提出了很高的要求。采用近似的方法进 行勘测设计已难以满足高精度、高效灵活的要求。为此本文给出了实用、精确的竖曲线计算公式,以解决实际工作中存在的问题。 二、计算原理 1. 近似计算公式 如图1所示,设道路纵坡的变坡点为I,其设计高程为H I,里程为D I,两侧的纵坡度分别为i1、i2,竖曲线设计半径为R,竖曲线各元素的近似计算公式如下:

图 1 2. 精确计算公式 如图2所示,在图中建立以水平距离为横坐标轴d,铅垂线为纵坐标轴H′的dOH′直角坐标系,A点的坐标为(d A,0),Z点的坐标为(0,H Z′),竖曲线各元素的精确计算公式如下: α1=arctani 1 (1) α2=arctani 2 (2) ω=α1-α2(3) T=Rtan(4) E=R(sec-1) (5) d I=Tcosα1 (6) d A=Rsinα1 (7) H Z′=Rcosα1 (8) 竖曲线在直角坐标系中的方程为: (d-d A)2+H′2=R2 (9)

由式(9)可推算出竖曲线上任一与Z点的里程差为d的点的纵坐标值H′,则 0≤d≤dY (10) 并可立即推算点的设计高程和里程: H=H′-ΔH (11) D=D Z+d (D Z=D I-d I) (12) 式中,α1,α2分别为纵坡线与水平线的夹角;ω为变坡角;Τ为切线长;Ε为外矢距;d I为纵坡变坡点I与Z点的里程差;d A为竖圆曲线圆心A与Z点的里程差;H′为竖圆曲线上任一点的纵坐标值;d为竖圆曲线上任一点与Z点的里程差;H为竖圆曲线上任一点的设计高程;ΔH=H′Z-H Z为Z点纵坐标值与Z 点设计高程之差(H Z=H I-d I.i1);D为竖曲线上任一点的里程。 由式(10)可知,当d=d A时,则里程D N=D Z+d A的N点为竖圆曲线的变坡点, 其高程H N=H N′-ΔH=R-ΔH=max,N点在现场施工中具有很重要的指导意义。 三、计算实例 某山岭重丘的二级公路的纵坡变坡点I,其设计高程H I=68.410 m,里程D I

道路设计

一、道路设计的步骤、方法 (一)纸上定线 1、拟定路线走向 在给定的地形图上根据主要控制点研究线路总体布局,分析地形、地质及地物等情况,选择地势平缓、山坡顺直、河谷开阔等有利于展线的地点,拟定线路各种可能的走向。 2、试坡 当遇到纵坡的限制较严时,必须用平均纵坡i沿各种可能的走向由上而下进行试坡,设等高线间距为h,取计算等高线的平均长度a,a=h/i,用量规开度为 a(比例与地形图同),在图上试坡,得出均坡线。 3、定导向线 分析均坡线,结合地形、地物及艰巨工程等情况,选择相应的中间控制,从而调整控制点相应线路的纵坡,重新试坡,得出导向线。 4、修正导向线 参照导向线作平面试线,注明平曲线半径,量出地形变化点桩号及标高,绘制纵断面图。并设计纵坡,得出各桩位概略设计标高。 5、定线 在所定向线的基础上,按规定的技术标准反复试线才能得到满意的结果。 6、纵断面设计 路线确定后,量出路中心线穿过每一等高线的标号和高程,绘制纵断面图和进行纵断面设计。纸上定线是个反复试定的过程,试线修改次数越多,最后所定路线的质量相对来说越高,直至取得最佳线路方案为止,纸上定线工作才能算完成。 (二)公路平面设计 1、圆曲线半径的原则 (1)确定圆曲线半径的原则 ①各级公路的圆曲线半径应尽量采用较大的半径,在一般情况下,宜选用大于《标准》所规定的该级一般最小半径。只有当地形、地物或其他条件限制时,方可采用小于一般最小半径,不要轻易采用极限最小半径。 ②圆曲线半径的选定,除要与弯道本身所在位置的地形、地物条件相适应,使曲线沿理想的位置通过外,还要考虑与弯道前后的线形标准相协调。 ③圆曲线半径过大也失去意义,因此最大半径不宜超过 10000m,以利于设计与施工。 ④各级公路不论转角大小,均应设置曲线(包括圆曲线和缓和曲线)。 (2)确定路线导线交点转角 首先在地形图上,从起点由左向右编写转角号,即JD1、JD2、JD3 ……。确定路线导线交点转角要用正切法。不得用量角器直接量取。 (3)考虑圆曲线半径选定的原则和转角值,确定该路段每个交点的圆曲线半径,并计算或查曲线册设用表确定圆曲线要素。 2、将各交点处圆曲线半径与教材或规范对比,当圆曲线半径小于不设超高的圆曲线最小半径,应在该交点处圆曲线两端设置缓和曲线,缓和曲线计算步骤如下: (1)利用教材相应公式确定缓和曲线最小长度,采用数值大者,并用整5米倍数。 (2)利用相应公式计算切线角、缓和曲线常数p和q 。 (3)利用相应公式计算有缓和曲线的单曲线的切线长Th 、曲线长Lh 、外距Eh 、超距Dh 。 3、桩距采用20米,加桩视地形变化而定,加桩采用整米数。 (1)直线上整桩(20、40 ……)与平面线基本的量法见下图:

公路缓和曲线段原理及缓和曲线计算公式

程序使用说明 Fx9750、9860系列 程序包含内容介绍:程序共有24个,分别是: 1、0XZJSCX 2、1QXJSFY 3、2GCJSFY 4、3ZDJSFY 5、4ZDGCJS 6、5SPJSFY 7、5ZDSPFY 8、5ZXSPFY 9、6ZPJSFY 10、7ZBZFS 11、8JLHFJH 12、9DBXMJJS 13、9DXPCJS 14、9SZPCJS 15、GC-PQX 16、GC-SQX 17、PQX-FS 18、PQX-ZS 19、 ZD-FS 20、ZD-PQX 21、ZD-SQX 22、ZD-ZS 23、ZDSP-SJK 24、ZXSP-SJK 其中,程序2-14为主程序,程序15-24为子程序。每个主程序都可以单独运算并得到结果,子程序不能单独运行,它是配合主程序运行所必需的程序。刷坡数据库未采用串列,因为知道了窍门,数据库看起很多,其实很少。 程序1为调度2-8程序; 程序2为交点法主线路(含不对称曲线)中边桩坐标正反计算及极坐标放样程序; 程序3为主线路中边桩高程计算及路基抄平程序; 程序4为线元法匝道中边桩坐标正反计算及极坐标放样程序; 程序5为匝道线路中边桩高程计算及路基抄平程序; 程序6为任意线型开口线及填筑边线计算放样程序; 程序7专为主线路开口线及填筑边线计算放样程序,只需测量任意一点三维数据,即可马上计算出该点相对于中桩法线上的偏移量; 程序8专为匝道线路开口线及填筑边线计算放样程序,只需测量任意一点三维数据,即可马上计算出该点相对于中桩法线上的偏移量; 程序9为桥台锥坡计算放样程序; 程序10为计算两点间的坐标正反算程序; 程序11为距离后方交会计算测站坐标程序;

四级公路设计规范

四级公路设计规范文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)

主要:平原微丘:计算行车速度40km/h,行车道宽度:,路基宽度一般值,变化值,极限最小半径60m,停车视距40m,最大纵坡6%。山岭重丘:计算行车速度20km/h,路基宽度,极限最小半径15m停车视距20m,最小坡长60m,最大纵坡9%,最大可增加1%。最小纵坡%,采用平坡(0%)或小于%的纵坡时,其边沟应做纵向排水设计。(上一个设计中,最大纵坡为12)直线最大长度:1000米(左右),最小长度:同向曲线间40米(左右)反向曲线间无超高加宽可相接,无超高有加宽须10m以上缓和短。有超高时不小于15m。相邻回头曲线间直线不小于100(80)m。 圆曲线:最大超高8%,超高时一般最下半径30m,极限最小半径15m,不超高时最小半径150m,最大半径10000m。 缓和曲线(一般使用回旋线)长度最小值:计算速度20km/h时为25m,40km/h时为50m。 不设缓和曲线的最小圆曲线半径:260m。 平曲线最小长度:设计速度20km/h时为40m,40km/h时为70m。 转角等于或小于7度时的平曲线长度。设计速度20km/h的一般值280/转角。低限值40m。设计速度40km/h的一般值 500/转角。低限值70m。 直线最大长度:设计速度20km/h的为400m,直线最小长度同向曲线间50m,反向曲线间40m 最短坡长:设计速度20km/h的为60m。:设计速度40km/h的为100m

最大坡长:设计速度20km/h的3%无限制,4%为1200m,5%为1000m,6%为 800m,7%为600m,8%为400m,9%为200m。 凸形竖曲线最小半径一般值200m,极限值100m。最小长度20m。 凹形竖曲线最小半径一般值200m,极限值100m。 四级路控制坡度10%以内,最好9%以下。挖填局部4、5米皆可。坡长不用特别在意。

公路竖曲线计算

公路竖曲线计算

————————————————————————————————作者:————————————————————————————————日期:

课 题:第三节 竖曲线 第四节 公路平、纵线形组合设计 教学内容:理解竖曲线最小半径的确定;能正确设置竖曲线;掌握竖曲线的要素计算、竖曲线与路基设计标高的计算;能正确进行平、纵线形的组合设计。 重 点:1、竖曲线最小半径与最小长度的确定;2、竖曲线的设置; 3、平、纵线形的组合设计。 难 点:竖曲线与路基设计标高的计算;平、纵线形的组合设计。 第三节 竖曲线设计 纵断面上相邻两条纵坡线相交的转折处,为了行车平顺用一段曲线来缓和,这条连接两纵坡线的曲线叫竖曲线。 竖曲线的形状,通常采用平曲线或二次抛物线两种。在设计和计算上为方便一般采用二次抛物线形式。 纵断面上相邻两条纵坡线相交形成转坡点,其相交角用转坡角表示。当竖曲线转坡点在曲线上方时为凸形竖曲线,反之为凹形竖曲线。 一、竖曲线 如图所示,设相邻两纵坡坡度分别为i 1 和i 2,则相邻两坡度的代数差即转坡角为ω= i 1-i 2 ,其中i 1、i 2为本身之值,当上坡时取正值,下坡时取负值。 当 i 1- i 2为正值时,则为凸形竖曲线。当 i 1 - i 2 为负值时,则为凹形竖曲线。 (一)竖曲线基本方程式 我国采用的是二次抛物线形作为竖曲线的常用形式。其基本方程为: Py x 22= 若取抛物线参数P 为竖曲线的半径 R ,则有: Ry x 22 = R x y 22 = (二)竖曲线要素计算公式 竖曲线计算图示 1、切线上任意点与竖曲线间的竖距h 通过推导可得: ==PQ h )()(2112 li y l x R y y A A q p ---=-R l 22= 2、竖曲线曲线长: L = R ω 3、竖曲线切线长: T= T A =T B ≈ L/2 = 2 ω R 4、竖曲线的外距: E =R T 22 ⑤竖曲线上任意点至相应切线的距离:R x y 22 = 式中:x —为竖曲任意点至竖曲线起点(终点)的距离, m; R —为竖曲线的半径,m 。

拓普康全站仪道路放样方法

道路软件定线设计与放样

GTS-330N 道路软件定线设计与放样 一. 工程项目描述 1.待放样的道路中线示意图。

在后面的道路设计和放样操作中,均以该道路为例。 2. 交点法道路定线参数表(表1-1) 定线元素参数 起点(PT-BP)里程0 N 1100 E 1050 交点(PT-IP1)N 1300 E 1750 R 100 A1 80 A2 80 交点(PT-IP2)N 1750 E 1400 R 200 A1 0 A2 0 终点(PT-EP)N 2000 E 1800 R 0 A1 0 A2 0 3. 元素法道路定线参数表(表1- 2) 定线元素参数起点(PT)里程0 N 1100 E 1050

直线(STR)方向74.0317 距离545.543 缓和曲线(TRNS)半径100 (向右转向) 长度64圆曲线(ARC)半径100 (向右转向) 长度131.354 缓和曲线(TRNS)半径100 (向右转向) 长度64直线(STR)方向322.0730 距离166.004 圆曲线(ARC)半径200 (向左转向) 长度334.648 直线(STR)方向57.5941 距离250.084 二. 道路设计操作步骤综述 起始点数据输入 包括起始点的坐标,起始桩号以及缺省的放样间距。 水平定线数据输入 拓普康道路软件在进行水平定线时,有两种方法可供用户任选:元素法和交点法。在元素法中,用户可以输入直线、圆曲线和缓和曲线元素。 元素法参数描述: 直线:由其长度L和方位角AZ来描述。 l 圆曲线:由其曲率半径R、(弧)长度L及其转向(向左/向右)来描述。 2 缓和曲线:由其曲率半径R、长度L、转向以及进出方向(入口/出口)参数来描述。 进出方向确定该缓和曲线为入缓和曲线还是出缓和曲线;入缓和曲线半径是从无穷大渐变到R,相反出缓和曲线则从R渐变至无穷大。 交点法参数描述: 3 交点:由交点坐标、圆曲线半径R、缓和曲线参数A1以及缓和曲线参数A2来描述。 三. 道路设计操作步骤(元素法) 本示例将以前面描述的工程为例演示道路设计的放样的操作步骤。 1.GTS-330N开机,先初始化道路数据,清空以前的道路数据。 2. 初始化道路数据

公路工程测量放线圆曲线、缓和曲线(完整缓和曲线、非完整缓和曲线)计算解析

公路工程测量放线 圆曲线、缓和曲线(包括完整缓和曲线、非完整缓和曲线)计算解析 例:某道路桥梁中,A匝道线路。 已知交点桩号及坐标: SP,K9+000(2957714.490,485768.924); JD1,K9+154.745(2957811.298,485889.647); EP,K9+408.993(2957786.391,486158.713)。 SP—JD1方位角:51°16′25″; 转角:右44°00′54.06″; JD1—EP方位角:95°17′20″。 .

由上面“A匝道直线、曲线及转角表”得知: K9+000—K9+116.282处于第一段圆曲线上,半径为385.75m; K9+116.282—K9+151.282处于第一段缓和曲线上,K9+151.282的半径为300m,缓和曲线要素A1=217.335,Ls1=35m; K9+151.282—K9+216.134处于第二段圆曲线上,半径为300m; K9+216.134—K9+251.134处于第二段缓和曲线上,K9+251.134的半径为1979.5,缓和曲线要素A2=111.245,Ls2=35m; K9+251.134—K9+408.933处于第三段圆曲线上,半径为1979.5m。 求:K9+130、K9+200、K9+230、K9+300的中桩坐标,切线方位角,左5米边桩的坐标,右10米边桩的坐标。 解: 首先,我们知道要求一个未知点的坐标,必须知道起算点坐标,起算点至未知点的方位角,起算点至未知点的直线距离,然后利用坐标正算 .

的计算公式,就可以直接求出未知点的坐标。 那么,关于圆曲线和缓和曲线(包括完整缓和曲线和非完整缓和曲线)的计算,我们需要知道如何求出起算点至圆曲线或缓和曲线上某点的方位角和直线距离。 下面,先列出关于圆曲线和缓和曲线中角度和距离计算的相关公式。 .

相关文档
最新文档