CWDM(粗波分复用)传输技术出现,使电信运营商找到一

CWDM(粗波分复用)传输技术出现,使电信运营商找到一
CWDM(粗波分复用)传输技术出现,使电信运营商找到一

粗波分复用关键技术及应用

张成良

粗波分复用(CWDM)技术的出现使运营商找到一种低价格、高性能的传输解决方案,由于CWDM具有低成本、低功耗、小体积等诸多优点,在城域传送网已经有了一定应用。许多国内外制造商也开始研发和陆续推出产品,ITU也在加速其标准化进程。CWDM技术提高了光纤利用率,给运营商和用户以更大的灵活性。

本文将讨论CWDM 特点、波长选择、光纤类型等关键技术,并对CWDM 和DWDM 进行详细比较,最后对CWDM 的应用和发展予以了展望。

1、CWDM 系统优点

CWDM 系统的最大的优势在于成本低,其主要表现在器件、功耗、集成度几个方面。

1.1器件成本低

CWDM技术将大大降低建设和运维成本,特别是激光器和复用器/解复用器成本。对于波长间隔小于50GHz DWDM系统,激光器需要采用精密的温度控制电路来控制波长,有时需要采取波长锁定器等来保证波长的准确性和稳定性。光复用器(滤波器型)则需要精确的上百层多层介质膜器件,为了防止同频和异频串扰,还必须采用多次滤波等。而CWDM 则不需要激光器制冷、波长锁定和精确镀膜等复杂技术,大大降低了设备成本。

1.2功耗低

DWDM系统激光器集成了Peltier致冷器,采用的温度检测和控制电路消耗较大的功率,每波长需要消耗4瓦左右,CWDM的无致冷激光器及其控制电路每波长只需要约0.5瓦左右。对于多波长和高速率的DWDM系统,单盘功耗控制是系统设计中的一个困难问题。采用无致冷激光器的CWDM系统的低

功耗减少电源备用蓄电池,降低成本。

1.3体积小,集成度高

CWDM激光器物理尺寸上远小于DFB激光器。DWDM光发射机尺寸是CWDM光发射机的5倍左右。由于CWDM激光器结构和简单的控制电路,单个模块可以实现多路光收发,目前商用器件已经做到4路transceiver集成在一个尺寸仅为16cm?9cm?1.65cm的模块,相当于一路DWDM系统光转发器大小。CWDM系统不使用光放大器,因此有可能设计成结构紧凑的台式或者是盒式设备,非常方便安装和维护。

2、CWDM 关键技术

2.1 波长选择

国际电联(ITU)建议G.694.2定义了18个从1270nm~1610nm CWDM标称波长,波长间隔为20nm,这种间隔允许在使用无致冷光源条件下,各个波长的同时传输,CWDM波长涵盖了单模光纤系统的O、E、S、C、L等五个波段。

无致冷激光器通常工作温度(管壳温度)范围为0?C~70?C,其热漂移系数约为0.08nm/?C。

标称中心波长值是指在常温下即23?C激光器输出波长。

无源器件滤波特性(如复用器)几乎不随温度变化,一般认为无源器件标称中心波长应该对准激光器35?C时的输出信号波长,因为35?C在整个工作温度范围的中间。也就是说,无源器件标称中心波长应该是λ0加上激光器输出从23?C 到35?C的波长漂移值,即λ0 + 0.08nm/?C *(35?C -23?C) = λ0+1nm。为了解决激光器波长标称温度与实际工作温度不同造成的波长差异问题。ITU将建议G.694.2波长上移1nm(为1271nm/1291nm/…/1611nm),从而使激光器波长在实际环境刚好工作在(1270nm/1290nm/…/1610nm)。

实际应用中,CWDM 产品主要有两种形式,8波长系统和16波长系统。

8波长系统是目前应用比较多的系统。从理论上讲,从ITU给出的18个波长选择中任意选择8个都可以作为工作波长。但是考虑到已经敷设光纤的类型和损耗特性,8波长一般选在(1460-1620)nm,也就是S+C+L波段,避开了光纤水峰E波段和损耗较大的O 波段,不需要对光纤提出额外要求。16波长的系统将对光纤的类型提出要求,也就是必须采用损耗平坦的“全波”光纤,而目前此类光纤应用很少。CWDM 主要用于光纤缺乏的接入区域,8波的容量大部分可以满足系统要求。

2.2波长间隔

根据目前激光器制造技术,无致冷激光器在工作条件下及其整个寿命期内,其波长变化应在+/-6~7nm 之内。考虑到足够的相邻通道隔离度和一定的的保护

带(一般为最小通道间隔约三分之一),ITU建议G.694.2选取20nm为CWDM 系统的通道间隔。

CWDM系统无制冷激光器在0?C~70?C输出光波长变化6nm左右,再加上激光器制造过程波长偏差约±3nm,总波长变化不会超过±6nm。光滤波器通带以及相邻通道间波长间隔都必须足够宽以满足无致冷激光器波长偏移的要求,如图1所示。

图1 无致冷激光器输出波长随温度变化

通常CWDM系统通道间隔为20NM,而滤波器通带宽度为13NM左右。激光器中心波长偏移必须考虑与滤波器通带宽度相一致,必须确保激光器输出波长在滤波器通带范围以内。

2.3 光纤选型

城域内敷设的大部分都是常规G.652光纤,也就是1385nm为水峰的光纤,在1385nm窗口的损耗在1dB左右,无法正常工作。这种光纤可以开通CWDM 8波系统,工作在波长区(1460-1625)nm,不能开通16波CWDM 系统。只有采用损耗平坦的新型G.652C“全波"光纤,才能开通16波长的CWDM系统。

G.655A光纤由于截止波长在1430nm左右(LEAF光纤的截止波长在1470nm,根本无法在1460nm工作,),8波系统都有困难。G.655B 光纤截止波长低一些,可以开通8波系统,因此G.655光纤最多开通8波CWDM 系统。

考虑到成本、开通系统速率、传输距离等各方面因素,城域网内多数敷设的都是G.652光纤。因此都可以正常开通8波CWDM 系统。对于采用全频带全波G.652C光纤,则可以开通16波CWDM 系统。

2.4 CWDM 与DWDM 比较

城域DWDM来源于长途DWDM技术,技术成熟,传输距离远,波长数多(32/40),可以组建比较大的OADM环网(200km),适用于城域网核心层。CWDM是针对网络边缘需求产生的技术,设备体积小,功耗低,价格便宜。适用于城域网接入层,解决光纤短缺的问题,运营商在竞争区域可以租用单根光纤传送多种业务。 CWDM 系承载客户速率一般在2.5Gb/s以下、波长数目为8个或16个,考虑到成本一般没有放大器(并且覆盖CWDM 如此宽频段的光放大器尚没有商用化),功率预算小,传输距离短,一般小于20公里。而DWDM系统在城域网核心层采用的可能性更大,核心层的速率高(一般在10Gb/s),传输距离远(40公里以上),承载业务量大(波长数量多),而这要求系统有更大的功率预算,需要高功率的光放大器。

DWDM 系统组网一般为环网拓扑,节点采用的都是有保护功能的OADM ,而且具有网管系统可配置的波长上下能力,网管系统比较完善。而CWDM 系统则有可能采用背对背复用器/解复用器结构,不采用OADM 节点。即使采用OADM 节点,也基本上为全部上下波长或单一波长上下的简单结构,系统对波长的配置能力比较差,网管系统非常简单。

从保护方式上,城域DWDM 系统一般为环网拓扑,采用光复用段保护或光通道保护环系统,对所有业务都进行保护,以提高系统可靠性。而CWDM 一般为点到点线性或环形拓扑,线性系统一般没有保护,环网多选用简单的光通道保护,根据各波长承载业务重要性选择是否保护。

3、CWDM 标准化情况

ITU建议G.695规定了CWDM 系统技术要求。对其最重要的光接口参数规范

了“黑盒子(black box)”和“非黑盒子(non-black box)”两种方式。

对“黑盒子”方式有两种理解,一种方式是只要求在MPI-S、MPI-R进行规范,而对其内部所有接口都不进行定义,也就是实现群路光接口的横向兼容性,内部接口不进行规范。另一种“黑盒子”方式是在CWDM系统对外的单个通路口

S S 、R

S

横向兼容、内部MPI-S、MPI-R纵向兼容的方式,也就是在CWDM 系统对

业务光接口横向兼容的方式。

CWDM Network

Element CWDM Network

Element

图2 “黑盒子”方式

CWDM Network

Element CWDM Network

Element

图3 “非黑盒子”方式

而“非黑盒子”方式则要求对于MPI-S、MPI-R、S S

、R S系统各个接口都进行标准化,以实现完全横向兼容性。从长远看系统应实现完全横向兼容性。但是考虑到短时间内无法完成,目前的建议版本仍然采用在群路口提供横向兼

容性的“黑盒子”方式(图2所示方式)。

CWDM 的应用代码目前尚没有完全确定,市场上多为单纤单向4波长或8波长系统。也有厂商提出单向12波长系统,更有人主张双向6+6、双向4+4波长应用方式,采用单纤双向方式解决双向传输问题。考虑到城域网光纤长度较短,色散和损耗都不会成为系统受限因素,对于G.652、G.655光纤应有着相同的应用代码。

4、小结

CWDM 技术解决了光纤短缺和多业务透明传输两个问题,低成本是它的最大优势,主要应用在城域网汇聚或接入层面,对于竞争区域的运营者有着比较大的吸引力,可以在短时间建设网络并开展业务。目前CWDM 在国内市场上已经有了一些应用,但是其稳定性和性能还需要观察,另外DWDM 系统价格下降很快,也对CWDM 的前景有一定挑战。

作者简介:现任中国电信集团北京研究院技术部主任、高级工程师;中国通信标准化协会传送

网与接入网技术工作委员会传送网工作组组长;曾任信息产业部电信传输研究所传输与接入研究部主任;长期从事大容量光缆系统和光联网技术的研究,曾主持制定国内通信行业标准“光波分复用系统

总体技术要求”、“32*10 Gb/s WDM 线路系统技术要求”、“160*10 Gb/s WDM 线路系统技术要求”;负责承担863-300重大项目《中国高速信息示范网光网络性能测试》;长期参与运营商光传送

网建设,具有丰富的主持大型网络设备测试和评估的经验。

光波分复用系统的基本原理

光波分复用系统的基本原理 本文简要介绍光波分复用系统的基本原理、结构组成、功能配置、关键技术部件和技术特点,说明光波分复用WDM系统是今后光通信发展的方向。 一、光波分复用(WDM)技术 光波分复用(Wavelength Division Multiplexing,WDM)技术是在一根光纤中同时同时多个波长的光载波信号,而每个光载波可以通过FDM或TDM方式,各自承载多路模拟或多路数字信号。其基本原理是在发送端将不同波长的光信号组合起来(复用),并耦合到光缆线路上的同一根光纤中进行传输,在接收端又将这些组合在一起的不同波长的信号分开(解复用),并作进一步处理,恢复出原信号后送入不同的终端。因此将此项技术称为光波长分割复用,简称光波分复用技术。 WDM技术对网络的扩容升级,发展宽带业务,挖掘光纤带宽能力,实现超高速通信等均具有十分重要的意义,尤其是加上掺铒光纤放大器(EDFA)的WDM对现代信息网络更具有强大的吸引力。 二、WDM系统的基本构成 WDM系统的基本构成主要分双纤单向传输和单纤双向传输两种方式。单向WDM是指所有光通路同时在一根光纤上沿同一方向传送,在发送端将载有各种信息的具有不同波长的已调光信号通过光延长用器组合在一起,并在一根光纤中单向传输,由于各信号是通过不同波长的光携带的,所以彼此间不会混淆,在接收端通过光的复用器将不同波长的光信号分开,完成多路光信号的传输,而反方向则通过另一根光纤传送。双向WDM是指光通路在一要光纤上同时向两个不同的方向传输,所用的波长相互分开,以实现彼此双方全双工的通信联络。目前单向的WDM系统在开发和应用方面都比较广泛,而双向WDM由于在设计和应用时受各通道干扰、光反射影响、双向通路间的隔离和串话等因素的影响,目前实际应用较少。 三、双纤单向WDM系统的组成 以双纤单向WDM系统为例,一般而言,WDM系统主要由以下5部分组成:光发射机、光中继放大器、光接收机、光监控信道和网络管理系统。 1.光发射机 光发射机是WDM系统的核心,除了对WDM系统中发射激光器的中心波长有特殊的要求外,还应根据WDM系统的不同应用(主要是传输光纤的类型和传输距离)来选择具有一定色度色散容量的发射机。在发送端首先将来自终端设备输出的光信号利用光转发器把非特定波长的光信号转换成具有稳定的特定波长的信号,再利用合波器合成多通路光信号,通过光功率放大器(BA)放大输出。

波分复用技术(WDM)

波分复用技术(WDM)介绍 --------密集波分复用(DWDM)和稀疏波分复用(CWDM) 波分复用(WDM)是将两种或多种不同波长的光载波信号(携带各种信息)在发送端经复用器(亦称合波器,Multiplexer)汇合在一起,并耦合到光线路的同一根光纤中进行传输的技术;在接收端,经解复用器(亦称分波器或称去复用器,Demultiplexer)将各种波长的光载波分离,然后由光接收机作进一步处理以恢复原信号。这种在同一根光纤中同时传输两个或众多不同波长光信号的技术,称为波分复用。 WDM本质上是光域上的频分复用FDM技术。每个波长通路通过频域的分割实现,每个波长通路占用一段光纤的带宽。WDM系统采用的波长都是不同的,也就是特定标准波长,为了区别于SDH系统普通波长,有时又称为彩色光接口,而称普通光系统的光接口为“白色光口”或“白光口”。 通信系统的设计不同,每个波长之间的间隔宽度也有不同。按照通道间隔的不同,WDM 可以细分为CWDM(稀疏波分复用)和DWDM(密集波分复用)。CWDM的信道间隔为20nm,而DWDM的信道间隔从0.2nm 到1.2nm,所以相对于DWDM,CWDM称为稀疏波分复用技术。 1 DWDM技术简介 WDM和DWDM是在不同发展时期对WDM系统的称呼。在20世纪80年代初,人们想到并首先采用的是在光纤的两个低损耗窗口1310nm窗口和1550nm窗口各传送1路光波长信号,也就是1310nm、1550nm两波分的WDM系统。随着1550nm窗口EDFA的商用化,WDM系统的相邻波长间隔变得很窄(一般小于1.6nm),且工作在一个窗口内,共享EDFA光放大器。为了区别于传统的WDM系统,人们称这种波长间隔更紧密的WDM系统为密集波分复用系统。所谓密集,是指相邻波长间隔而言,过去WDM系统是几十纳米的波长间隔,现在的波长间隔只有0.4~2nm。密集波分复用技术其实是波分复用的一种具体表现形式。如果不特指1310nm、1550nm的两波分WDM系统外,人们谈论的WDM系统

光电子技术实验报告

《光电子技术实验》实验报告 波分复用光纤传输系统 王浩然无112011011202

1实验目的 ?了解WDM的特性及其简单应用; ?掌握WDM的复用方法,实现单纤单向和单纤双向的双波长复用和解复用; ?观察菲涅尔反射现象,了解其在光纤传输中的影响。 2实验原理 波分复用技术是在单根光纤中传输多个波长光信号的一项技术。典型的波分复用的框图如下所示: 图1:波分复用系统框图 其基本原理是在发送端将不同波长的光信号组合在一起复用,并耦合到光纤线路中的同一根光纤中进行传输,在接收端又将组合波长的光信号解复用,并做进一步处理,恢复出原信号送入不同的终端。目前波长域的波分复用技术主要有三种:粗波分复用、密集波分复用和光频分复用。三者的区别是复用的信道的波长间隔不同。 3实验装置 波分复用实验的光端机为视频光发射机和视频光接收机。实验装置包括视频光发端机三台,视频光接收机三台,摄像头三台,监视器三台,视频电缆6跟,高隔离度的WDM2只,的隔离度的WDM2只,OADM1只,固定光衰减器若干,法兰盘若干,可调衰减器2只。 4实验步骤 1.搭建两种波长分别为1310nm和1550nm的点到点的光纤传输系统,测量两种系统的接收机灵敏度,计算等效传输距离。 2.按照如下框图搭建单纤单向传输的波分复用系统,观察监视器上的图像,测量两种波长系统的接收机灵敏度,计算等效传输距离。

图2:单纤单向传输波分复用系统 3.按下图搭建单纤双向传输的波分复用系统,观察监视器上的图像,测量两种波长系统的接收机灵敏度,计算等效传输距离。 图3:单纤双向波分复用系统 4.如下图所示,将发射端WDM的1310nm和1550nm的发送端接反,观察监视器上的图像。将接收端也接反,观察监视器上的图像变化。 图4:单纤单向发射端反接 5.单纤单向传输时,如下图所示,发射端用隔离度较低的WDM,观察监视器上的图像变化。如果接收端用隔离度较低的WDM光茶监视器上的图像变化。 图5:单纤单向发射端低隔离度WDM 图6:单纤单向接收端低隔离度WDM

WDM 技术和要求

第1章WDM概述 1.1 WDM技术的产生背景 1.1.1 光网络复用技术的发展 随着信息时代宽带高速业务的不断发展,不但要求光传输系统向更大容量、更长 距离发展,而且,要求其交互便捷。因此,在光传输系统中引入了复用技术。所 谓复用技术是指利用光纤宽频带、大容量的特点,用一根光纤或光缆同时传输多 路信号。在多路信号传输系统中,信号的复用方式对系统的性能和造价起着重要 作用。 光纤传输网的复用技术经历了空分复用(SDM)、时分复用(TDM)到波分复用 (WDM)三个阶段的发展。 SDM技术设计简单、实用,但必须按信号复用的路数配置所需要的光纤传输芯数, 投资效益较差;TDM技术的应用很广泛,缺点是线路利用率较低;WDM技术在 1根光纤上承载多个波长(信道),使之成为当前光纤通信网络扩容的主要手段。 光纤通信系统经历了几个发展阶段,从70年代末的PDH系统,90年代中期的 SDH系统(经历了准同步数字体系(PDH)、同步数字体系(SDH),和波分复用 (WDM)三个阶段),以及近来风起云涌的DWDM系统,乃至将来的智能光网 络技术,光纤通信系统自身正在快速地更新换代。 波分复用技术从光纤通信出现伊始就出现了,80年代末、90年代初,AT&T贝尔 实验室的厉鼎毅(T.Y.Lee)博士大力倡导波分复用(DWDM)技术,两波长WDM (1310/1550nm)系统80年代就在美国AT&T网中使用,速率为2×1.7Gb/s。 但是到90年代中期,WDM系统发展速度并不快. 从技术和经济的角度,DWDM技术是目前最经济可行的扩容技术手段。 WDM WDM又叫波分复用技术,是新一代的超高速的光缆技术,所谓波分复用技术, 就是在单一光纤内同步传输多个不同波长的光波,让数据传输速度和容量获得倍 增,它充分利用单模光纤的低损耗区的巨大带宽资源,采用合波器,在发送端将 不同规定波长的光载波进行合并,然后传入单模光纤。在接收部分将再由分波器 将不同波长的光载分开的复用方式,由于不同波长的载波是相互独立的,所以双

波分复用系统WDM结构原理和分类

波分复用系统(WDM),波分复用系统(WDM)结构原理和分类 波分复用系统简要介绍 光波分复用技术是在一根光纤中传输多波长光信号的一项技术。其基本原理是在发送端将不同波长的光信号组合起来(复用),并耦合到光缆线路上的同一根光纤中进行传输,在接收端又将组合波长的光信号分开〔解复用),并进一步处理,恢复出原信号后送入不同的终端。具体如下。 如图1所示。发送端内有N个发射机:发射机所发出的光的波长是不同的,它们的波长分别为波长1-N。每个光波承载1路信号。再把N个光发射机发出的光信号(光信号1-N)集中为1个光的群信号,送进光纤线路,直到接收端。若线路很长,光信号太弱,就加一光放大器,把光信号放大。在接收端有N个光滤波器(1-N)。滤波器1对载有信号1的光信号(波长1)有选择通过的作用,……滤波器N对载有信号N的光信号(波长N)有选择通过的作用。光接收机的作用是把载有信号的光信号还原为原信号。 光波分复用的关键器件 (1)分布反馈多量子阱激光器(DFB MQW—LD) (2)光滤波器 (3)光放大器

图1 波分复用系统原理 波分复用系统的发展与现状 WDM 波分复用并不是一个新概念在光纤通信出现伊始人们就意识到可以利用光纤的巨大带宽进行波长复用传输但是在20世纪90年代之前该技术却一直没有重大突破其主要原因在于TDM 的迅速发展从155Mbit/s 到622Mbit/s 再到2.5Gbit/s系统TDM 速率一直以过去几年就翻4 倍的速度提高人们在一种技术进行迅速的时候很少去关注另外的技术1995 年左右WDM 系统的发展出现了转折一个重要原因是当时人们在TDM 10Gbit/s 技术上遇到了挫折,众多的目光就集中在光信号的复用和处理上WDM 系统才在全球范围内有了广泛的应用。 WDM技术还具有以下若干优点:1 )能同时传输多种不同类型的信号;2)能实现单根光纤双向传输;3)有多种应用方式;4)节约线路投资;5)降低器件的超高速要求;6)对数据格式透明,能支持IP业务;7)具有高度的组网灵活性、经济性和可靠性。 在80年代中,已有人采用1.3微米和1.55微米两个频道的光波分复用技术,制造出简便实用的光纤通信系统。在90年代初,光波分复用的关键器件有突破,它包括:高精确和稳定的波长的激光器、滤光器和光放大器。于是,所谓密集光波分复用(DWDM,dense wavelenght division multiplex)光纤通信系统研制成功。 通过引入光交叉连接( OXC,Optical Cross-Connected)和光分插复用器(OADM, Optical Add-Drop Multiplexing),组建下一代智能化的宽带大容量的高度可靠的自动交换光网络将成为可能。WDM技术首先是作为一种点到点的传输技术而提出的,它发展很快并很快走向成熟,目前在骨干光纤网上己经得到广泛的推广和应用。从1995年到1999年,美国各大长途电话公司已经完成在其干线网络中配置WDM设备的工作。1998到1999年,中国

光纤通信波分复用系统的研究与设计

武汉工程大学邮电与信息工程学院 毕业设计(论文) 光纤通信波分复用系统的研究与设计 Research And Design Of Optical Fiber Communication Wavelength Division Multiplexing System 学生姓名谭辉 学号1030210221 专业班级通信技术1002(光纤通信方向) 指导教师陈义华 2013年5月

作者声明 本人声明所呈交的论文是我个人在导师指导下进行的研究工作及取得的研究成果,除了文中特别加以标注的地方外,没有任何剽窃、抄袭、造假等违反学术道德、学术规范的行为,也没有侵犯任何其他人或组织的科研成果及专利。与我一同工作的同志对本研究所做的任何贡献均已在论文中作了明确的说明并表示了谢意。如本毕业设计(论文)引起的法律结果完全由本人承担。 毕业设计(论文)成果归武汉工程大学邮电与信息工程学院所有。 特此声明。 作者专业: 作者学号: 作者签名: ____年___月___日

摘要 20世纪90年代以来光纤通信得到了迅速的发展,光纤通信中的新技术也在不断涌现,其中波分复用技术就是光纤通信中重要的技术之一。波分复用(WDM)是在同一根光纤中同时传输两个或众多不同波长光信号的技术。 本文首先介绍了光纤通信的发展、特点、基本组成和波分复用技术(WDM)的基础知识、应用状况及目前存在的问题和发展状况,其中重点介绍了稀疏波分复用(CWDM)技术和密集波分复用(DWDM)技术的特点及其应用。其次深入分析了波分复用技术的基本原理与基本结构,同时深入分析了WDM系统的基本形式和主要特点及存在的问题,最后对现在的WDM的发展方向和前景做了进一步的探讨。 关键词:光纤通信;波分复用;技术研究

密集波分复用(DWDM)传输原理考试题

密集波分复用(DWDM)传输原理考试题 一、填空题 1.DWDM系统是指波长间隔相对较小,波长复用相对密集,各信道共用光纤一个(低损耗)窗口,在传输过程中共享光纤放大器的高容量WDM系统。 2.DWDM系统的工作方式主要有双纤单向传输和(单纤双向传输)。 3.G.652光纤有两个应用窗口,即1310nm和1550nm,前者每公里的典型衰耗值为0.34dB,后者为(0.2dB)。 4.G.653光纤又称做色散位移光纤是通过改变折射率的分布将1310nm附近的零色散点,位移到(1550)nm附近,从而使光纤的低损耗窗口与零色散窗口重合的一种光纤。 5.G.655在1530~1565nm之间光纤的典型参数为:衰减<(0.25)dB/km;色散系数在1~6ps/nm·km之间。 6.克尔效应也称作折射率效应,也就是光纤的折射率n随着光强的变化而变化的(非线性)现象。 7.在多波长光纤通信系统中,克尔效应会导致信号的相位受其它通路功率的(调制),这种现象称交叉相位调制。 8.当多个具有一定强度的光波在光纤中混合时,光纤的(非线性)会导致产生其它新的波长,就是四波混频效应。 9.光纤通信中激光器间接调制,是在光源的输出通路上外加调制器对光波进行调制,此调制器实际起到一个(开关)的作用。 10.恒定光源是一个连续发送固定波长和功率的(高稳定)光源。 11.电光效应是指电场引起晶体(折射率)变化的现象,能够产生电光效应的晶体称为电光晶体。 12.光耦合器的作用是将信号光和泵浦光合在一起,一般采用(波分复用)器来实现。 13.光栅型波分复用器属于角色散型器件,是利用(角色散)元件来分离和合并不同波长的光信号。 14.DWDM系统中λ1中心波长是(1548.51nm)。

波分复用技术论文

波分复用技术 摘要波分复用(WND)是将两种或多种不同波长的光载波信号(携带各种信息)在发送端经复用器(亦称合波器,Multiplexer)汇合在一起,并耦合到光线路的同一根光纤中进行传输的技术;在接收端,经解复用器(亦称分波器或称去复用器,Demultiplexer)将各种波长的光载波分离,然后由光接收机作进一步处理以恢复原信号。这种在同一根光纤中同时传输两个或众多不同波长光信号的技术,称为波分复用。 关键词波分复用技术(WDM),光纤,光传输网,交叉连接 引言 WDM是一种在光域上的复用技术,形成一个光层的网络既全光网,将是光通讯的最高阶段。建立一个以WDM和OXC(光交叉连接)为基础的光网络层,实现用户端到端的全光网连接,用一个纯粹的“全光网”消除光电转换的瓶颈将是未来的趋势。现在WDM技术还是基于点到点的方式,但点到点的WDM技术作为全光网通讯的第一步,也是最重要的一步,它的应用和实践对于全光网的发展起到决定性的作用。 1 波分复用技术 指在同一根光纤中同时让两个或两个以上的光波长信号通过不同光信道各自传输信息,称为光波分复用技术,简称WDM。光波分复用包括频分复用和波分复用。光频分复用(FDM)技术和光波分复用(WDM)技术无明显区别,因为光波是电磁波的一部分,光的频率与波长具有单一对应关系。通常也可以这样理解,光频分复用指光频率的细分,光信道非常密集。光波分复 用指光频率的粗分,光倍道相隔较远,甚至处于光纤不同窗口。 光波分复用一般应用波长分割复用器和解复用器(也称合波/分波器)分别置于光纤两端,实现不同光波的耦合与分离。这两个器件的原理是相同的。光波分复用器的主要类型有熔融拉锥型,介质膜型,光栅型和平面型四种。其主要特性指标为插入损耗和隔离度。通常,由于光链路中使用波分复用设备后,光链路损耗的增加量称为波分复用的插入损耗。当波长11,l2通过同一光纤传送时,在与分波器中输入端l2的功率与11输出端光纤中混入的功率之间的差值称为隔离度。光波分复用的技术特点与优势如下: 1.1 充分利用光纤的低损耗波段,增加光纤的传输容量,使一根光纤传送信息的物理限度增加一倍至数倍。目前我们只是利用了光纤低损耗谱(1310nm-1550nm)极少一部分,波分复用可以充分利用单模光纤的巨大带宽约25THz,传输带宽充足。 1.2 具有在同一根光纤中,传送2个或数个非同步信号的能力,有利于数字信号和模拟信号的兼容,与数据速率和调制方式无关,在线路中间可以灵活取出或加入信道。 1.3 对已建光纤系统,尤其早期铺设的芯数不多的光缆,只要原系统有功率余量,可进一步增容,实现多个单向信号或双向信号的传送而不用对原系统作大改动,具有较强的灵活性。 1.4 由于大量减少了光纤的使用量,大大降低了建设成本、由于光纤数量少,当出现故障时,恢复起来也迅速方便。 1.5 有源光设备的共享性,对多个信号的传送或新业务的增加降低了成本。 1.6 系统中有源设备得到大幅减少,这样就提高了系统的可靠性。目前,由于多路载波的光波分复用对光发射机、光接收机等设备要求较高,技术实施有一定难度,同时多纤芯光缆的

密集波分复用(DWDM)传输原理试题

第二章密集波分复用(DWDM)传输原理 一、填空题 1. DWDM系统是指波长间隔相对较小,波长复用相对密集,各信道共用光纤一个低损耗窗口, 在传输过程中共享光纤放大器的高容量WDM系统。 2. DWDM系统的工作方式主要有双纤单向传输和单纤双向传输。 3. G.652光纤有两个应用窗口,即1310nm和1550nm,前者每公里的典型衰耗值为0.34dB, 后者为0.2dB 。 4. G.653光纤又称做色散位移光纤是通过改变折射率的分布将1310nm附近的零色散点,位 移到1550 nm附近,从而使光纤的低损耗窗口与零色散窗口重合的一种光纤。 5. G.655在1530~1565nm之间光纤的典型参数为:衰减< 0.25 dB/km;色散系数在1~ 6ps/nm·km之间。 6. 克尔效应也称作折射率效应,也就是光纤的折射率n随着光强的变化而变化的非线性现象。 7. 在多波长光纤通信系统中,克尔效应会导致信号的相位受其它通路功率的调制,这种现象 称交叉相位调制。 8. 当多个具有一定强度的光波在光纤中混合时,光纤的非线性会导致产生其它新的波长,就 是四波混频效应。 9. 光纤通信中激光器间接调制,是在光源的输出通路上外加调制器对光波进行调制,此调制器 实际起到一个开关的作用。 ⒑恒定光源是一个连续发送固定波长和功率的高稳定光源。 ⒒电光效应是指电场引起晶体折射率变化的现象,能够产生电光效应的晶体称为电光晶体。 ⒓光耦合器的作用是将信号光和泵浦光合在一起,一般采用波分复用器来实现。 ⒔光栅型波分复用器属于角色散型器件,是利用角色散元件来分离和合并不同波长的光信号。 ⒕DWDM系统中λ1中心波长是1548.51nm 。 ⒖DWDM系统中λ2中心频率是193.5THz 。 二、单项选择题 ⒈光纤WDM明线技术中的FDM模拟技术,每路电话( B)。 A、2kHz B、4kHz C、6kHz D、8kHz ⒉光纤WDM中的小同轴电缆60路FDM模拟技术,每路电话( B )。 A、2kHz B、4kHz C、6kHz D、8kHz ⒊光纤WDM中的中同轴电缆1800路FDM模拟技术,每路电话( B )。

通信双频波分复用原理

实验一通信双频波分复用原理 一、实验目的 1、熟悉WDM器件的使用。 2、掌握WDM器件的插入损耗及串扰的测试。 3、掌握经过同一光纤信道的多机通信。 二、实验原理 波分复用(WDM)通信的基本原理 波分复用是指一条光纤中同时传输具有不同波长的几个载波,而每个载波又各自载荷一群数字信号,因此波分复用又称为多群复用。如图1所示。具有不同波长、各自载有信息信号的若干个载波经由CH1、CH2、…….CHn等进入合波器,被耦合到同一条光纤中去,再经此光纤长距离传输,到终端进入合波器,由其按波长将各载波分离,分别进入各自通道CH1’、CH2’、…….CHn’,分别解调,从而使各自载荷信息重现。同样过程可沿与上述相反的方向进行,如图1中的虚线所示,这样的复用称为双向复用,显然,双向复用的复用量将增大一倍,如一个通道传输的信息为B,单向复用传输的则为NB,双向复用传输的则为2NB。 波分复用器 波分复用器的工作原理来源于物理光学,如利用介质薄膜的干涉滤光作用、利用棱镜和光栅的色散分光作用等。 图1 波分复用原理图 (1)干涉滤光片型波分复用器由薄膜光学原理得知,具有高折射率nH、低折射率nL的两种材料交替组成的膜系呈现出滤光效应,如图2所示。在λ0处吸收最小,即透过率最大,因此起到了滤光作用。不过,比较来说,由于Δλ难以作到很窄,故复用的路数是有限的,而且要求被分割的两路波长之间不能靠的太近,以防止串扰。这些都属于干涉滤光片型波分复用器的缺点。

图2 干涉滤波WDM原理 (2)光栅型波分复用器光栅是一种等间隔分割光波波面的光学装置,它具有明显的角色散作用,因此可以用来做分光和合光器件,如下图所示,光源S发出的光通过光栅G,在其后焦面的P点上得到光强可以写成如下形式: 其中u,v是与光栅常数(a,b)有关的系数,显然,当V=kл时可获得最大光强,或者说,在满足下列方程(即光栅方程)的方向(θ角)上,会出现亮线: 这样,当入射光为多种波长组成的复合光时,则由上两式确定出,不同的波长将沿不同的方向出射,从而达到分光的目的;如沿反方向传播,则作用相反,即起到合光作用,光栅靠的是角色散作用分光合光的,角色散的大小可由下式求出,即 由此可以得出:为获得较大的角色散,应取较高的级次(k),如果再考虑高级次有足够的能量,因此使用闪烁型光栅最为适宜,如图3所示,目前使用或研制的光栅型复用器几乎均采用此类型光栅。与滤光片型比较,光栅型复用器的最大优点是:分路(合路)的路数多;缺点是:插入损耗大,制作工艺相对复杂些。 图3 光栅型波分复用器 (3)棱镜型波分复用器和光栅一样,棱镜也是一种熟知的角色散器件,因此也具有显著的分光作用,棱镜的角色散为 其中n是折射率,a是棱镜的折射角,(dn/dλ)是色散率,由此可见,为了实现较多路数的分波和合波,即要求较大的角色散,则应选择大的折射角和高色散率的棱镜。 由于棱镜型复用器件的工艺复杂,制作较难,因此单独使用的较少,一般多将它与其它类型的复用器件结合使用,构成复合型的复用器件。 (4)光纤耦合型波分复用器上述几种复用器件虽各有优点,但他们有一个共同的缺点,即

CWDM DWDM双架构波分复用系统网管平台

CWDM/DWDM双架构波分复用系统网管平台 16槽机架式多业务网管系统可同时支持125M~2.5G/125M~4.25G/10G CWDM/DWDM双架构波分复用系统,是高可靠、低成本的传输设备。支持各种速率,单模/多模,单纤/双纤,SFP,SFP+,XFP等。此网管平台功能全面、设置简单,支持SNMP、WEB、CONSOLE及TELNET等网管方式,可实现多业务卡局端远端统一平台集中管理。 1.基于图形界面(GUI)的网络管理,软件操作简单,用户界面友好,设置不同的授权用户(普通用户、高级用户和管理员) 2.采用集中式管理方式,结合树形目录,可在一个软件界面内同时管理多台机架式设备;同时引入组管理方式,在管理中充分增强层次性,即使同时管理很多设备,也可以方便地对任意一台设备进行操作 3.提供主从式管理模块,可以级联3个子机架管理,管理模块失败不影响其他模块正常工作 4.支持基于Snmp、Web、Telnet和Console方式的图形化和命令行管理Console口管理:用户可以直接使用WINDOWS自带的超级终端,通过机架串口进行网络配置和设置用户权限,并可以显示/控制局端和远端设备工作状态;WEB管理:使用网络浏览器(IE等),通过WEB页面进行远程访问,可以进行网络配置和设置权限,并可以显示/控制远程设备的工作状态; 5.标准SNMP协议:提供MIB库文件,方便整合到第三方的SNMP网管软件;用户可以设置达四个TRA P地址,按用户需要选择TRAP触发条件,如TX由Link到Down、FX由Link到Down等; 6.专用网管软件:中心局专用网管软件在后台运行,采集信息以数据库的形式保存在网管PC机硬盘。可以设置用户权限和显示/控制局端和远端设备的工作状态。 7.网管系统支持网络设备自动发现与添加功能 8.可以显示和配置机架名称、地域信息、IP地址相关信息及软硬件版本号等系统信息 9.可查询详细的电源以及业务卡工作状态,显示机箱温度信息,有故障实时上报 10.支持SFP/XFP、CWDM SFP/XFP、DWDM SFP/XFP及显示SFP/XFP信息与数字诊断功能 11.支持远端掉电检测,能够通过对端发送的远端错误信号检测发送端光纤连接状态 12.支持故障转移(LFP)功能,能迅速定位故障发生的链路,为维护人员提供方便 13.支持远程重启,通过网管软件设置系统重启或单个模块重启 14.业务板卡可恢复出厂设置配置或拨码开关配置,掉电后配置信息自动保存

波分复用技术

浅议波分复用技术 一、波分复用技术的概念 波分复用(WDM)是将两种或多种不同波长的光载波信号(携带各种信息)在发送端经复用器(亦称合波器,Multiplexer)汇合在一起,并耦合到光线路的同一根光纤中进行传输的技术;在接收端,经解复用器(亦称分波器或称去复用器,Demultiplexer)将各种波长的光载波分离,然后由光接收机作进一步处理以恢复原信号。这种在同一根光纤中同时传输两个或众多不同波长光信号的技术,称为波分复用。 系统的设计不同,每个波长之间的间隔宽度也有不同。按照通道间隔的不同,WDM可以细分为CWDM(稀疏波分复用)和DWDM (密集波分复用)。CWDM的信道间隔为20nm,而DWDM的信道间隔从0.2nm 到1.2nm。 CWDM和DWDM的区别主要有二点:一是CWDM载波通道间距较宽,因此,同一根光纤上只能复用5到6个左右波长的光波,“稀疏”与“密集”称谓的差别就由此而来;二是CWDM调制激光采用非冷却激光,而DWDM采用的是冷却激光。冷却激光采用温度调谐,非冷却激光采用电子调谐。由于在一个很宽的波长区段内温度分布很不均匀,因此温度调谐实现起来难度很大,成本也很高。CWDM避开了这一难点,因而大幅降低了成本,整个CWDM系统成本只有DWDM的30%。CWDM是通过利用光复用器将在不同光纤中传输的波长结合到一根光纤中传输来实现。在链路的接收端,利用解复用

器将分解后的波长分别送到不同的光纤,接到不同的接收机。 二、CWDM技术简介 1.CWDM标准制定情况 美国的1400nm商业利益组织正在致力于为CWDM系统制定标准。目前建议草案考虑的CWDM系统波长栅格分为三个波段。“O 波段”包括四个波长: 1290、1310、1330和1350nm,“E波段”包括四个波长: 1380、1400、1420 和1440nm,“S+C+L”波段包括从1470nm到1610nm的范围,间距为20nm的八个波长。这些波长利用了光纤的全部光谱,包括在1310、1510和1550nm 处的传统光源,从而增加了复用的信道数20nm的信道间距允许利用廉价的不带冷却器的激光发射机和宽带光滤波器,同时,它也躲开了1270nm高损耗波长,并且使相邻波段之间保持了30nm的间隙。 尽管目前还没有CWDM的技术标准,在市场上已经存在一个事实上的城域网标准:IEEE已经制定了万兆以太网10GbE标准。CWDM的标准将据此来制定。 CWDM的复用/解复用器和激光器正在逐渐形成自己的标准。相邻波长间隔根据无冷却的激光器在很宽的温度范围内工作产生的波长漂移来决定。目前被确定为20nm,其中心波长为:1491,1511,1531等一直到1611nm。而在1300nm波段,IEEE 以太网定义通道宽度为20nm,但是中心波长为1290,1310,1330和1359nm。在1400nm波段如何定义还不知道。目前已经成立CWDM用户组开始结束CWDM城域网标准的混乱状态。

光波分复用通信技术的特点

光波分复用通信技术的特点 光波分复用技术之所以得到世界各国的普遍重视和迅速发展,是与其出色的技术特点密不可分的. 1.光波分复用器结构简单、体积小、可靠性高 在波分复用技术中,技术的关键在于光波分复用器,它应具有将几种不同波长的光信号按一定顺序组合起来传输的功能,又具有将组合起来传输的光信号分开,并分别送入相应终端设备的功能.目前实用的光波分复用器,都为一个无源纤维光学器件,由于不含电源,因而器件具有结构简单、体积小、可靠、易于和光纤耦合等特点.另外由于波分复用器具有双向可逆性,即一个器件可以起到将不同波长的光信号进行组合和分开的作用,因此便于在一根光纤上实现双向传输的功能. 2.不同容量的光纤系统以及不同性质的信号均可兼容传输 由于光波分复用器是对不同波长的光载波信号以一定的次序进行排列以达到提高光纤频带利用率的目的,而与各系统的传输速率以及电调制方式无关,即各不同波长的光信号中所携带的信息以及数据,在光波分复用系统中将呈现透明传输.这样无论新加入的另一个系统的调制方式和传输速

率如何,均不受原系统的制约,使不同容量的光纤系统以及多种信息(声音、视频、图像、数据、文字、图形等)均可兼客传输. 3.提高光纤的频带利用率 在目前实用的光纤通信系统中,多数情况是仅传输一个光波长的光信号,其只占据了光纤频谱带宽中极窄的一部分,远远没能充分利用光纤的传输带宽.因而复用技术的使用大大地提高了频带利用率. 一般来说,两光波之间的波长间隔为l0~100nm时称为波分复用(稀疏波分复用);波长间隔为l~10 nm时称为紧密波分复用;当波长间隔小于l nm( lO GHz)情况时,则称之为光频分复用(FDM).如果采用后面将要介绍的相干光通信技术,则频率间隔能够进一步缩小到0.1 nm,那么一根光纤内可以安排2 000个光载波,若每一光载波信号的传输速率达到2.4 Gbit/s,则一根光纤就能同时传送10万路广播电视信号. 4.可更灵活地进行光纤通信组网 由于使用光波分复用技术,可以在不改变光缆设施的条件下,调整光通信系统的网络结构,因而在光纤通信组网设计中极具灵活性和自由度,便于对系统功能和应用范围的扩展. 5.存在插入损耗和串光问题

波分复用技术

波分复用技术研究 1.产生背景 1.1全球形势 随着全球互联网(Internet)的迅猛发展,以因特网技术为主导的数据通信在通信业务总量中的比列迅速上升,因特网业务已成为多媒体通信业中发展最为迅速、竞争最为激烈的领域。同时,无论是从数据传输的用户数量还是从单个用户需要的带宽来讲,都比过去大很多。特别是后者,它的增长将直接需要系统的带宽以数量级形式增长。因此如何提高通信系统的性能,增加系统带宽,以满足不断增长的业务需求成为大家关心的焦点。 面对市场需求的增长,现有通信网络的传输能力的不足的问题,需要从多种可供选择的方案中找出低成本的解决方法。缓和光纤数量的不足的一种途径是敷设更多的光纤,这对那些光纤安装耗资少的网络来说,不失为一种解决方案。但这不仅受到许多物理条件的限制,也不能有效利用光纤带宽。另一种方案是采用时分复用(TDM)方法提高比特率,但单根光纤的传输容量仍然是有限的,何况传输比特率的提高受到电子电路物理极限限制。第三种方案是波分复用(WDM)技术, WDM系统利用已经敷设好的光纤,使单根光纤的传输容量在高速率TDM 的基础上成N倍地增加。WDM能充分利用光纤的带宽,解决通信网络传输能力不足的问题,具有广阔的发展前景。 WDM波分复用并不是一个新概念,在光纤通信出现伊始,人们就意识到可以利用光纤的巨大带宽进行波长复用传输,但是在20世纪90年代之前,该技术却一直没有重大突破,其主要原因在于TDM的迅速发展,从155Mbit/s到622Mbit/s,再到2.5Gbit/s系统,TDM速率一直以过几年就翻4倍的速度提高。人们在一种技术进行迅速的时候很少去关注另外的技术。1995年左右,WDM系统的发展出现了转折,一个重要原因是当时人们在TDM10Gbit/s技术上遇到了挫折,众多的目光就集中在光信号的复用和处理上,WDM系统才在全球范围内有了广泛的应用。 1.2 发展过程 1.2.1 发展阶段 光纤通信飞速发展,光通信网络成为现代通信网的基础平台。光纤通信系统经历

光纤通信技术实验报告-密集波分复用

得分:_______ 光纤通信技术实验 (1)密集波分复用器的设计 实验报告

一、实验目的 1、完成基于双光纤准直器、单光纤准直器和介质膜滤光片的密集波分复用器滤波单元的结构设计和优化。 2、完成4波长密集波分复用器件的结构设计和优化。 3、完成密集波分复用器件的构建,并进行相关性能参数的测试。 二、实验原理与背景知识 1、密集波分复用器与光滤波器 密集波分复用器是密集波分复用(DWDM)系统中一种重要的无源光纤器件。由它所构成的合波和分波部分是系统的基本组成之一,它直接决定了系统的容量、复用波长稳定性、插入损耗大小等性能参数的好坏。密集波分复用器还可以衍生为其它多种适用于DWDM的重要功能器件,如波长路由器——用于宽带服务和波长选址的点对点服务的全光通讯网络;上路/下路器——用于指定波长的上/下路;梳状滤波器——用于多波长光源的产生和光谱的测量;波长选择性开关——不同波长信号的路由等,因此对于密集波分复用器的研究和制作具有重要的理论意义和良好的市场前景。 密集波分复用器的核心是窄带光滤波技术。目前常见的光通信用滤波器主要有以下几种:介质膜滤光片、光纤光栅、阵列波导光栅、M-Z干涉仪和F-P标准具等。 2、基于介质膜滤光片的密集波分复用器 2.1介质膜滤光片 介质膜滤光片由两个或者两个以上的用反射介电薄膜层来分隔的腔所构成的,实际上就是多个法布里-白洛标准具叠加的结果,其腔体附近的反射面是通过使用多层反射介电薄膜镀层来实现的。这种器件可以用作带通滤波器,即通过某一个特定的波长而反射其它的波长。滤光片的透射中心波长由腔的长度和入射光线的角度而定。随着腔的增加,介质膜滤光片通带的顶部将变得更加平坦,带尾则更加陡峭,这些都是光通信中所期望的特性。 2.2 光纤准直器

WDM波分复用技术

WDM波分复用技术 1 绪论 本论文主要研究的是WDM波分复用技术,其中包括WDM技术的产生背景,WDM 的基本概念和特点,WDM的关键技术,WDM的网络生存性,WDM技术发展现状及发展趋势等,下面将分别从以上几个方面讨论。 2 WDM技术产生背景 随着科学技术的迅猛发展,通信领域的信息传送量正以一种加速度的形式膨胀。信息时代要求越来越大容量的传输网络。近几年来,世界上的运营公司及设备制造厂家把目光更多地转向了WDM 技术,并对其投以越来越多的关注,增加光纤网络的容量及灵活性,提高传输速率和扩容的手段可以有多种,下面对几种扩容方式进行比较。 1. 空分复用SDM(Space Division Multiplexer) 空分复用是靠增加光纤数量的方式线性增加传输的容量,传输设备也线性增加。 在光缆制造技术已经非常成熟的今天,几十芯的带状光缆已经比较普遍,而且先进的光纤接续技术也使光缆施工变得简单,但光纤数量的增加无疑仍然给施工以及将来线路的维护带来了诸多不便,并且对于已有的光缆线路,如果没有足够的光纤数量,通过重新敷设光缆来扩容,工程费用将会成倍增长。而且,这种方式并没有充分利用光纤的传输带宽,造成光纤带宽资源的浪费。作为通信网络的建设,不可能总是采用敷设新光纤的方式来扩容,事实上,在工程之初也很难预测日益增长的业务需要和规划应该敷设的光纤数。因此,空分复用的扩容方式是十分受限。 2. 时分复用TDM(Time Division Multiplexer) 时分复用也是一项比较常用的扩容方式,从传统PDH 的一次群至四次群的复用,到如今SDH 的STM-1、STM-4、STM-16 乃至STM-64 的复用。通过时分复用技术可以成倍地提高光传输信息的容量,极大地降低了每条电路在设备和线路方面投入的成本,并且采用这种复用方式可以很容易在数据流中抽取某些特定的数字信号,尤其适合在需要采取自愈环保护策略的网络中使用。 时分复用的扩容方式有两个缺陷:第一是影响业务,即在“全盘”升级至更高的速率等级时,网络接口及其设备需要完全更换,所以在升级的过程中,不得不中断正在运行的设备;第二是速率的升级缺乏灵活性,以SDH 设备为例,当一个线路速率为155Mbit/s 的

光波分复用(WDM)技术

光波分复用(WDM)技术 一、波分复用技术的概念 波分复用(WDM)是将两种或多种不同波长的光载波信号(携带各种信息)在 发送端经复用器(亦称合波器,Multiplexer)汇合在一起,并耦合到光线路的同一根光纤中进行传输的技术;在接收端,经解复用器(亦称分波器或称去复用器,Demultiplexer)将各种波长的光载波分离,然后由光接收机作进一步处理以恢复原信号。这种在同一根光纤中同时传输两个或众多不同波长光信号的技术,称为波分复用。 通信系统的设计不同,每个波长之间的间隔宽度也有不同。按照通道间隔的不同,WDM可以细分为CWDM(稀疏波分复用)和DWDM(密集波分复用)。CWDM 的信道间隔为20nm,而DWDM的信道间隔从0.2nm 到1.2nm,所以相对于DWDM,CWDM称为稀疏波分复用技术。 CWDM和DWDM的区别主要有二点:一是CWDM载波通道间距较宽,因此,同一根光纤上只能复用5到6个左右波长的光波,“稀疏”与“密集”称谓的差别就由此而来;二是CWDM调制激光采用非冷却激光,而DWDM采用的是冷却激光。冷却激光采用温度调谐,非冷却激光采用电子调谐。由于在一个很宽的波长区段温度分布很不均匀,因此温度调谐实现起来难度很大,成本也很高。CWDM 避开了这一难点,因而大幅降低了成本,整个CWDM系统成本只有DWDM的30%。CWDM是通过利用光复用器将在不同光纤中传输的波长结合到一根光纤中传输来实现。在链路的接收端,利用解复用器将分解后的波长分别送到不同的光纤,接到不同的接收机。 二、波分复用技术的优点 WDM技术之所以在近几年得到迅猛发展是因为它具有下述优点: (1) 传输容量大,可节约宝贵的光纤资源。对单波长光纤系统而言,收发一个信号需要使用一对光纤,而对于WDM系统,不管有多少个信号,整个复用系统只需要一对光纤。例如对于16个2.5Gb/s系统来说,单波长光纤系统需要32根光纤,而WDM系统仅需要2根光纤。 (2) 对各类业务信号“透明”,可以传输不同类型的信号,如数字信号、模拟信号等,并能对其进行合成和分解。 (3) 网络扩容时不需要敷设更多的光纤,也不需要使用高速的网络部件,只需要换端机和增加一个附加光波长就可以引入任意新业务或扩充容量,因此WDM技术是理想的扩容手段。 (4) 组建动态可重构的光网络,在网络节点使用光分插复用器(OADM)或者使用光交叉连接设备(OXC),可以组成具有高度灵活性、高可靠性、高生存性的全光网络。 三、波分复用技术目前存在的问题 以WDM技术为基础的具有分插复用功能和交叉连接功能的光传输网具有易于重构、良好的扩展性等巨大优势,已成为未来高速传输网的发展方向,但在真正实现之前,还必须解决下列问题。 1.网络管理 目前,WDM系统的网络管理,特别是具有复杂的上/下通路需求的WDM网络管理仍处于不成熟期。如果WDM系统不能进行有效的网络管理,将很难在网络规模采用。例如在故障管理方面,由于WDM系统可以在光通道上支持不同类型

实验1.9WDM光波分复用器

1.9 WDM光波分复用器 实验者:钦(12342080) 合作者:王唯一(12342057) (大学物理科学与工程技术学院,光信息科学与技术12级2班 B13) 2015年3月26日,19,70% c 一、实验目的和容 1、了解WDM光波分复用器的工作原理和制作工艺,即熔融拉锥技术。 2、认识WDM光波分复用器的基本技术参量的实际意义,学会测量插入损耗、附加损耗、隔离度、偏振相关损耗等。 3、分析测量误差的来源。 二、实验基本原理 在熔融拉锥技术中,具体制作方法一般是将两根(或者两根以上)除去涂覆层的裸光纤以一定方式靠近,在高温加热下熔融,同时向两侧拉伸,利用计算机监控其光功率耦合曲线,并根据耦合比与拉伸长度控制停火时间,最后形成双锥结构。采用熔融拉锥法实现光纤间传输光功率耦合的耦合系数与波长有关,光传输波长发生变化时,耦合系数也会变化,即耦合器的分光比发生变化。考虑到熔融拉锥的耦合是周期性的,耦合周期愈多,耦合系数与传输波长的关系越大,所以尽量减少熔融拉锥中耦合的次数,最好在一个周期完成耦合。合理改变熔融拉锥条件,能够获得不同功能的全光纤耦合器件。熔融拉锥机的控制原理模块图如图1所示。熔融拉锥型光纤耦合器工作原理示意图如图2所示。 图1 熔融拉锥机系统控制示意图 图2 熔融拉锥型光纤耦合器工作原理示意图 1、单模耦合器 HE信号。图3是单模光纤耦合器的迅衰场耦合示意图。但在单模光纤中传导模是两个正交的基模 11 传导模进入熔锥区时,随着纤芯的不断变细,归一化频率V逐渐减小,有越来越多的光功率掺入光纤包层中。实际上光功率是在由包层作为芯,纤外介质(一般是空气)作为包层的复合波导中传播的;在输出端,随着纤芯的逐渐变粗,V值重新增大,光功率被两根纤芯以特定比例“捕获”。在熔锥区,两光纤包层合并在一起,纤芯足够逼近,形成弱耦合。将一根光纤看做是另一光纤的扰动,在弱导近似下,并假设光纤是无吸收的,则有

波分复用概念与其技术讲解波分复用(WDM)是将两种或多种不同波长...

波分复用概念与其技术讲解 波分复用(WDM)是将两种或多种不同波长的光载波信号(携带各种信息)在发送端经复用器(亦称合波器,Multiplexer)汇合在一起,并耦合到光线路的同一根光纤中进行传输的技术;在接收端,经解复用器(亦称分波器或称去复用器,Demultiplexer)将各种波长的光载波分离,然后由光接收机作进一步处理以恢复原信号。这种在同一根光纤中同时传输两个或众多不同波长光信号的技术,称为波分复用。通信系统的设计不同,每个波长之间的间隔宽度也有不同。按照通道间隔的不同,WDM 可以细分为CWDM(稀疏波分复用)和DWDM(密集波分复用)。CWDM 的信道间隔为20nm,而DWDM的信道间隔从0.2nm 到1.2nm,所以相对于DWDM,CWDM称为稀疏波分复用技术。 CWDM 和DWDM 的区别主要有二点:一是CWDM 载波通道间距较宽,因此,同一根光纤上只能复用5 到6 个左右波长的光波,“稀疏”与“密集”称谓的差别就由此而来;二是CWDM 调制激光采用非冷却激光,而DWDM采用的是冷却激光。冷却激光采用温度调谐,非冷却激光采用电子调谐。由于在一个很宽的波长区段内温度分布很不均匀,因此温度调谐实现起来难度很大,成本也很高。CWDM 避开了这一难点,因而大幅降低了成本,整个CWDM 系统成本只有DWDM 的30%。CWDM 是通过利用光复用器将在不同光纤中传输的波长结合到一根光纤中传输来实现。在链路的接收端,利用解复用器将分解后的波长分别送到不同的光纤,接到不同的接收机。 由于光波长与频率的关系:= ×。实际上为一种频分复用,所以WDM通常也被称为光频分复 用(OFDM), WDM系统的主要优点为: 1.充分利用光纤的低损耗波段,大大增加光纤的传输容量,降低成本 2.对革新到传输的信号的速率,格式具有透明性,有利于数字信号和模拟信号的兼容3.节省光纤和光中继器,便于对已经建成的系统进行扩容 4.可以提供波长选路,使建立透明,灵活,具有高度生存性的WDM网络成为可能 46.2.2 波分复用/解复用器件 在整个WDM 系统中,需要使用多种波长的光信号,通常光纤的损耗随着传输距离的增长而增大。光纤的传输损耗与工作波长有关。故现有光通讯系统中通常选择850nm,1310nm 和1550nm的光波用于传输(如右图所示),为了保证不同的DWDM系统之间的横向兼容性,ITU-T定义了以193.1THz(1552.52nm) 为中心频率,通道最小间隔为100GHz。下图为8/16/32个信道使用频段。

相关文档
最新文档