220kV智能变电站的继电保护配置方案
220kV智能变电站继电保护及自动化分析

220kV智能变电站继电保护及自动化分析
智能变电站继电保护及自动化是现代电力系统中的重要组成部分,它能够对电力系统进行可靠的安全保护和自动化控制。
本文将针对220kV智能变电站的继电保护和自动化进行分析。
继电保护是指针对电力系统中的故障情况进行保护动作的一种自动化系统。
在220kV 智能变电站中,继电保护系统主要包括主保护和备用保护两部分。
主保护设备通过对电路参数进行实时监测,一旦发现故障情况,就会触发动作保护,切断故障区域与系统其他部分的连接。
备用保护设备在主保护设备故障时,起到备份和补充的作用,保证系统的连续运行和可靠性。
自动化控制是指对电力系统中的操作进行自动化处理的一种手段。
在220kV智能变电站中,自动化控制系统主要包括监控、调度、数据采集和信息处理等功能。
通过现场监控设备的数据采集,自动化控制系统可以实时监测变电站的运行状态和装置参数,监控系统不仅能够提供变电站的运行状态,还能实现对设备的故障诊断和维护管理。
自动化控制系统还可以通过远程控制的方式,对变电站进行远程操作和控制,提高操作效率和安全性。
在220kV智能变电站中,继电保护和自动化控制紧密结合,互为支撑。
继电保护系统通过对电力系统中的故障情况进行监测和保护,保证变电站的安全运行;自动化控制系统通过对变电站的运行状态进行监控和控制,提高变电站的运行效率和可靠性。
浅谈220kV变电站变压器保护配置中死区故障及解决方法

浅谈 220kV变电站变压器保护配置中死区故障及解决方法摘要:保护死区即保护装置保护不到的范围,对于死区故障的发生我们不能掉以轻心,要加强对速动继电保护的研究,并对其动作行为进行准确的控制,以达到快速切除死区短路故障的目的。
本文对220kV变电站变压器有关的继电保护动作特征与各侧死区故障的故障特征进行了分析,制定了几种保护方案来快速切除220kV变压器各侧死区故障,并对死区故障保护短延时的参数进行了研究。
关键字:220kV变压器;保护死区;故障;解决方法为了提升可靠性,电力系统必须装设继电保护装置。
但由于受制于元件特性和数量,各种保护的范围存在着盲区,当在这些盲区中发生故障,就会造成变死区故障。
死区故障将导致保护不能够在允许的时间内切除故障,将使电力设备长时间处于故障电流之下,严重影响系统的安全性和稳定性。
220kV变压器侧电流互感器与断路器之间出现短路故障,但是若故障发生位置处于变压器差动保护范围内,尽管该侧母线差动保护跳开变压器侧断路器,然而还是存在故障问题,因此需要借助变压器电源侧后备保护将故障切除,该后备保护动作时间比较长,因此容易损坏变压器。
所以需要应用快速切除继电保护方案处理故障问题。
1、220kV变压器各侧死区故障1.1、220kV变压器各侧的死区故障一般来讲,如果变压器有运行的几个电压等级通过断路器、TA、隔离开关组成的间隔设备与外电路设备连接,若变压器某一侧断路器只有变压器这侧有TA,而母线侧没有TA,那么,可能就有几个变压器死区故障位置。
也就是说,如果有两个运行电压等级经断路器间隔设备和外电路设备连接,就最少有两个死区故障位置;如果有三个运行电压等级经断路器间隔设备与外电路设备连接,就最少有三个死区故障位置。
220kV变压器不但在中压侧有死区故障,而且在变压器高压侧和低压侧也有死区故障。
1.2、220kV变压器死区故障的特征1.2.1、220kV和110kV侧死区故障的特征(1)220kV侧死区故障的特征当变压器的220kV高压侧发生“死区”故障时,“死区”故障在高压侧的母线差动保护范围之内,此时,由高压侧的母线差动保护跳开所有断路器,若变压器中低压侧存在电源,则故障电流并不能消失,此时,故障并不能及时切除。
110(66)kV~220kV智能变电站设计规范

六、规范主要内容介绍
5 电气一次部分 5.2 互感器 3)工程实施中应关注的重点方面: ——关口计量点互感器的配置方案。 用于电量平衡的关口计量点可配置“电子式互感器+数字式电能表”,满足0.2S 精度要求,电能表按双表配置;
用于计费结算的关口计量点(计费依据或电量校核),在取得供电公司营销部门或用 户认可的情况下可考虑采用“电子式互感器+数字式电能表”方式,否则,涉及到计 费关口处需另增常规互感器,并采用常规电能表进行计量,计量精度应满足0.2S要 求,电能表按双表配置。
应用了IEC61850的有关规定。
3.智能变电站设计除应执行本标准外,尚应严格执行强制性国家标准和行业标准,
应符合现行的国家标准、行业和企业有关标准的规定。
第8页,共43页。
四、主要工作过程
第9页,共43页。
四、主要工作过程
1.2009年8月14日,由基建部牵头成立编写工作组,拟定编制大纲、工作计 划;
——工作重点在于统一后台机、分析软件、接口类型和传输规约,应对设备 的供货现状、现有实现方案开展充分的调研,并联合一次设备、状态监测厂家、 运行部门采取合理的方案解决设备间安装配合、状态监测的统一以及状态监测 主站的建设工作。
第28页,共43页。
六、规范主要内容介绍
6 二次部分 6.1 变电站自动化系统
2. 2009年8月~9月,编制初稿,并讨论形成初稿修改稿;
3. 2009年9月18日,讨论初稿修改稿并提出修改意见;
4. 2009年9月25日,修改完善形成征求意见稿; 5. 2009年9月28日,征求意见稿广泛征求意见; 6.2009年10月17日~28日,汇总梳理反馈意见,经讨论和修改完善形成送审 稿; 7.2009年10月30日,召开设计规范送审稿评审会议; 8.2009年11月18日,根据送审稿评审意见修改完善形成报批稿。
智能变电站继电保护技术规范

智能变电站继电保护技术规范
四、总则 -----关键点
4.6 保护装置应不依赖于外部对时系统实现其保护功能。
4.7 保护应直接采样,对于单间隔的保护应直接跳闸,涉及多间 隔的保护(母线保护)宜直接跳闸。对于涉及多间隔的保护 (母线保护),如确有必要采用其他跳闸方式,相关设备应 满足保护对可靠性和快速性的要求。
线路保护
合
智
并
能
单
终
元
端
线路
ECVT
GOOSE网 SV网
母
线
EVT1
电
压
合
并
单
EVT2
元
I母 II母
220kV线路及以上变电站线路66kV、35kV及 以下间隔保护实施方案
1. 采用保护测控一体化设 备,按间隔单套配置。
2. 当一次设备采用开关柜 时,保护测控一体化设 备安装于开关柜内。宜 使用常规互感器,电缆 直接跳闸。
2. 保护装置、智能终端等智能电子设备间的相互启动、 相互闭锁、位置状态等交换信息可通过GOOSE网络 传输,双重化配置的保护之间不直接交换信息;
3. 3/2接线型式,两个断路器的电流MU分别接入保护装 置,电压MU单独接入保护装置;
智能变电站继电保护技术规范
五、继电保护及相关设备配置原则 ➢ 线路保护
4. 变压器保护可采用分布式保护。分布式保护由主单元和若干个子单 元组成,子单元不应跨电压等级;
Ⅰ母
高压侧边断路 器智能终端
3/2接线变压器保护配置方案
高压侧边断路 高压侧中断路 器合并单元 器合并单元
ECT1
ECT2
EVT1
高压侧中断路器 智能终端
WMH-801九统一智能变电站220kV母线保护技术说明书(v2.00)

WMH-801 九统一智能变电站 220kV 微机母线保护技术说明书 1. 应用说明 WMH-801 系列是全面支持新一代智能变电站的继电保护装置。满足国网公司 《Q/GDW441—2010 智能变电站继电保护技术规范》 、 《Q/GDW 1175-2013 变压器、 高压并 联电抗器和母线保护及辅助装置标准化设计规范》等标准的规范要求。所有保护装置按照 《Q/GDW1396—2012 IEC61850 工程继电保护应用模型》 、 《Q/GDW XXX-201X 继电保护信 息规范》的规范要求进行建模。保护装置在满足“可靠性、选择性、灵敏性、速动性”的基 础上,利用电子式互感器的特性进行了一些新原理、新特性的保护性能提升工作。
WMH-801 九统一智能变电站 220kV 微机母线保护技术说明书
目
录
1. 概述.................................................................. 1 1.1. 应用范围 .......................................................... 1 1.2. 保护配置 .......................................................... 1 1.3. 装置主要特点 ...................................................... 2 2. 技术指标.............................................................. 3 2.1. 基本电气参数 ...................................................... 3 2.2. 主要技术指标 ...................................................... 4 2.3. 环境条件 .......................................................... 7 2.4. 通信接口 .......................................................... 7 3. 保护原理介绍.......................................................... 7 3.1. 差动保护 .......................................................... 7 3.2. 母联失灵保护 ..................................................... 18 3.3. 断路器失灵保护 ................................................... 20 3.4. 母联充电过流保护 ................................................. 23 3.5. 母联非全相保护 ................................................... 24 3.6. PT 断线告警 ....................................................... 25 3.7. 运行方式识别 ..................................................... 25 3.8. 自检功能 ......................................................... 28 4. 保护装置输出信息..................................................... 31 4.1. 保护动作信息 ..................................................... 31 4.2. 在线监测信息 ..................................................... 32 4.3. 装置告警信息 ..................................................... 33 4.4. 状态变位信息 ..................................................... 36 5. 装置硬件介绍及典型接线............................................... 43 5.1. 装置整体介绍 ..................................................... 43 5.2. 结构与安装 ....................................................... 46 5.3. 装置插件介绍 ..................................................... 48 5.4. SV 采样装置过程层插件端子定义 ..................................... 52 5.5. 常规采样装置过程层插件端子定义 ................................... 55 6. 定值、软压板清单及整定说明........................................... 59
220kV智能变电站的继电保护及自动化系统设计初探

220kV智能变电站的继电保护及自动化系统设计初探【摘要】智能变电站作为电网智能化建设的重要组成部分,其继电保护及自动化系统设计显得尤为重要。
本文首先介绍了220kV智能变电站的概念和特点,然后深入探讨了继电保护系统设计原则和智能化继电保护系统的优势。
接着针对自动化系统设计提出了要点,并探讨了通信系统在智能变电站中的作用。
最后结论指出,智能变电站的继电保护及自动化系统设计是未来发展的趋势,设计过程中需要充分考虑稳定性和可靠性,进一步研究可提升系统性能。
通过本文的初探,有助于推动智能变电站系统的发展,提高电网运行的效率和安全性。
【关键词】220kV智能变电站、继电保护、自动化系统、设计、概念、特点、原则、优势、要点、通信系统、作用、稳定性、可靠性、趋势、性能提升、研究、发展。
1. 引言1.1 背景介绍220kV智能变电站是电力系统中的重要组成部分,随着社会经济的不断发展和电力需求的增长,传统的变电站已经不能满足电网的需求。
智能变电站作为新型变电站的代表,具有集成化、智能化、网络化和信息化的特点,拥有更高效的管理和控制功能,能够提高电网的安全性、可靠性和经济性。
随着电力系统的规模不断扩大,变电站的数量和规模也在不断增加,为了更好地实现对电力系统的监测、保护和控制,智能化的继电保护及自动化系统设计变得尤为重要。
继电保护系统是电力系统中的重要组成部分,其作用是及时检测和隔离故障,保护电网正常运行。
而自动化系统则可以提高电力系统的运行效率和可靠性,减少人为错误的发生,更好地适应电力系统的变化和需求。
本文旨在对220kV智能变电站的继电保护及自动化系统设计进行初步探讨,探讨智能化继电保护系统的设计原则、优势以及自动化系统的设计要点,同时分析通信系统在智能变电站中的作用。
通过本文的研究,可以为智能变电站的建设和发展提供参考,推动智能化技术在电力系统中的广泛应用。
1.2 研究意义智能变电站作为电力系统的重要组成部分,其继电保护及自动化系统设计对于提高电力系统的运行效率、安全性和可靠性具有重要意义。
WMH-801九统一智能变电站220kV母线保护技术说明书(v2.00)

WMH-801 九统一智能变电站 220kV 微机母线保护技术说明书
6.1. 装置定值清单 ..................................................... 59 6.2. 装置定值整定说明 ................................................. 61 6.3. 装置软压板整定说明 ............................................... 62 7. 装置使用说明......................................................... 67 7.1. 面板布置图 ....................................................... 67 7.2. 装置功能按键说明 ................................................. 68 7.3. 命令菜单 ......................................................... 68 7.4. 液晶显示说明 ..................................................... 70 7.5. 正常运行操作 ..................................................... 72 8. 过程层通讯........................................................... 73 8.1. 过程层 SV 链路信息 ................................................ 73 8.2. 过程层 GOOSE 链路信息 ............................................. 73 8.3. 配置文件错误类型信息 ............................................. 74 8.4. 通讯对点 ......................................................... 74 9. 保护调试大纲......................................................... 75 9.1. 装置检查 ......................................................... 75 9.2. SV 及 GOOSE 检查 ................................................... 75 9.3. 保护定值校验 ..................................................... 77 10. 订货须知............................................................. 86
智能变电站 - 继电保护配置方案

高压侧 低压侧
AD 电路
AD 电路
AD 电路
AD 电路
转换器
转换器
CPU1 CPU2
MU1
MU2
MU1
MU2
图1 罗氏线圈电子互感器 ECT示意图
图2 纯光学电子互感器( OCT/OVT)示意图
6
智能变电站继电保护
继电保护基本技术原则
传感 元件 传感 元件 传感 元件 传感 元件
传感 元件
高压侧 低压侧
28
智能变电站继电保护
高抗保护配置原则
5.5.b)高压并联电抗器非电量保护采用就地直接电缆跳闸,并通 过相应断路器的两套智能终端发送GOOSE报文,实现远跳。
线路保护1 远跳1 GOOSE网1
示 意
线路保护2 远跳2 GOOSE网2
边断路器 智能终端1
中断路器 智能终端1
边断路器 智能终端2
中断路器 智能终端2 电缆直跳
非电量保护
31
智能变电站继电保护
3/2接线断路器保护配置原则
5.6.a)断路器保护按断路器双重化配置。 5.6.c)断路器保护跳本断路器采用点对点直接跳闸;本断路 器失灵时,经GOOSE网络通过相邻断路器保护或母线保护 跳相邻断路器。
释 义
1. 断路器保护双重化问题: 双重化的原因:为了防止一套保护跨双网。 双重化的后果:取消跟跳逻辑。 2. 断路器保护跳闸问题: 边断路器保护跳中断路器:通过GOOSE网经中断路器智能终端跳 闸。 断路器保护远跳:通过GOOSE网经线路保护跳闸。
14
智能变电站继电保护
继电保护基本技术原则
4.11 110kV及以上电压等级双母线、单母线分段等接线型式 (单断路器)EVT设置,宜在各线路、变压器间隔分别装设三 相EVT,条件具备时宜装设ECVT。 释 义 1.各间隔配置独立的三相ECVT,不仅可简化二次回路,而且 可大大提高保护的可靠性,但布置存在一定困难。 2.仅采用电子式互感器的间隔,推荐配置三相ECVT。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
220kV智能变电站的继电保护配置方案
220kV智能变电站的发展是基于计算机平台的,随着智能化程度的提高,220kV智能变电站的信息化水平也随之增加,因此带来了许多问题,为了使220kV智能变电站调试到最佳的状态,相关工作人员需要与其他变电站进行对比分析,本文将从继电保护装置的局限性出发,深入研究220kV智能变电站继电保护配置方案,以供相关从业人员借鉴学习。
1 智能变电站与保护装置的特点
1.1 确保信息的精确性
智能保护装置内的合并单元有很多,能够具有滤波的作用,因此受到的数字量输出能够在最大的限度上得到保证,其次,职能保护装置的数据接收方式主要被小巧的光收发模块所取代,因此数字信号无需配置常规的保护装置,能够直接应用于保护逻辑运算,一定程度上避免了采样出差的出现。
模拟量输入变换、低滤波单元的工作都是造成采样误差的重要原因,因此采用直接通过光钎传输,能够减少这些中间环节带来的不良影响。
智能保护装置最重要的特征,体现在电子式互感器上,能够通过光钎采集数据,因此在压送的过程中,不含有高次谐波,这在一定程度上提高了采集信息的准确性,减少信息数据失真的情况发生。
1.2 处理能力強
微处理器的模拟量巨大,需要处理采样单元与逻辑处理单元,这导致大部分的运算模拟都要在数字核心单元完成,增加了微机处理器的工作量。
而智能保护装置使用互感器采集数据信息,因此智能保护装置的通信接口、中央处理单元、通信接口都各自独立,因此更容易完成信息采集的工作。
常规的微机保护与智能保护存在着巨大的差异,最明显的差异表现在硬件方面,首先,微处理器通常采用数字电路,并且人机对话、通信接口都通过信号处理单元来完成,这使得执行元
件的运行情况极为重要,直接影响到常规保护装置的工作状态。
1.3 完善保护性能
相关工作人员应该根据220kV智能变电站的实际要求,在满足模拟量输入、模数变换的前提下,简化硬件的结构,并且提供实时通信、开关状态检测等功能,从而使220kV智能变电站保护装置的应用领域得到极大的扩展。
在电力系统运维工作中,继电保护装置中的电子互感器起到很重要的作用,因此相关工作人员应该进一步完善电子互感器的性能。
2 220kV智能变电站继电保护配置方案
2.1 常规保护配置方案
为了体现220kV智能变电站的优势,还可以将操作单元移植终端操作元件上,这样一来,不仅可以对单个的对象进行保护,还能保留原有的模式,只需要取代传统保护装置的交流输入插件即可,然而这种方案具有一定的局限性,首先是设备数量过多,会在一定程度上提高220kV智能变电站的工作量,并且网络结构复杂,不方便维护工作的开展,因此相关工作人员在研究220kV智能变电站继电保护配置方案时,需要考虑到这一点。
常规保护配置方案通常是指基于间隔单元进行配置的一种方案,保留变压器保护、线路保护,并使用常规互感器。
常规保护配置方案具有较高的适用性,具有较高的线路保护、母线保护以及断路器保护能力,相关工作人员还可以通过CPU插件来取代模拟量处理,数字接口实现了全自动数据采集,并且使得电容器间隔互相独立,这样不仅为各测的测控装置、计量仪器提供保护,还能保证数据的正常传输,在使用时,只要接入网络,就能将所有的单元合并在一起,使相关工作人员对220kV智能变电站的所有元件有一个直观的认识,因此需要在切换元件时,了解入站控层网络,将220kV智能变电站的间隔配置转向正常接收,相对系统保护配置方案,常规保护配置方案更容易实现,也更为成熟,因此大多数220kV智能变电站都选择这种机电保护配置方案。
2.2 系统保护配置方案
由于系统保护配置方案能够实现站内所有的间隔单元的测控,因此只需要少量的设备,就能充分发挥继电保护装置的作用,可以说系统保护配置方案是未来的一个发展方向,不仅在常规保护配置方案基础上,简化了网络结构,还实现了双重化原则的数据交换,为信号的稳定传输提供了技术保障。
只要有一台交换机,就能使互感器通过智能接口连接起来,相关工作人员可以根据工作的需求调节开关量的输入、输出,系统保护配置方案在保护配置研究当中,是一次变革,因此有很多工作人员对这个方案还不太熟悉,为保证电力系统的稳定运行,应该加强操作人员的技术培训工作,从而实现多套保护的功能。
随着控制技术和智能变电技术的发展,为系统保护配置方案的实现提供了条件,因此系统保护配置方案在220kV智能变电站当中,也越来越常见,系统保护配置方案不仅能够对电容器、线路提供保护,还在一定程度上消减了常规保护配置方案的冗余部分,使经济性大幅度的提升。
3 结语
综上所述,相关工作人员在选择继电保护配置方案时,需要考虑到技术因素和经济因素,还要保证220kV智能变电站继电保护配置能够满足未来的发展趋势,因此相关工作人员需要对比不同的配置方案的优缺点,从而选择较为优化、实用的继电保护配置方案,从而提高220kV智能变电站运行的稳定性。