单摆物理实验装置 ppt课件
合集下载
《单摆及单摆实验》课件

单摆的基本概念
单摆的定义:单摆是一种理想化的物理模型,由一根固定在一端的轻杆或细线,另一端 悬挂质量块组成。
单摆的原理:当质量块在平衡位置附近摆动时,其运动可近似为简谐运动,其周期与摆 长有关,摆长越长,周期越大。
单摆的分类:根据摆线的不同,可分为自由摆和固定摆;根据摆动方式的不同,可分为 垂直摆和水平摆。
《单摆及单摆 实验》PPT课 件
PPT,a click to unlimited possibilities
汇报人:PPT
目录 /目录
01
点击此处添加 目录标题
04
实验方法和步 骤
02
单摆的定义和 原理
05
实验结果的应 用和推广
03
单摆实验的目 的和意义
06பைடு நூலகம்
结论和建议
01 添加章节标题
02
单摆的定义和原 理
准备实验器材:包括单摆实 验架、摆线、摆球等。
安装摆线:将摆线固定在实 验架上,确保摆线悬挂在支 架上并保持竖直。
悬挂摆球:将摆球悬挂在摆 线上,确保摆球与摆线连接 牢固。
开始实验:释放摆球,使其 开始摆动,并使用秒表记录 摆动的周期。
改变摆长:通过改变摆线长 度,重复实验步骤4,记录 不同摆长下的摆动周期。
实验意义
验证单摆的周期公式 探究摆长、摆角等因素对单摆周期的影响 掌握单摆实验的基本方法和技巧 培养实验能力和观察能力,提高科学素养
实验背景
● 实验目的:探究单摆的周期与摆长、摆角、重力加速度等因素的关系 ● 实验意义:验证单摆周期公式,探究摆长、摆角、重力加速度等因素对单摆周期的影响,
数据图表展示: 将实验数据以图 表形式展示,便 于观察和分析
《单摆和复摆》课件

分类:根据结构形式和应用领域,复摆可分为多种类型,如双摆、三摆等
定义:复摆是一类特殊的摆动装置,由刚体绕一固定点在平面内或空间内作周期性摆动形成
原理:复摆的摆动可看作是两个或多个单摆的组合运动,通过调整各单摆的参数和相对位置,实现特定的运动规律和特性
复摆的周期公式
公式推导:根据单摆周期公式推导复摆周期公式
解决方法:减小空气阻力和机械摩擦,采用高精度材料制作摆轴等。
单摆和复摆的实验研究
单摆实验的设计和操作
实验目的:研究单摆的周期与摆长、摆角的关系
实验器材:支架、细线和重物
实验步骤:将细线悬挂在支架上,固定好重物并使其自然下垂;释放重物,使其开始摆动;使用秒表记录摆动的周期
实验数据记录:记录不同摆长和摆角下单摆的周期,分析数据并得出结论
环保领域:用于测量风速、风向等。
总结与展望
单摆和复摆的重要性和应用前景
重要性和应用前景:单摆和复摆在物理学和工程学中具有重要地位,其应用前景广泛,包括测量、控制、仿真等领域。
未来研究方向:随着科技的发展,单摆和复摆的研究方向将更加深入,未来将会有更多的应用场景和新的研究领域。
挑战与机遇:虽然单摆和复摆的研究面临一些挑战,但也存在许多机遇,需要更多的研究和探索。
单击此处输入你的项正文,请尽量言简意阐述观点。
单摆的分类
单击此处输入你的项正文,请尽量言简意阐述观点。
单击此处输入你的项正文,请尽量言简意阐述观点。
复摆的定义和分类
单摆和复摆的应用场景
物理实验:单摆和复摆是物理学中重要的实验装置,用于研究力学、振动和波动等现象。
精密测量:单摆和复摆可以用于测量重力加速度、时间等精密参数,具有高精度和高稳定性。
影响因素:摆长、质量、重力加速度等对复摆周期的影响
定义:复摆是一类特殊的摆动装置,由刚体绕一固定点在平面内或空间内作周期性摆动形成
原理:复摆的摆动可看作是两个或多个单摆的组合运动,通过调整各单摆的参数和相对位置,实现特定的运动规律和特性
复摆的周期公式
公式推导:根据单摆周期公式推导复摆周期公式
解决方法:减小空气阻力和机械摩擦,采用高精度材料制作摆轴等。
单摆和复摆的实验研究
单摆实验的设计和操作
实验目的:研究单摆的周期与摆长、摆角的关系
实验器材:支架、细线和重物
实验步骤:将细线悬挂在支架上,固定好重物并使其自然下垂;释放重物,使其开始摆动;使用秒表记录摆动的周期
实验数据记录:记录不同摆长和摆角下单摆的周期,分析数据并得出结论
环保领域:用于测量风速、风向等。
总结与展望
单摆和复摆的重要性和应用前景
重要性和应用前景:单摆和复摆在物理学和工程学中具有重要地位,其应用前景广泛,包括测量、控制、仿真等领域。
未来研究方向:随着科技的发展,单摆和复摆的研究方向将更加深入,未来将会有更多的应用场景和新的研究领域。
挑战与机遇:虽然单摆和复摆的研究面临一些挑战,但也存在许多机遇,需要更多的研究和探索。
单击此处输入你的项正文,请尽量言简意阐述观点。
单摆的分类
单击此处输入你的项正文,请尽量言简意阐述观点。
单击此处输入你的项正文,请尽量言简意阐述观点。
复摆的定义和分类
单摆和复摆的应用场景
物理实验:单摆和复摆是物理学中重要的实验装置,用于研究力学、振动和波动等现象。
精密测量:单摆和复摆可以用于测量重力加速度、时间等精密参数,具有高精度和高稳定性。
影响因素:摆长、质量、重力加速度等对复摆周期的影响
单摆ppt课件

G2是使摆球振动的回复力
当摆球运动到A,点时,摆线与 竖直方向的夹角为θ,摆球偏 离平衡位置的位移为x,摆长 为l
小球摆动的回复力F为: A
F=G2=mg•sin
sin = d / l
G1
M
θ
T
d
o G2
x A,
G
1、单摆的回复力
仔细观察下面表格:你能得到什么结论?
角度
sinθ
弧度值θ
1o
0.01754
第二节 单摆
一、什么是单摆
1、单摆:细线一端固定在悬点,另一端系 一个小球,如果细线的质量与小球相比可 以忽略;球的直径与线的长度相比也可以 忽略,这样的装置就叫做单摆。
小球 的半 L0 径为
R
2、摆长:悬点到摆球重心的距离叫做摆长。摆长 L=L0+R 3、单摆理想化条件是:
①摆线质量m 远小于摆球质量 M,即m << M
1、单摆的回复力
弧长 半径
弧长≈弦长= x
x
l
sin x
F
mg
l
sin
mg
x
l
回复力的方向与位移的方向: 相反
回 复 力F mg x kx l
2、结论:在摆角很小(θ< 50)的情况,单摆
的振动是简谐运动
四、单摆的周期公式 简谐运动的周期公式 T 2 m
k
将k mg 代 入 l
例1、如图所示,为一双线摆,它 是在水平天花板上用两根等长的细 线悬挂一个小球而构成的。已知细 线长为l,摆线与天花板之间的夹
角为θ。求小球在垂直于纸面方向
作简谐运动时的周期。
T 2 l sin
g
例2、如图所示,为一双线摆,它是在不等高的天花 板上用两根细线悬挂一个小球而构成的。请在图中画 出此双线摆的摆长。
《单摆及单摆实验》课件

未来对于单摆的研究可以进一步探索更复杂的振动系统和非线性效应,以及在极端 条件下的单摆行为。
随着虚拟现实和模拟软件的普及,未来可以通过计算机模拟来研究单摆的行为和性 能,为实验研究和应用提供更准确的预测和设计依据。
THANKS FOR WATCHING
感谢您的观看
单摆的原理
总结词
单摆的原理基于牛顿第二定律和角动量守恒定律。当摆锤受到外力作用时,它会沿着力 的方向加速或减速,同时由于细线的约束,它也会在垂直方向上产生位移,形成摆动。
详细描述
根据牛顿第二定律,当摆锤受到外力作用时,它会沿着力的方向加速或减速。由于细线 的约束,摆锤在垂直方向上产生位移,形成摆动。同时,根据角动量守恒定律,摆锤的 角动量等于质量乘以速度再乘以半径。在无外力矩作用的情况下,摆锤的角动量保持不
04 单摆的实验结果分析
数据记录
Hale Waihona Puke 实验数据记录单摆摆动周期、摆长、摆角 等数据。
实验图像
记录单摆摆动轨迹、振动图像等 。
结果分析
数据分析
对实验数据进行处理和分析,提取关 键信息。
规律总结
根据数据分析结果,总结单摆摆动周 期与摆长、摆角等参数的关系。
误差分析
误差来源
分析实验过程中可能产生的误差来源,如测量工具误差、操作误差等。
03 单摆的特性
单摆的周期
总结词
单摆的周期是指摆球完成一个来回摆动所需的时间,它与摆长、地球的重力加 速度有关。
详细描述
单摆的周期是摆球在平衡位置附近来回摆动所需的时间。它受到摆长和地球重 力加速度的影响。摆长越长,周期越长;重力加速度越大,周期越短。
单摆的幅度
总结词
单摆的幅度是指摆球偏离平衡位置的 最大角度,它与摆长、摆角等因素有 关。
随着虚拟现实和模拟软件的普及,未来可以通过计算机模拟来研究单摆的行为和性 能,为实验研究和应用提供更准确的预测和设计依据。
THANKS FOR WATCHING
感谢您的观看
单摆的原理
总结词
单摆的原理基于牛顿第二定律和角动量守恒定律。当摆锤受到外力作用时,它会沿着力 的方向加速或减速,同时由于细线的约束,它也会在垂直方向上产生位移,形成摆动。
详细描述
根据牛顿第二定律,当摆锤受到外力作用时,它会沿着力的方向加速或减速。由于细线 的约束,摆锤在垂直方向上产生位移,形成摆动。同时,根据角动量守恒定律,摆锤的 角动量等于质量乘以速度再乘以半径。在无外力矩作用的情况下,摆锤的角动量保持不
04 单摆的实验结果分析
数据记录
Hale Waihona Puke 实验数据记录单摆摆动周期、摆长、摆角 等数据。
实验图像
记录单摆摆动轨迹、振动图像等 。
结果分析
数据分析
对实验数据进行处理和分析,提取关 键信息。
规律总结
根据数据分析结果,总结单摆摆动周 期与摆长、摆角等参数的关系。
误差分析
误差来源
分析实验过程中可能产生的误差来源,如测量工具误差、操作误差等。
03 单摆的特性
单摆的周期
总结词
单摆的周期是指摆球完成一个来回摆动所需的时间,它与摆长、地球的重力加 速度有关。
详细描述
单摆的周期是摆球在平衡位置附近来回摆动所需的时间。它受到摆长和地球重 力加速度的影响。摆长越长,周期越长;重力加速度越大,周期越短。
单摆的幅度
总结词
单摆的幅度是指摆球偏离平衡位置的 最大角度,它与摆长、摆角等因素有 关。
单摆高中物理ppt.ppt

sinθ 0.01754 0.03490 0.05234 0.06976 0.08716 0.10453 0.12187 0.13917
弧度值θ 0.01754 0.03491 0.05236 0.06981 0.08727 0.10472 0.12217 0.13863
当θ角很小( θ<5° )时,角的正弦值近似等 于θ所对应的弧度值,即sinθ≈θ
动的时间,算出周期
d l l1 2
l1
d
5.实验数据记录
组号 摆长l/cm
1 约20.0左右 2 约30.0左右 3 约40.0左右 4 约50.0左右 5 约60.0左右 6 约70.0左右 7 约80.0左右 8 约90.0左右 9 约100.0左右
总时间t/s
周期T=t/n(s)
6.实验数据处理 尝试:T∝l T∝ l 2
现象与结论 两摆不同步摆动,说明周期与摆长有关, 摆长越长,周期越大
三、单摆振动的周期
1、实验结论: (1)单摆振动的周期与摆球质量无关,当摆角θ<5°时, 单摆振动的周期与振幅无关(单摆的等时性)
(2)单摆振动的周期与摆长有关,摆长越长,周期越大
探究单摆周期与摆长的定量关系
实验步骤 1、如图制作单摆:细线上端固定在铁架台上,下端系一个小球 2、记下摆长=细线长度(刻度尺)+小球半径(游标卡尺测直径) 3、将小球拉至某高度(摆角<15°),使其在竖直平面内摆动 4、测量周期T: 以最低点为计时开始测量单摆做30-50次全振
控制变量法研究单摆的振幅质量摆长对周期的影响实验一将摆长相同质量相同摆球拉到不同高度自由释放观察两摆的摆动情况现象与结论实验二将摆长相同质量不同摆球拉到同一高度自由释放观察两摆的摆动情况现象与结论实验三将摆长不同质量相同摆球拉到同一高度自由释放观察两摆的摆动情况现象与结论两摆同步摆动说明周期与振幅无关两摆同步摆动说明周期与质量无关两摆不同步摆动说明周期与摆长有关摆长越长周期越大三单摆振动的周期1实验结论
《单摆和复摆》课件

摆角θ>10°时,需要考虑空气阻力等 因素,运动方程会变得复杂。
单摆的周期和频率
单摆的周期T=2π√(L/g),其中L为摆长,g为重力加速度。 单摆的频率f=1/T,即f=√(g/4π^2L)。
单摆的能量分析
单摆的动能E_k=1/2mV^2, 其中m为摆球质量,V为摆球速 度。
单摆的势能E_p=mgh,其中h 为摆球相对于平衡位置的高度 。
复摆的周期和频率
01
02
03
周期
复摆完成一次完整的旋转 所需的时间。
频率
单位时间内复摆完成的旋 转次数。
关系
周期和频率互为倒数,即 $T = frac{2pi}{omega}$ 。
复摆的能量分析
定义
能量分析是指对系统能量 的来源、转换和消耗进行 分析。
机械能守恒
在无外力矩作用的情况下 ,复摆的机械能守恒。
感谢您的观看
THANKS
当摆角θ较小时,单摆的总能 量E=E_k+E_p=1/2mgL(1cosθ)。
03
复摆的运动分析
复摆的运动方程
定义
解法
复摆是指具有固定轴的刚体绕固定点 旋转的装置。
通过求解该方程,可以得到复摆的运 动规律。
运动方程
$Ifrac{domega}{dt} + Domega = 0$,其中$I$是转动惯量,$omega$ 是角速度,$D$是阻尼系数。
特点
单摆的运动具有周期性,即小球可以 在一个固定的圆周上摆动。单摆的周 期与摆长、地球的重力加速度以及小 球的转动惯量有关。
复摆的定义和特点
定义
复摆是一个质量为m的小球,在一根刚性杆的一端固定,另一端通过一根无质 量的线悬挂起来。当小球在垂直平面内摆动时,它的运动可以看作是简谐振动 。
单摆的周期和频率
单摆的周期T=2π√(L/g),其中L为摆长,g为重力加速度。 单摆的频率f=1/T,即f=√(g/4π^2L)。
单摆的能量分析
单摆的动能E_k=1/2mV^2, 其中m为摆球质量,V为摆球速 度。
单摆的势能E_p=mgh,其中h 为摆球相对于平衡位置的高度 。
复摆的周期和频率
01
02
03
周期
复摆完成一次完整的旋转 所需的时间。
频率
单位时间内复摆完成的旋 转次数。
关系
周期和频率互为倒数,即 $T = frac{2pi}{omega}$ 。
复摆的能量分析
定义
能量分析是指对系统能量 的来源、转换和消耗进行 分析。
机械能守恒
在无外力矩作用的情况下 ,复摆的机械能守恒。
感谢您的观看
THANKS
当摆角θ较小时,单摆的总能 量E=E_k+E_p=1/2mgL(1cosθ)。
03
复摆的运动分析
复摆的运动方程
定义
解法
复摆是指具有固定轴的刚体绕固定点 旋转的装置。
通过求解该方程,可以得到复摆的运 动规律。
运动方程
$Ifrac{domega}{dt} + Domega = 0$,其中$I$是转动惯量,$omega$ 是角速度,$D$是阻尼系数。
特点
单摆的运动具有周期性,即小球可以 在一个固定的圆周上摆动。单摆的周 期与摆长、地球的重力加速度以及小 球的转动惯量有关。
复摆的定义和特点
定义
复摆是一个质量为m的小球,在一根刚性杆的一端固定,另一端通过一根无质 量的线悬挂起来。当小球在垂直平面内摆动时,它的运动可以看作是简谐振动 。
2.4单摆PPT(课件)-人教版高中物理选择性必修第一册

实知验识研 点究:单单摆摆实的的回振验复幅力、表质量、明摆长:对周单期各有摆什么的影响振? 动周期与摆球的质量无关;在振幅较小时
沿切线方向指向平衡位置的力是回复力,故B错。
这知样识做 点的目单的摆是,的__回__与复__(力填振字母幅代号无)。 关;但是与摆长有关,摆长越长,周期越长。
知识点 单摆的回复力 沿着与摆动方向垂直的方向匀速拖动一张白纸,喷到白纸上的墨迹便画出振动图象。
新知探究
知识点 2 单摆的周期
(2)他组装好单摆后在摆球自然悬垂的情况下,用毫米刻度尺 从悬点量到摆球的最低端的长度l=0.999 0 m,再用游标卡尺 测量摆球直径,结果如图所示,则该摆球的直径为______ mm, 单摆摆长为______ m。
新知探究
知识点 2 单摆的周期
(3)下列振动图象真实地描述了对摆长约为1 m的单摆进行周期测 量的四种操作过程,图中横坐标原点表示计时开始,A、B、C均为 30次全振动的图象,已知sin 5°=0.087,sin 15°=0.26,这四 种操作过程合乎实验要求且误差最小的是______(填字母代号)。
新知探究
知识点 2 单摆的周期
新知探究
知识点 2 单摆的周期
【自主解答】 (1)当单摆做简谐运动时,其周期公 式 T=2π gl ,由此可知 g=4Tπ22l,只要求出 T 值代 入即可. 因为 T=nt =6300.8 s≈2.027 s, 所以 g=4Tπ22l=4×32.1.0422×72 1.02m/s2≈9.79 m/s2.
课堂训练
答案:BC 解析:首先发现单摆等时性的是伽利略,首先将单摆 的等时性用于计时的是惠更斯。
课堂训练
2.下列情况下会使单摆的周期变大的是( ) A.将摆的振幅减为原来的一半 B.将摆从高山上移到平地上 C.将摆从北极移到赤道 D.用一个装满沙子的漏斗(漏斗质量很小)和一根较长的细线 做成一个单摆,摆动中沙慢慢从漏斗中漏出
沿切线方向指向平衡位置的力是回复力,故B错。
这知样识做 点的目单的摆是,的__回__与复__(力填振字母幅代号无)。 关;但是与摆长有关,摆长越长,周期越长。
知识点 单摆的回复力 沿着与摆动方向垂直的方向匀速拖动一张白纸,喷到白纸上的墨迹便画出振动图象。
新知探究
知识点 2 单摆的周期
(2)他组装好单摆后在摆球自然悬垂的情况下,用毫米刻度尺 从悬点量到摆球的最低端的长度l=0.999 0 m,再用游标卡尺 测量摆球直径,结果如图所示,则该摆球的直径为______ mm, 单摆摆长为______ m。
新知探究
知识点 2 单摆的周期
(3)下列振动图象真实地描述了对摆长约为1 m的单摆进行周期测 量的四种操作过程,图中横坐标原点表示计时开始,A、B、C均为 30次全振动的图象,已知sin 5°=0.087,sin 15°=0.26,这四 种操作过程合乎实验要求且误差最小的是______(填字母代号)。
新知探究
知识点 2 单摆的周期
新知探究
知识点 2 单摆的周期
【自主解答】 (1)当单摆做简谐运动时,其周期公 式 T=2π gl ,由此可知 g=4Tπ22l,只要求出 T 值代 入即可. 因为 T=nt =6300.8 s≈2.027 s, 所以 g=4Tπ22l=4×32.1.0422×72 1.02m/s2≈9.79 m/s2.
课堂训练
答案:BC 解析:首先发现单摆等时性的是伽利略,首先将单摆 的等时性用于计时的是惠更斯。
课堂训练
2.下列情况下会使单摆的周期变大的是( ) A.将摆的振幅减为原来的一半 B.将摆从高山上移到平地上 C.将摆从北极移到赤道 D.用一个装满沙子的漏斗(漏斗质量很小)和一根较长的细线 做成一个单摆,摆动中沙慢慢从漏斗中漏出
第二章 4 《单摆》课件ppt

x。
时,单摆的回复力为 F=-
二、单摆的运动规律
单摆在摆角很小的情况下做简谐运动。
三、单摆的周期
1.影响周期的因素(摆角很小,单摆做简谐运动):
(1)周期与摆球的质量无关。
(2)周期与振幅无关。
(3)摆长越长,周期越大。
2.周期公式
单摆做简谐运动的周期T与摆长l的二次方根成正比,与重力加速度g的
解析 单摆在运动过程中,摆球受重力和摆线的拉力,重力的分力充当回复
力,故A错;重力垂直于摆线的分力提供回复力,当回复力最大时,摆球在最
大位移处,速度为零,向心力为零,则摆线拉力小于重力,在平衡位置处,回复
力为零,速度最大,向心力最大,故D错,B、C对。
答案 BC
3.(多选)如图所示是一个单摆(摆角θ<5°),其周期为T,则下列说法正确的是
规律方法 对单摆的两点说明
(1)所谓平衡位置,是指摆球静止时,摆线拉力与小球所受重力平衡的位置,
并不是指摆动过程中的受力平衡位置。实际上,在摆动过程中,摆球受力不
可能平衡。
(2)回复力是由摆球受到的重力沿圆弧切线方向的分力F=mgsin θ提供的,
不可误认为回复力是重力G与摆线拉力FT的合力。
变式训练1下列有关单摆运动过程中的受力,说法正确的是(
向的分力提供,线的拉力与重力沿摆线方向的分力的合力提供向心力,摆球
经最低点(振动的平衡位置)时回复力为零,但向心力不为零,所以合外力不
为零;摆球到最高点时,向心力为零,回复力最大,合外力也不为零。
答案 C
3.将秒摆(周期为2 s的单摆)的周期变为4 s,下面哪些措施是正确的(
1
A.只将摆球质量变为原来的
(
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单摆物理实验装置
单摆的实验物理装置
摆钟是通过摆的左右摆动加擒纵 结构控制每秒的时间,那么是不 是说明摆具有等时性?
摆的特性
400多年以前,意大利物 理学家伽利略在比萨城里 的一痤教堂里,发现吊灯在 空中摆动具有等时性。
单摆周期跟什么有关呢?
我们需要一个物理实验装置来证明!!!
如何做呢?
过去的摆实验装置
2.陀螺仪测量角度值或速率(角速度 )
3.主机为摆锤
3.四个铁球可以为摆锤加重
实验过程介绍
如左图:
第ห้องสมุดไป่ตู้次,我们调节摆长为最长,约 28CM
第二次,我们在同长度下加重摆锤
第三次,我们缩短了摆长,约为20CM
实验结果介绍
如左图:
图中横坐标表示的时间(S),纵坐标表示的是 角度(deg)或速率(d/s)。由图得出: 1.摆长无加重时测量弦波周期长度为4.5cm 2.摆长加重时测量弦波周期长度也为4.5cm 3.摆短无加重时测量弦波周期长度也为4cm 4.第一次摆幅大与第二次摆幅小测量的结果 相同
1.通过角度器和线,球等做的实验装置 2.通过沙漏在平面上画弦波图的实验装置
我们的单摆实验装置
用乐高主机做为摆锤,陀螺仪 传感器安装在主机上做为测量 角度或速率。再做一个可以伸 缩的连杆,方便调整摆长。再 利用三角形不易变形,结构稳 固的特点设计了支架。
产品介绍
四个铁球
1.可伸缩杆可调整摆长度为20-28CM
得出结论: 同摆长时,秒摆具有等时性。秒摆的等时性 与摆锤的重量,摆的幅度无关,跟摆长有关 ,摆越长周期越长。
单摆的实验物理装置
摆钟是通过摆的左右摆动加擒纵 结构控制每秒的时间,那么是不 是说明摆具有等时性?
摆的特性
400多年以前,意大利物 理学家伽利略在比萨城里 的一痤教堂里,发现吊灯在 空中摆动具有等时性。
单摆周期跟什么有关呢?
我们需要一个物理实验装置来证明!!!
如何做呢?
过去的摆实验装置
2.陀螺仪测量角度值或速率(角速度 )
3.主机为摆锤
3.四个铁球可以为摆锤加重
实验过程介绍
如左图:
第ห้องสมุดไป่ตู้次,我们调节摆长为最长,约 28CM
第二次,我们在同长度下加重摆锤
第三次,我们缩短了摆长,约为20CM
实验结果介绍
如左图:
图中横坐标表示的时间(S),纵坐标表示的是 角度(deg)或速率(d/s)。由图得出: 1.摆长无加重时测量弦波周期长度为4.5cm 2.摆长加重时测量弦波周期长度也为4.5cm 3.摆短无加重时测量弦波周期长度也为4cm 4.第一次摆幅大与第二次摆幅小测量的结果 相同
1.通过角度器和线,球等做的实验装置 2.通过沙漏在平面上画弦波图的实验装置
我们的单摆实验装置
用乐高主机做为摆锤,陀螺仪 传感器安装在主机上做为测量 角度或速率。再做一个可以伸 缩的连杆,方便调整摆长。再 利用三角形不易变形,结构稳 固的特点设计了支架。
产品介绍
四个铁球
1.可伸缩杆可调整摆长度为20-28CM
得出结论: 同摆长时,秒摆具有等时性。秒摆的等时性 与摆锤的重量,摆的幅度无关,跟摆长有关 ,摆越长周期越长。