基于linux的嵌入式串口通信

基于linux的嵌入式串口通信
基于linux的嵌入式串口通信

天津电子信息职业技术学院《嵌入式软件编程》课程报告

课程名称:基于linux的嵌入式串口通信

课程代码:115229

姓名:甘琦

学号:48

专业:物联网应用技术

班级:物联S14-1

完成时间:2016 年10 月28日

目录

摘要 (1)

前言 (2)

一、嵌入式串口通信概述 (2)

1.1 嵌入式串口通信的原理 (2)

1.2 嵌入式串口通信的开发工具 (2)

1.2.1 CC2530功耗 (2)

1.2.2 ARM简介 (3)

1.2.3 Linux系统简介 (3)

1.3 嵌入式串口通信的基本任务 (4)

1.4嵌入式串口通信协议及实现 (4)

二、 RS-232C标准 (5)

2.1引脚定义 (5)

2.2 字符(帧)格式 (6)

2.3握手协议 (8)

2.4 双机互连方式 (9)

2.4.1无硬件握手情况 (9)

2.4.2 DTR和DSR握手情况 (9)

三、嵌入式串口驱动程序设计 (10)

3.1 嵌入式串口操作需要的头文件 (10)

3.2 打开串口 (10)

3.3 串口设置 (11)

3.4 串口读写 (13)

3.5 关闭串口 (14)

四、源程流程图 (15)

五、源程序代码 (15)

总结 (19)

摘要

随着Internet的发展和后PC时代的到来,嵌入式系统以其可靠性强、体积小、专用性、成本低等特性得到日益广泛的应用。目前嵌入式系统技术已经成为了最热门的技术之一。与此同时,一个独立的嵌入式系统的功能缺陷也逐渐暴露出来。新一代嵌入计算系统的功能集成和应用模式使之迅速向网络化嵌入计算的方向发展,标准和统一的TCP/IP通信协议是独立于任何厂家的硬件的,因此嵌入环境下的实时网络通信成为嵌入计算技术研究的重点和热点。本文通过基于2410F 的嵌入式串口通信的实现,按照嵌入式系统的软、硬件结构组成,较为详细地介绍了串口通信的硬件电路和软件实现方法。

关键词:嵌入式串口通信 2410F

前言

嵌入式系统是以应用为中心,以计算机技术为基础,软硬件可定制,适用于不同应用场合,对功能,可靠性,成本,体积,功耗有严格要求的专用计算机系统。它一般由嵌入式微处理器,外围硬件设备,嵌入式操作系统,用户应用程序4个部分组成。用于实现对其他设备的控制,监视或管理等功能。嵌入式系统已经广泛应用于科学研究,工业控制,军事技术,交通通信,医疗卫生,消费娱乐等领域,人们常用的手机,PDA,汽车,智能家电,GPS等均是嵌入式系统的典型代表。

串口通信是简单嵌入式系统的一个应用,串口通信是指外设和计算机间,通过数据信号线、地线、控制线等,按位进行传输数据的一种通讯方式。这种通信方式使用的数据线少,在远距离通信中可以节约通信成本,但其传输速度比并行传输低。

一、嵌入式串口通信概述

所谓串口通信,是指外设和计算机间使用一根数据信号线(另外需要地线),数据在一根数据信号线上一位一位地进行传输,每一位数据都占据一个固定的时间长度。

串口传输是二进制代码序列在一条信道上以位(元码)为单位,按时间顺序且按位传输的通信方式。串行传输时,发送端按位发送,接收端按位接受,同时还要对所传输的位加以确认,所以收发双方要采取同步措施,否则接受端将不能正确区分出所传输的数据。

串口通信不但能实现计算机与嵌入式开发板之间的数据传输,而且还能实现计算机对嵌入式开发板的控制。若采用普通单片机,对外部设备的访问就需要利用复杂的汇编语言进行编程或者使用C51自己编写设备的初始化以及读写访问程序,这样的过程不仅复杂,而且不利于大规模的开发和设计。ARM 与8051 等普通单片机相比,具有开发简单、灵活,而且性能稳定、功能易于扩展等一系列优势,因而在汽车电子、手持设备、无线领域和航空航天等嵌入式系统中得到广泛的应用。

将Linux 移植到ARM 嵌入式处理器后,可以利用操作系统中提供的系统调用把串口及其他外设当成普通文件进行操作,读写方便,因此进行相应开发可以提高系统编程效率,而且还可以简化调试的复杂程度。

1.1 嵌入式串口通信的原理

串行端口的本质功能是作为CPU和串行设备间的编码转换器。当数从CPU经过串行端口发送出去时,字节数据转换为串行的位。在接收数据时,串行的位被转换为字节数据。串口是系统资源的一部分,应用程序要使用串口进行通信,必须在使用之前向操作系统提出申请要求(打开串口),通信完成后必须释放资源(关闭串口)。

1.2 嵌入式串口通信的开发工具

本次开发采用的硬件平台是利用OURS-IOTV2-2530实验箱和C语言来实现本次系统的开发。

1.2.1 CC2530功耗

CC2530使用不同的运行模式或功耗模式以允许低功耗运行。超低功耗是通过关闭模块电源以避免静态功耗以及通过使用时钟门控和关闭振荡器来减少动态功耗而获得的。CC2530有4个功耗模式,被称为PM0、PM1、PM2和PM3。PM0是激活模式而PM3具有最低功耗。

PM0:全功能模式。连接到数字内核的电压调整器打开。16MHz RC振荡器或32MHz 晶体振荡器运行或者它们同时运行。32.753KHz RC振荡器或32.768KHz 晶体振荡器运行。

PM1:连接到数字部分的电压调整器打开。16MHz RC振荡器和32MHz 晶体振荡器都不运行。32.753KHz RC 振荡器或32.768KHz 晶体振荡器运行。在产生复位、外部中断或当睡眠定时器到期时系统将返回到PM0。PM2:连接到数字内核的电压调整器关闭。16MHz RC振荡器和32MHz 晶体振荡器都不运行。32.753KHz RC 振荡器或32.768KHz 晶体振荡器运行。在产生复位、外部中断或当睡眠定时器到期时系统将返回到PM0。PM3:连接到数字内核的电压调整器关闭。没有振荡器运行。在产生复位或外部中断时系统将返回到PM0。PM0是全功能模式,在该模式下,CPU、片内外设和RF收发器都处于激活状态,数字电压调整器打开。该模式也被称为激活模式时。

1.2.2 ARM简介

ARM(Advanced RISC Machines),既可以认为是一个公司的名字,也可以认为是对一类微处理器的通称,还可以认为是一种技术的名字。1991 年ARM 公司成立于英国剑桥,主要出售芯片设计技术的授权。目前,采用ARM 技术知识产权(IP)核的微处理器,即通常所说的ARM微处理器,已遍及工业控制、消费类电子产品、通信系统、网络系统、无线系统、军用系统等各类产品市场,基于ARM 技术的微处理器应用约占据了32 位RISC 微处理器70%以上的市场份额,ARM 技术正在逐步渗入到我们生活的各个方面。ARM 公司是专门从事基于RISC 技术芯片设计开发的公司,作为知识产权供应商,本身不直接从事芯片生产,靠转让设计许可,由合作公司生产各具特色的芯片,世界各大半导体生产商从ARM 公司购买其ARM 微处理器核,根据各自不同的应用领域,加入适当的外围电路,从而形成自己的ARM 微处理器芯片进入市场。目前全世界有几十家大的半导体公司都使用ARM 公司的授权,因此既使得ARM 技术获得更多的第三方工具、制造、软件的支持,又使整个系统成本降低,使产品更容易进入市场并被消费者所接受,更具有竞争力。

ARM 微处理器一般具有如下特点:

(1)体积小、低功耗、低成本、高性能;

(2)支持 Thumb(16 位)/ARM(32 位)双指令集,能很好的兼容8/16 位器件;

(3)大量使用寄存器,指令执行速度更快;

(4)大多数数据操作都在寄存器中完成;

(5)寻址方式灵活简单,执行效率高;

(6)指令长度固定。

1.2.3 Linux系统简介

Linux是一类Unix计算机操作系统的统称。Linux操作系统也是自由软件和开放源代码发展中最著名的例子。Linux 一般有四个主要部分:内核、Shell、文件结构和实用工具。

(1)Linux 内核

内核是系统的心脏,是运行程序和管理像磁盘和打印机等硬件设备的核心程序。它从用户那里接受命令并把命令送给内核去执行。

(2)Linux Shell

Shell 是系统的用户界面,提供了用户与内核进行交互操作的一种接口。它接收用户输入的命令并把它送

入内核去执行。

实际上Shell 是一个命令解释器,它解释由用户输入的命令并且把它们送到内核。不仅如此,Shell 有自己的编程语言用于对命令的编辑,它允许用户编写由shell 命令组成的程序。Shell 编程语言具有普通编程语言的很多特点,比如它也有循环结构和分支控制结构等,用这种编程语言编写的Shell 程序与其他应用程序具有同样的效果。

(3)Linux 文件结构

文件结构是文件存放在磁盘等存储设备上的组织方法。主要体现在对文件和目录的组织上。目录提供了管理文件的一个方便而有效的途径。我们能够从一个目录切换到另一个目录,而且可以设置目录和文件的权限,设置文件的共享程度。

使用Linux,用户可以设置目录和文件的权限,以便允许或拒绝其他人对其进行访问。

(4)Linux 实用工具

标准的 Linux 系统都有一套叫做实用工具的程序,它们是专门的程序,例如编辑器、执行标准的计算操作等。用户也可以产生自己的工具。

1.3 嵌入式串口通信的基本任务

(1)实现数据格式化:因为来自CPU 的是普通的并行数据,所以,接口电路应具有实现不同串行通信方式下的数据格式化的任务。在异步通信方式下,接口自动生成起止式的帧数据格式。在面向字符的同步方式下,接口要在待传送的数据块前加上同步字符。

(2)进行串---并转换:串行传送,数据是一位一位串行传送的,而计算机处理数据是并行数据。所以当数据由计算机送至数据发送器时,首先把串行数据转换为并行数才能送入计算机处理。因此串并转换是串接口电路和的重要任务。

(3)控制数据传输速率:串行通信接口电路应具有对数据传输速率-----波特率进行先择和控制的能力。(4)进行错误检测:在发送接口电路对传送的字符数据自动生成奇偶校验位或其他校验码。在接收时,接口电路检查字符的奇偶校验或其他检验码,确定是否发生传送错误。

(5)进行TTL 与EIA 电平转换:CPU 和终端均采用TTL 电平及正逻辑,它们与EIA 采用的电平及负逻辑不兼容,需在接口电路中进行转换。

1.4嵌入式串口通信协议及实现

串行端口的本质功能是作为CPU 和串行设备间的编码转换器,一般微机内都配有通信适配器,使计算机能够与其他具有RS-232C 串口的计算机或设备进行通信。本系统主要目的是实现宿主机与目标机之间的近距离串行通信, 采用的宿主机是Intel Centrino架构的Red Hat Linux 9.03 环境PC机, 而目标机是ARM 架构的开发板。

本系统中目标机开发板的内核采用的是三星的S3C2410 ,该开发板采用核心板加底板的模式, 核心板接口采用DIMM200 标准连接器,工作非常可靠,可稳定运行在203 MHz 的时钟频率下。其外设非常丰富,功能强大,完全可以满足设计需要。串口线采用常用的RS-232C 型接口模式,能实现计算机与开发板间的数据传输与控制。嵌入式串口通信采用EIA RS-232C标准。

二、 RS-232C标准

RS-232C是1969年由电子工业协会(EIA)公布的标准。该标准的用途是定义数据终端设备DTE (Data Terminal Equipment)与数据通信设备DCE(Data Communication Equioment)的接口特性。

数据终端设备就是连接通信两端设备的连线(如空MODEM)或其他设备。RS-232C标准的构架如图2.1所示。

电气特性

RS-232C采用非归零、双极性编码,且使用负逻辑规定的逻辑电平:-15~-5V规定为逻辑“1”。+5~+15V规定为逻辑“0”。信号电平与TTL电平不兼容,所以需要电平转换电路(通常使用MAX3232转换)。电平转换电路如图2.2所示。

2.1

目前广泛的DB9引脚定义如图2.3所示。信号引脚定义的说明见表2.1。

图2.3 DB9 引脚定义

表2.1 DB9引脚说明

2.2 字符(帧)格式

RS-232C采用起止式异步通信协议,其特点是一个字符接着一个字符进行传输,并且传输一个字符总是以起始位开始,以停止位结束,字符之间没有固定的时间间隔要求。其传输格式如图2.4所示,每一个字符的前面都有一位起始位(低电平,逻辑“0”),字符本身有5~8位数据位,接着字符后面是一位校验码(也可以没有校验码),最后是停止位。停止位后面是不定长度的空闲位。停止位和空闲位都规定为高电平(逻辑值“1”),这样就能保证起始位开始处一定有一个下跳沿,便于接受方识别。

图2.4 串行传输的工作原理示意图

从图2.4 中可以看出,这种格式是靠起始位和停止位来实现字符的界定或同步的,故称为起止式协议。没有统一的时钟,没有同步字符,依靠起始位和停止位标识每一帧,传输时,数据的地位在前,高位在后。

起始位实际上是作为同步信号附加进来的,当它变为低电平时,告诉接受方传输开始,后面接着是数据位;而停止位则标志一个字符的结束。这样就为通信双方提供了何时开始收发、何时结束的标志。传输开始前,收发双方把所采用的字符格式(包括字符的数据位长度、停止位位数、有无校验位以及是奇校验还是偶校验等)和数据的传输速率进行统一规定。传输开始后,接收设备不断地检测线路,看是否有起始位到来。当收到一系列的“1”(停止位或空闲位)之后,检测到一个下跳沿(由“1”变为“0”),说明起始位出现,起始位经确认后,就开始接收所规定的数据位和奇偶校验位以及停止位。然后去掉停止位,对数据位进行串并转换,并且经奇偶校验无误后,才算正确地接收到一个字符。一个字符接收完毕,接收设备又继续测试线路,监视“0”电平的到来和下一位字符的开始,直到全部数据传输完毕。

2.3握手协议

RS-232C标准除了规定的字符格式和通信波特率以外,还在数据终端设备DTE和数据通信设备DCE 之间定义了一套握手协议。握手协议的过程如图2.5所示。

信号。

②DSR:数据通信设备DCE准备就绪。MODEM加电并能正确执行通信功能时,DTE发出DSR信号。

③RTS:请求发送。当DTE有数据需要向另一远程DTE传输时,DTE在检测DSR有效时向本地MODEM 发出RTS信号。本地MODEM检测到RTS有效,然后根据目的电话号码向远程MODEM发出呼叫。远程MODEM 收到该呼叫,发出回答载波信号。本地MODEM接受到此载波信号,然后向远程MODEM发出原载波信号进行确认,同时向DTE发出数据载波信号DCD。

④DCD:数据载波信号检测。由MODEM发向数据终端设备DTE,表示已检测到对方载波信号。

⑤CTS:允许发送,当一个MODEM辨认出对方MODEM已经准备接收时,使用CTS信号通知自己的

DTE,表示这个通信通路已经做好数据传输的准备,允许DTE进行数据发送。至此,通信链路建立,可以通信。

⑥RI:振铃指示。如果MODEM具有自动应答能力,当对方呼叫传来时,MODEM向DTE发出该信号,指示此呼叫。在电话呼叫振铃结束后,MODEM在DTE已准备好的情况下(即DTR有效),立即向对方自动应答。

2.4 双机互连方式

双机可以利用RS-232C通信接口进行直接互连(数据终端设备DTE到DTE),即空MODEM连接。这种形式在嵌入式系统中应用极为广泛。

由于RS-232C标准中有两对硬件握手协议的引线:DTR和DSR、RTS和CTS,根据应用握手协议的机制不同,可分为3种情况:无硬件握手、DTR和DSR握手、RTS和CTS握手。

2.4.1无硬件握手情况

无硬件握手的双机互连如图2.6所示。

易溢出。

2.4.2 DTR和DSR握手情况

DTR和DSR握手的双机互连如图2.7所示。

DSR,

得知计算机A尚未做好接收数据的准备,停止发送数据。

2.4.3RTS和CTS握手情况

RTS和CTS握手的双机互连如图2.8所示。

利用RTS和CTS握手进行发送和接收数据的过程如下(设计算机A接收、计算机B发送):

若计算机A已经准备就绪,则使RTS有效。计算机B通过采集CTS,得知计算机A已经做好接收数据的准备,可以发送数据。若计算机A未准备好,则RTS无效,计算机B通过采集CTS,得知计算机A 尚未做好接收数据的准备,停止发送数据。

三、嵌入式串口驱动程序设计

由于嵌入式系统是一个受资源限制的系统,因此不能直接在嵌入式系统硬件上进行编程。作为一个完整的嵌入式系统,其软件设计也是一个很重要的方面。本系统软件的实现是通过串口设置和读写串口等操作来完成宿主机与目标机间的串口通信。

3.1 嵌入式串口操作需要的头文件

在开发嵌入式Linux串口驱动程序时,需要以下头文件。

#include /*标准输入输出定义*/

#include /*标准函数库定义*/

#include /*UNIX标准函数定义*/

#include

#include

#include /*文件控制定义*/

#include /*POSIX终端控制定义*/

#include /*错误号定义*/

3.2 打开串口

在嵌入式Linux系统中,打开一个串口设备和打开普通文件一样。嵌入式Linux系统下的串口文件通常位于/dev下:串口一为/dev/ttyS0;串口二为/dev/ttyS1。

打开串口时通过使用标准的文件函数open( )来进行操作的,下面假设以读写方式打开串口一。

int fd;//文件描述符

fd=open(“/dev/ttyS0”,O_RDWR);//以读写方式打开串口

if(fd==-1)//如果不能打开串口一

{

perror(“提示错误!”);

}

3.3 串口设置

在Linux 系统中,设备都是以文件的形式表示的,串口参数一般包括波特率、起始位数量、停止位数量等。下面对这些串口参数进行详细说明。

起始位

通信线路上没有数据被传送时,处于逻辑“1”状态。当发送字符数数据是首先发送一个逻辑“0”信号,这个逻辑低电平就是起始位。起始位通过通信线路传输到接收端,接收端检测到这个低电平之后,就开始准备接收数据位信号。起始位所起的作用就是使通信双方同步。

数据位

当接收端收到起始位后,开始接收数据位。数据位的个数可以是5~8位。在数据传送过程中,数据位从最低有效位开始传送,接收端收到数据后,依次将其转换成并行数据。

奇偶校验位

数据位发送完后,为了保证数据的可靠性,还要传送一个奇偶校验位。奇偶校验用于差错检测。如果选择偶检验,则数据位和奇偶位的逻辑“1”的个数必须为偶数,相反,如果是奇检验,则数据位和奇偶位的逻辑“1”的个数为奇数。

停止位

在奇偶位或数据位(当无奇偶校验时)之后发送停止位。停止位表示一个数据的结束。它可以是1~2位的低电平。接收端收到停止位后,通信线路便恢复逻辑“1”的状态,直到下一个数据的起始位到来。

波特率

通信线路上传输的位(码元)信号都必须保持一致的信号持续时间,单位时间内传送码元的数目称为波特率。对大多数嵌入式设备来说,其波特率都设置为115200。

访问串行口通过对设备文件的访问来实现,仅需打开相应的设备文件。串口的设置主要是设置struct termios 结构体中的各成员值。

#include

struct termio

{

unsigned short c_iflag; /*输入模式标志*/

unsigned short c_oflag; /*输出模式标志*/

unsigned short c_cflag; /*控制模式标志*/

unsigned short c_lflag; /*本地模式标志*/

unsigned char c_line; /*线路规范*/

unsigned char c_cc[NCC]; /*控制特征值*/

}

①波特率设置:

struct termios option;

tcgetattr(fd,&option);

cfsetispeed(&option,B115200);/*设置为115200Bps*/ cfsetospeed(&option,B115200);

tcsetattr(fd,TCANOW,&option);

②检验位设置:

无校验 8 位:

options.c_cflag &=~PARENB

options.c_cflag &=~CSTOPB;

options.c_cflag &=~CSIZE;

options.c_cflag︱=~CS8;

奇效验(Odd)7 位:

options.c_cflag︱=~PARENB;

options.c_cflag &=~PARODD;

options.c_cflag &=~CSTOPB;

options.c_cflag &=~CSIZE;

options.c_cflag︱=~CS7;

偶校验(Even)7 位:

options.c_cflag &=~PARENB;

options.c_cflag︱=~OARODD;

options.c_cflag &=~ CSTOPB;

options.c_cflag &=~CSIZE;

options.c_cflag︱=~CS7;

Space 校验7 位:

options.c_cflag &=~ PARENB;

options.c_cflag &=~CSTOPB;

options.c_cflag &=&~CSIZE;

options.c_cflag︱=~CS8;

③停止位设置:

1位: options.c_cflag &=~CSTOPB;

2位: options.c_cflag︱=CSTOPB;

④模式设置:

需要注意的是,如果不是开发终端之类的,只是串口传输数据,而不需要串口来处理,那么使用原始模式(Raw Mode)方式来通讯。

options.c_lflag &=~(ICANON︱ECHO︱ECHOE︱ISIG);/*Input*/

options.c_oflag &=~OPOST;/*Output*/

3.4 串口读写

在Linux 系统中,对设备和目录的操作都等同于文件的操作,这样大大简化了系统对不同设备的处理,提高了效率。在程序中,设备和文件都是使用文件描述符来进行操作的。文件描述符是一个非负的整数,是一个索引值,并指向内核中每个进程打开文件的记录表。当打开一个现存的文件或者是创建一个新文件时,内核就向进程返回一个文件描述符;当需要读写时也需要将文件描述符作为参数传递给相应的函数。

在Linux 系统中,所有的设备文件都位于“/ dev”下,其中串口对应的设备名为“/ dev/ ttyS0”,因此对串口的读写就可以像读写(“read”和“write”) 普通文件一样来读写设备文件,所不同的是需要对串口的其他参数另做配置。

打开串口之后,读写串口就很容易了,把串口当作文件读写就可以了。

(1)发送数据

char butter[1024];

int Length=1024;

int nByte;

nByte=write(fd,buffer,Length);

(2)读取串口数据

使用文件操作read 函数读取,如果设置为原始模式(Raw Mode)传输数据,那么read 函数返回的字符数是实际串口收到的字符数。读取数据时比较需要技巧的。

char buff[1024];

int Len=1024;

int rdadByte=read(fd,buff,Len);

也可以使用操作文件的函数来实现异步读取,如fcntl,或者selectt 等来操作。

fd_set rfds;

struct timeval tv;

int retval;

/*下面几行设置要监视进行读写操作的文件集*/

FD-ZERO(&rfds); //文件集清零

FD_SET(ports[portNo].handle,&rfds); //向集合中添加一个文件句柄

https://www.360docs.net/doc/529455592.html,_sec=Timeout/1000; //设置等待的时间

https://www.360docs.net/doc/529455592.html,_usec=(Timeeout%1000)*1000;

retval=select(16,&rfds,NULL,NULL,&tv;) //文件所监视的文件集准备好.

if(rdtvel) //文件集中有文件在等待时间内

准备好了.

{

actuaIRead=read(ports[portNo].handle,buf,maxCnt); //读取数据

}

下面两个实例给出了串口读和写两个程序部分代码。写串口的程序将在宿主机上运行,读串口程序将在目标板上运行。

写串口部分程序:

do

{

printf(“Input some words(enter ‘quit’ to exit):”);

memset(buff, 0,BUFFER_SIZE);

if(fgets(buff,BUFFER_SIZE,stdin)==NULL)

{

perror(“fgets”);

break;

}

write(fd,buff,strlen(buff));

}whie(strncmp(buff,”quit”,4));

读串口部分程序:

do

{

memset(buff,0,BUFFER_SIZE);

if(read(fd,buff,BUFFER_SIZE)>0)

{

printf(“The received words are:%s”,buff);

}

}while(strncmp(buff,”quit”,4));

3.5 关闭串口

在Linux 系统中,对设备和目录的操作都等同于文件的操作, 关闭串口就是关闭文件,而设备和文件都是使用文件描述符来进行操作的。文件描述符是一个索引值,指向内核中每个进程打开文件的记录表,因此关闭文件就只要关闭文描述符就可以了。

四、源程流程图

五、源程序代码

/*serial_com.c*/

#include

#include

#include

#include

#include

#include

#include

#include

#define MODEMDEVICE "/dev/ttyS0"

#define _POSIX_SOURCE 1

#define FALSE 0

#define TRUE 1

volatile int STOP=FALSE;

main()

{

int fd,n=0,c,BAUDRATE,i,BUFNUMBER=32,READNUMBER=32;

char receivebuf[BUFNUMBER];

struct termios oldtio,newtio;

struct stat st;

errno=0;

fd=open(MODEMDEVICE, O_RDWR|O_NOCTTY/*|O_NDELAY|O_NONBLOCK*/);/*打开串口*/ if (errno)

{

perror(MODEMDEVICE);

printf("Error in open COM1\n");

errno=0;

exit(-1);

}

tcgetattr(fd,&oldtio);

bzero(&newtio,sizeof(newtio));

BAUDRATE=B9600;

cfsetispeed(&newtio,BAUDRATE);/*设置串口输入波特率*/

cfsetospeed(&newtio,BAUDRATE);/*设置串口输出波特率*/

newtio.c_cflag|=CS8|CLOCAL|CREAD;/*设置串口奇偶校验位*/

newtio.c_iflag=IGNPAR|ICRNL;

newtio.c_lflag&=~(ICANON|ECHO|ECHOE|ISIG)

参考文献

[1] 金建设.嵌入式系统基础教程[M].大连:大连理工大学出版社,2009.

[2] 周立功.ARM 嵌入式系统基础教程[M].北京:北京航空大学出版社,2005.

[3] 周立功.ARM 嵌入式系统实验教程[M].北京北京航空大学出版社2004.

[4] 吴明晖.基于ARM 的嵌入式系统开发与应用[M].北京:人民邮电出版社,2004.

[5] 王宇行.ARM程序分析与设计[M].北京: 北京航空大学出版社,2008.

[6] 谭浩强C语言程序设计[M].北京清华大学出版社,2005

[7]覃团发、姚海涛、覃远年、陈海强. 移动通信. 重庆大学出版社

[8]Gordon.Stuber .移动通信原理. 电子工业出版社

[9]沈振元、聂志泉、赵雪符. 通信系统原理. 西安电子科技出版社

2020年嵌入式串口通信设计参照模板

***************** 实践教学 ******************* 兰州理工大学 计算机与通信学院 2013年春季学期 嵌入式系统开发技术课程设计 题目:嵌入式串口通信设计 专业班级:通信工程四班 姓名: 学号: 指导教师: 成绩:

嵌入式是以应用为中心,以计算机技术为基础,软件硬件可剪裁,适应应用系统对功能、可靠性、成本、体积、功耗严格要求的专用计算机系统。随着嵌入式系统的发展和大规模应用,为了提升系统的整体性能,必须实现PC机和嵌入式计算机之间的通信。在实际开发应用中,串口通信是不可缺少的部分。 目前嵌入式系统与PC机之间一种非常重要而且普遍应用的通信方式。本文通过基于2410F 的嵌入式串口通信的实现,按照嵌入式系统的软、硬件结构组成,较为详细地介绍了串口通信的硬件电路和软件实现方法。通过与计算机串口间的接,实现在ARM 平台上,传输速率115200bps,接收来自串口(通过超级终端)的字符并将接收到的字符发送到超级终端,实现监测。与外部设备通信的基本功能。 关键字:嵌入式系统,串口通信,Linux系统

前言 ------------------------------------------------------------------------------------------- - 4 - 一、串口通信概述--------------------------------------------------------------------------- - 5 - 1.1 串口通信的原理 ------------------------------------------------------------------ - 5 - 1.2 串口通信的开发工具 ------------------------------------------------------------ - 5 - 1.2.1 2410F硬件平台简介---------------------------------------------------------- - 5 - 1.3 串口通信的基本任务 ------------------------------------------------------------ - 8 - 二、系统分析--------------------------------------------------------------------------------- - 9 - 三、串口驱动程序设计 ------------------------------------------------------------------- - 17 - 3.1 串口操作需要的头文件 -------------------------------------------------------- - 17 - 3.2 打开串口 -------------------------------------------------------------------------- - 17 - 3.3 串口设置 -------------------------------------------------------------------------- - 18 - 3.4 串口读写 -------------------------------------------------------------------------- - 20 - 3.5 关闭串口 -------------------------------------------------------------------------- - 22 - 四、总结-------------------------------------------------------------------------------------- - 23 - 参考文献-------------------------------------------------------------------------------------- - 24 - 附录----------------------------------------------------------------------------------------- - 25 -

Linux 下串口编程入门

Linux 下串口编程入门 级别: 初级 左锦 (zuo170@https://www.360docs.net/doc/529455592.html, ), 副总裁, 南沙资讯科技园 2003 年 7 月 03 日 Linux 操作系统从一开始就对串行口提供了很好的支持,本文就 Linux 下的串行口通讯编 程进行简单的介绍。 串口简介 串行口是计算机一种常用的接口,具有连接线少,通讯简单,得到广泛的使用。常用的串口是 RS 称 EIA RS-232-C )它是在 1970 年由美国电子工业协会(EIA )联合贝尔系统、 调制解调器厂家及厂家共同制定的用于串行通讯的标准。它的全名是"数据终端设备(DTE )和数据通讯设备(DCE )之据交换接口技术标准"该标准规定采用一个 25 个脚的 DB25 连接器,对连接器的每个引脚的信号对各种信号的电平加以规定。传输距离在码元畸变小于 4% 的情况下,传输电缆长度应为 50 英尺Linux 操作系统从一开始就对串行口提供了很好的支持,本文就 Linux 下的串行口通讯编程进行要非常深入了解,建议看看本文所参考的 《Serial Programming Guide for POSIX Operating S 计算机串口的引脚说明 串口操作 串口操作需要的头文件文档选

打开串口 在 Linux 下串口文件是位于 /dev 下的 串口一为 /dev/ttyS0 串口二为 /dev/ttyS1 打开串口是通过使用标准的文件打开函数操作: int fd; /*以读写方式打开串口*/ fd = open( "/dev/ttyS0", O_RDWR); if (-1 == fd){ /* 不能打开串口一*/ perror(" 提示错误!"); } 设置串口 最基本的设置串口包括波特率设置,效验位和停止位设置。

嵌入式系统实验报告-串行通信实验

《嵌入式系统实验报告》 串行通信实验 南昌航空大学自动化学院050822XX 张某某 一、实验目的: 掌握μC/OS-II操作系统的信号量的概念。 二、实验设备: 硬件:PC机1台;MagicARM2410教学实验开发平台台。 软件:Windows 98/2000/XP操作系统;ADS 1.2集成开发环境。 三、实验内容: 实验通过信号量控制2个任务共享串口0打印字符串。为了使每个任务的字符串信息(句子)不被打断,因此必须引入互斥信号量的概念,即每个任务输出时必须独占串口0,直到完整输出字符串信息才释放串口0。 四、实验步骤: (1)为ADS1.2增加DeviceARM2410专用工程模板(若已增加过,此步省略)。 (2)连接EasyJTAG-H仿真器和MagicARM2410实验箱,然后安装EasyJTAG-H仿真器(若已经安装过,此步省略),短接蜂鸣器跳线JP9。 (3)启动ADS 1.2,使用ARM Executable Image for DeviceARM2410(uCOSII)工程模板建立一个工程UART0_uCOSII。(本范例在ADS文件夹中操作) (4)在ADS文件夹中新建arm、Arm_Pc、SOURCE文件夹。将μC/OS 2.52源代码添加到SOURCE文件夹,将移植代码添加到arm文件夹,将移植的PC服务代码添加到Arm_Pc文件夹。 (5)在src组中的main.c中编写主程序代码。 (6)选用DebugRel生成目标,然后编译链接工程。 (7)将MagicARM2410实验箱上的UART0连接跳线JP1短接,使用串口延长线把MagicARM2410实验箱的CZ11与PC机的COM1连接。 注意:CZ11安装在MagicARM2410实验箱的机箱右侧。 (8)PC机上运行“超级终端”程序(在Windows操作系统的【开始】->【程序】->【附件】->【通讯】->【超级终端】),新建一个连接,设置串口波持率为115200,具体设置参考图3.5,确定后即进入通信状态。 (9)选择【Project】->【Debug】,启动AXD进行JTAG仿真调试。 (10)全速运行程序,程序将会在main.c的主函数中停止(因为main函数起始处默认设置有断点)。 (11)可以单步运行程序,可以设置/取消断点,或者全速运行程序,停止程序运行,在超级终端上观察任务0和任务1的打印结果。 五、实验结论与思考题(手写,打印无效): 1、如果任务0删除语句“OSSemPost(UART0_Sem);”,那么程序还能完全正常无误运行么?如果发生异常会出现什么现象?

Linux下串口通信编程

Linux下串口通信编程 一、什么是串口通信? 串口通信是指计算机主机与外设之间以及主机系统与主机系统之间数据的串行传送。使用串口通信时,发送和接收到的每一个字符实际上都是一次一位的传送的,每一位为1或者为0。 二、串口通信的分类 串口通信可以分为同步通信和异步通信两类。同步通信是按照软件识别同步字符来实现数据的发送和接收,异步通信是一种利用字符的再同步技术的通信方式。 2.1 同步通信 同步通信是一种连续串行传送数据的通信方式,一次通信只传送一帧信息。这里的信息帧与异步通信中的字符帧不同,通常含有若干个数据字符。 它们均由同步字符、数据字符和校验字符(CRC)组成。其中同步字符位于帧开头,用于确认数据字符的开始。数据字符在同步字符之后,个数没有限制,由所需传输的数据块长度来决定;校验字符有1到2个,用于接收端对接收到的字符序列进行正确性的校验。 同步通信的缺点是要求发送时钟和接收时钟保持严格的同步。 2.2 异步通信 异步通信中,数据通常以字符或者字节为单位组成字符帧传送。字符帧由发送端逐帧发送,通过传输线被接收设备逐帧接收。发送端和接收端可以由各自的时钟来控制数据的发送和接收,这两个时钟源彼此独立,互不同步。 接收端检测到传输线上发送过来的低电平逻辑"0"(即字符帧起始位)时,确定发送端已开始发送数据,每当接收端收到字符帧中的停止位时,就知道一帧字符已经发送完毕。 在异步通行中有两个比较重要的指标:字符帧格式和波特率。 (1)字符帧,由起始位、数据位、奇偶校验位和停止位组成。 1.起始位:位于字符帧开头,占1位,始终为逻辑0电平,用于向接收设备表示发送端开始发送一帧信息。 2.数据位:紧跟在起始位之后,可以设置为5位、6位、7位、8位,低位在前高位在后。 3.奇偶校验位:位于数据位之后,仅占一位,用于表示串行通信中采用奇校验还是偶校验。 (2)波特率,波特率是每秒钟传送二进制数码的位数,单位是b/s。 异步通信的优点是不需要传送同步脉冲,字符帧长度也不受到限制。缺点是字符帧中因为包含了起始位和停止位,因此降低了有效数据的传输速率。 三、什么是RS-232? RS-232-C 接口(又称EIA RS-232-C)它是在1970 年由美国电子工业协会(EIA)联合贝尔系统、调制解调器厂家及计算机终端生产厂家共同制定的用于串行通讯的标准。它的全名是"数据终端设备(DTE)和数据通讯设备(DCE)之间串行二进制数据交换接口技术标准"该标准规定采用一个25 个脚的DB25 连接器,对连接器的每个引脚的信号内容加

嵌入式_USART 串口通讯

USART 串口通讯-存储池方式 【实验目的】 学习USART的特性及功能 学习USART 串口通讯的使用 【实验原理】 1. USART介绍 通用同步异步收发器(USART)提供了一种灵活的方法与使用工业标准NRZ异步串行 数据格式的外部设备之间进行全双工数据交换。USART利用分数波特率发生器提供宽范围的波特率选择。它支持同步单向通信和半双工单线通信,也支持LIN(局部互连网),智能卡协议和IrDA(红外数据组织)SIR ENDEC规范,以及调制解调器(CTS/RTS)操作。它还允许多处理器通信。使用多缓冲器配置的DMA方式,可以实现高速数据通信。 2. USART特性 全双工的,异步通信 标准格式 分数波特率发生器系统 ─发送和接收共用的可编程波特率,最高达 4.5Mbits/s 可编程数据字长度(8位或9位) 可配置的停止位-支持1或2个停止位 LIN主发送同步断开符的能力以及LIN从检测断开符的能力 ─当USART硬件配置成LIN时,生成13位断开符;检测10/11位断开符发送方为同步传输提供时钟 编码器解码器 ─在正常模式下支持3/16位的持续时间 智能卡模拟功能 ─智能卡接口支持ISO7816-3标准里定义的异步智能卡协议 ─智能卡用到的0.5和 1.5个停止位 单线半双工通信 可配置的使用DMA的多缓冲器通信 ─在SRAM里利用集中式DMA缓冲接收/发送字节 单独的发送器和接收器使能位 检测标志 ─接收缓冲器满 ─发送缓冲器空 ─传输结束标志 校验控制 ─发送校验位 ─对接收数据进行校验 四个错误检测标志 ─溢出错误通用同步异步收发器(USART) ─噪音错误 ─帧错误

嵌入式UART接口模块的设计

嵌入式UART接口模块的设计 引言 在计算机的数据通信中,外设一般不能与计算机直接相连,它们之间的信息交换主要存在以下问题: (1)速度不匹配。外设的工作速度和计算机的工作速度不一样,而且外设之间的工作速度差异也比较大。 (2)数据格式不匹配。不同的外设在进行信息存储和处理时的数据格式可能不同,例如最基本的数据格式可分为并行数据和串行数据。 (3)信息类型不匹配。不同的外设可能采用不同类型的型号,有些是模拟信号,有些是数字信号,因此采用的处理方式也不同。 为了解决外设和计算机之间的信息交换问题,即需要设计一个信息交换的中间环节接口。UART控制器是最常用的接口。 通用异步收发器(UniversalAsynchrONousReceiv2er/Transmitter,UART)是辅助计算机与串行设备之间的通信,作为RS232通信接口的一个重要的部分,目前大部分的处理器都集成了UART。 1 UART的数据格式 UART的数据传输格式。 图1 UART的数据传输格式 由于数字图像亚像素在计算机中是用8位二进制表示,因此UART传输的有效数据位为8位。传输线在空闲时为高电平,因此有效数据流的开始位设为0。 接着传输8位有效数据位,先从最低位开始传送。奇偶检验位可以设置为奇检验、偶校验或者不设置校验位,由于本系统使用的传输速率不高,为了加快开发进程,减少电路面积,因此没有设计奇偶检验模块,数据流中不设奇偶检验位。最后停止位为高电平。 2 UART的基本结构 设计的UART主要由UART内核、信号检测器、移位寄存器移位寄存器、波特率发生器和计数器组成,。 图2 UART基本结构 UART各个功能模块的功能如下文所述。 2.1 信号检测器模块 信号检测器用于对RS232的输入信号进行实时监测,一旦发现新的数据则立即通知UART 内核。信号检测器的仿真波形。 图3 信号检测器仿真波形图 其中,RxD第一次为低时,new_data信号阐述输出,之后RxD又变低,但由于信号检测器处于锁定状态,所以new_data信号并没有输出;最后,reset_n信号将信号检测器复位,RxD再次变低时,new_data又有输出。可见信号检测器的实现完全正确,其功能完全符合设计要求。 2.2 移位寄存器模块 移位寄存器模块的作用是存储输入或者输出数据。 当UART接收RS232输入时,移位寄存器在波特率模式下采集RS232输入信号,且保存结果;当进行RS232输出时,UART内核首先将数据加载到移位寄存器内,再使移位寄存器在波特率模式下将数据输出到RS232输出端口上。移位寄存器的仿真波形图。关键字:嵌入式嵌

Linux下的串口编程

Linux下的串口编程(二) 分类:Linux S3C24402012-03-21 15:52 5557人阅读评论(1) 收藏举报linux编程终端terminalstruct测试 Linxu下的串口编程(二) /************声明:本人只是见到这篇文章对我帮助很大才转载的,但是这个完整的程序里面本来有语法错误的,现在让我改过来了************/ --------------------------------------------------------- Author :tiger-john WebSite :https://www.360docs.net/doc/529455592.html,/tigerjb Email :jibo.tiger@https://www.360docs.net/doc/529455592.html, Update-Time : 2011年2月14日星期一 Tiger声明:本人鄙视直接复制本人文章而不加出处的个人或团体,但不排斥别人转载tiger-john的文章,只是请您注明出处并和本人联系或留言给我。3Q --------------------------------------------------------- 前面已经提到过Linux下皆为文件,这当然也包括我们今天的主角àUART0串口。因此对他的一切操作都和文件的操作一样(涉及到了open,read,write,close等文件的基本操作)。 一.Linux下的串口编程又那几部分组成

1. 打开串口 2. 串口初始化 3. 读串口或写串口 4. 关闭串口 二.串口的打开 既然串口在linux中被看作了文件,那么在对文件进行操作前先要对其进行打开操作。 1.在Linxu中,串口设备是通过串口终端设备文件来访问的,即通过访问/dev/ttyS0,/dev/ttyS1,/dev/ttyS2这些设备文件实现对串口的访问。

基于linux的嵌入式串口通信

天津电子信息职业技术学院 嵌入式软件编程》课程报告 课程名称:基于linux 的嵌入式串口通信 课程代码:115229 姓名:甘琦 学号:48 专业:物联网应用技术 班级:物联S14-1 完成时间:2016 年10 月28 日

目录 摘要 (1) 前言 (2) 一、嵌入式串口通信概述 (2) 1.1嵌入式串口通信的原理 (2) 1.2嵌入式串口通信的开发工具 (2) 1.2.1 ............................................................. CC2530 功耗 2 1.2.2........................................................... ARM 简介 3 1.2.3................................................................ L inux 系统简介 3 1.3嵌入式串口通信的基本任务 (4) 1.4嵌入式串口通信协议及实现 (4) 二、RS-232C 标准 (5) 2.1引脚定义 (5) 2.2字符(帧)格式 (6) 2.3握手协议 (8) 2.4双机互连方式 (9) 2.4.1无硬件握手情况 (9) 2.4.2 .................................................................. DTR 和DSR握手情况9 三、嵌入式串口驱动程序设计 (10) 3.1嵌入式串口操作需要的头文件 (10) 3.2打开串口 (10) 3.3串口设置 (11) 3.4串口读写 (13) 3.5关闭串口 (14) 四、源程流程图 (15) 五、源程序代码 (15) 总结 (19)

基于linux的嵌入式串口通信

天津电子信息职业技术学院《嵌入式软件编程》课程报告 课程名称:基于linux的嵌入式串口通信 课程代码:115229 姓名:甘琦 学号:48 专业:物联网应用技术 班级:物联S14-1 完成时间:2016 年10 月28日

目录 摘要 (1) 前言 (2) 一、嵌入式串口通信概述 (2) 1.1 嵌入式串口通信的原理 (2) 1.2 嵌入式串口通信的开发工具 (2) 1.2.1 CC2530功耗 (2) 1.2.2 ARM简介 (3) 1.2.3 Linux系统简介 (3) 1.3 嵌入式串口通信的基本任务 (4) 1.4嵌入式串口通信协议及实现 (4) 二、 RS-232C标准 (5) 2.1引脚定义 (5) 2.2 字符(帧)格式 (6) 2.3握手协议 (8) 2.4 双机互连方式 (9) 2.4.1无硬件握手情况 (9) 2.4.2 DTR和DSR握手情况 (9) 三、嵌入式串口驱动程序设计 (10) 3.1 嵌入式串口操作需要的头文件 (10) 3.2 打开串口 (10) 3.3 串口设置 (11) 3.4 串口读写 (13) 3.5 关闭串口 (14) 四、源程流程图 (15) 五、源程序代码 (15) 总结 (19)

摘要 随着Internet的发展和后PC时代的到来,嵌入式系统以其可靠性强、体积小、专用性、成本低等特性得到日益广泛的应用。目前嵌入式系统技术已经成为了最热门的技术之一。与此同时,一个独立的嵌入式系统的功能缺陷也逐渐暴露出来。新一代嵌入计算系统的功能集成和应用模式使之迅速向网络化嵌入计算的方向发展,标准和统一的TCP/IP通信协议是独立于任何厂家的硬件的,因此嵌入环境下的实时网络通信成为嵌入计算技术研究的重点和热点。本文通过基于2410F 的嵌入式串口通信的实现,按照嵌入式系统的软、硬件结构组成,较为详细地介绍了串口通信的硬件电路和软件实现方法。 关键词:嵌入式串口通信 2410F

嵌入式课程设计--_串口通信

摘要 (2) 1、绪论 (2) 1.1目的和意义 (2) 1.2设计内容 (2) 2、设计方案 (3) 2.1方案选择 (3) 2.1.1S3C2410X 串行通讯(UART)单元 (3) 2.1.2 波特率的产生 (3) 2.1.3 UART 通信操作 (4) 2.1.4 UART 控制寄存器 (4) 2.1.5 RS232 接口电路 (5) 3、硬件设计 (6) 3.1Embest EduKit-III 实验平台 (6) 3.2ULINK2 仿真器套件,PC 机 (6) 4、软件设计 (6) 4.2程序流程图设计 (7) 4.3调试运行结果 (7) 5、总结与体会 (8) 参考文献 (9)

摘要 为了掌握嵌入式技术,就应该学习以ARM 微处理器为核心的嵌入式开发环境和开发平台。本设计采用ARM原理和C语言程序设计的,设置S3C2410X 处理器 UART 相关控制寄存器和ARM 处理器系统硬件电路中 UART 接口,利用Embest EduKit-III 实验平台实现S3C2410X处理器和PC机的结合。 关键字: Embest EduKit-III 实验平台;S3C2410X 串行通讯(UART)单元;UART 控制寄存器;串口通信

1、绪论 1.1目的和意义 串口通信是目前单片机和 DSP 等嵌入式系统之间,以及嵌入式系统与 PC 机或无线模块之间的一种非常重要且普遍使用的通信方式。在嵌入式系统的硬件结构中,通常只有一个8位或 16位的 CPU, 不仅要完成主流程的工作, 同时还要处理随时发生的各种中断, 因而嵌入式系统中的串口通信程序设计与 PC 机有很大的不同。为了顺应当今世界技术革新的潮流,了解、学习和掌握嵌入式技术,就必然要学习和掌握以ARM 微处理器为核心的嵌入式开发环境和开发平台。 1.2设计内容 本设计采用Embest EduKit-III 实验平台实现,通过EmbestIDE Pro for ARM 软件编写程序,仿真调试。实现实验平台与PC的串口通信。通过PC的超级终端显示接受的结果。

Linux串口打印设置

一、基于VM虚拟机linux系统串口配置 配置分为虚拟机下配置及linux系统下minicom配置两部分。 虚拟机模块配置如下: 打开虚拟机配置界面。 选择Edit virtual machine settings。进入配置界面。

选择Add…按钮,添加相关的设备文件。

选中串口选项后继续选择下一步。

此处选择”使用主机上的物理串口设备”选项,继续下一步。此处我们选择文件。 对于物理串口选项,此处可以采用自动检测选项。如果下来菜单中有对应于串口的端口号,则可以选择。注意,对于设备状态,要确保选中“connect at power on“,即,上电连接状态。至此,虚拟机端串口配置完毕。 注意:此处我们串口添加成功后默认未COM2.

Linux下串口配置及使用。 Linux下一般使用minicom来作为串口数据输入输出的终端。类似于Windows下的超级终端。虚拟机下配置完毕后,进入Linux系统中,在Shell 终端下输入minicom -s即可配置串口终端。配置完成后执行minicom启动串口终端。 在终端界面下完成相关的参数配置并保存后,启动终端设备,即可在minicom中观察到数据输出。 <四>Minicom的使用 (1)minicom界面介绍 第一次运行minicom,启动minicom要以root权限登录系统,需要进行minicom的设置,输入下了命令#minicom –s,显示的屏幕如下所示,按

上下光标键进行上下移动选择,我们要对串行端口进行设置,因此选中 Serial port setup,然后回车: __[configuration]─-─—┐//配置 │ Filenames and paths │//文件名和路径 │ File transfer protocols│//文件传输协议 │ Serial port setup │//串行端口设置 │ Modem and dialing │//调制解调器和拨号 │ Screen and keyboard │//屏幕和键盘 │ Save setup as dfl │//设置保存到 │ Save setup as.. │//储存设定为 │ Exit │//退出 │ Exit from Minicom │//退出minicom └──────────┘ (2)minicom的参数设置 选中设置串行端口,点击回车后,弹出设置的界面如下: 点击”A”设置串行设置为/dev/ttyS1,这表示使用串口2(com2),如果是 /dev/ttyS1则表示使用串口2(com 2).按”E”键进入设置”bps/par/Bits”(波 特率)界面,如下图所示。再按”I”以设置波特率为115200,点”F”键硬 件流控制设置为NO,回车 最终的设置结果如下,然后回车返回到串口设置主菜单中 │A-Serial Device(串口设备): /dev/ttyS1 │B-Lockfile Location(锁文件位置): /var/lock │C-Callin Program(调入程序): │D-Callout Program(调出程序): │E-Bps/Par/Bits(): 115200 8N1 │F-Hardware Flow Control(硬件数据流控制): No │G-Software Flow Control(软件数据流控制): No 二、Linux 标准输入输出重定向到串口指南 设置linux 系统的标准输入输出到com2(console 口),以便维护人员 在无网络、无显示器的情况下对系统维护。在各文件(/etc/grub.conf、 /etc/inittab、/etc/securetty)中添加红色部分!文件修改完成后 reboot 系统即可在com2 口看到标准输入输出信息。

Linux--串口操作及设置详解

串口操作需要的头文件 #include /*标准输入输出定义*/ #include /*标准函数库定义*/ #include /*Unix 标准函数定义*/ #include #include #include /*文件控制定义*/ #include /*PPSIX 终端控制定义*/ #include /*错误号定义*/ 1.打开串口 在前面已经提到linux下的串口访问是以设备文件形式进行的,所以打开串口也即是打开文件的操作。函数原型可以如下所示: int open(“DE_name”,int open_Status) 参数说明: (1)DE_name:要打开的设备文件名 比如要打开串口1,即为/dev/ttyS0。 (2)open_Status:文件打开方式,可采用下面的文件打开模式: O_RDONLY:以只读方式打开文件 O_WRONLY:以只写方式打开文件 O_RDWR:以读写方式打开文件 O_APPEND:写入数据时添加到文件末尾 O_CREATE:如果文件不存在则产生该文件,使用该标志需要设置访问权限位mode_t O_EXCL:指定该标志,并且指定了O_CREATE标志,如果打开的文件存在则会产生一个错误 O_TRUNC:如果文件存在并且成功以写或者只写方式打开,则清除文件所有内容,使得文件长度变为0 O_NOCTTY:如果打开的是一个终端设备,这个程序不会成为对应这个端口的控制终端,如果没有该标志,任何一个输入,例如键盘中止信号等,都将影响进程。 O_NONBLOCK:该标志与早期使用的O_NDELAY标志作用差不多。程序不关心DCD信号线的状态,如果指定该标志,进程将一直在休眠状态,直到DCD信号线为0。 函数返回值: 成功返回文件描述符,如果失败返回-1 例如:

Linux下 QT串口与51单片机通信实例

QT串口与51单片机通信

通过这个小例子主要想说明QT怎样进行线程编程的思想,实例如图,好吧,下面是过程 上一个例子我们采用的是手工编写代码的方法,这个例子我们来玩一下designer,其实Qt4己经把界面与功能分开了,用designer来进行界面 设计,再手工编写一些功能,如信号与槽,这样开发效率会大大提高,呵呵,开一个终端,输入/usr/local/Trolltech/Qt-4.5.1/bin/designer ,如果第一次打开出现字体不对,可以打开qtconfig进行一些相关配置,打开后我们新建一个Main Window,在右边的属性框中设置一下界面大小, 1.我ARM板的LCD大小为320x240,所以我也设为320x240; 2.左边是一些我们常用的窗口部件,这里我们用到一个lable标签来做显示,再放几个pushButton按钮,在属性objectName重新更改它的名字,改为我们记得的,这样在写功能时记得哪个按钮叫什么名字,对于一个初学QT的人来说,很想知道每一个部件到底有什么信号和槽,别急,我们可以这样来看,选中一个lable,按F4,再点击lable拖动出现接地符号时松开,弹出编辑信号与槽,这时左边列出的是信号,右边为槽,这里我们不用配置连接,等下我们再手工写, 3最后我们用到一个lable标签和三个pushButton按钮,并命名为dis_label、writeButton、readButton、closeButton,然后保存为mainwindow.ui,这样designer就完工了,呵呵..

4.下面我们编写一个线程,用于管理串口收发工作,它不涉及到任何界面,只做好它的本份工作就得了,编写一个thread.h文件gedit thread.h, #ifndef THREAD_H #define THREAD_H #include class Thread:public QThread { Q_OBJECT public: Thread(); char buf[128]; volatile bool stopped; volatile bool write_rs; volatile bool read_rs; protected: virtual void run(); }; #endif 我们定义一个Thread类,它继承于QThread,看到只设有一些变量和一个run函数,virtual表示为虚函数,你也可以去掉,加上去会增加一些内存开销, 但提高了效率,对于这个小程序是看不出什么效果的,volatile这个大家都懂了吧,就是防止偷懒,呵呵, 5.再看看thread.cpp #include"thread.h" #include #include #include #include //串口用到的 #include #include #include #include #define BAUDRATE B9600 //#define RS_DEVICE "/dev/ttyS0" //串口1 #define RS_DEVICE "/dev/ttySAC1" //串口1 Thread::Thread() {} //析构 void Thread::run() //这就是线程的具体工作了

linux下的tty串口通信

异步通信:以单字符为发送单位,字符间发送能存在间隔 起始位:发送”0”,表示字符传送开始 数据位:可允许4 5 6 7的数据位 停止位:一个字符结束的标志位, 奇偶校验位:根据传送数据内“1”的个数是偶数还是奇数来校验数据是否准确 空闲位:在没有数据发送时,设置“1” Structure termios{ tcflag_t c_iflag; 输入方式 tcflag_t c_oflag; 输出方式 tcflag_t c_cflag; 控制模式标志 tcflag_t c_Iflag; 本地 tcflag_t c_cc[NCCS]; 控制字符,用于保存终端的特殊字符} c_iflag 标志常量:Input mode ( 输入模式) input mode可以在输入值传给程序之前控制其处理的方式。 其中输入值可能是由序列埠或键盘的终端驱动程序所接收到的字元。我们可以利用termios结构的c_iflag的标志来加以控制,其定义的方式皆以OR 来加以组合。 IGNBRK :忽略输入中的 BREAK 状态。(忽略命令行中的中断) BRKINT :(命令行出现中断时,可产生一插断)如果设置了 IGNBRK,将忽略 BREAK。如果没有设置,但是设置了 BRKINT,那么 BREAK 将使得输入和输出队列被刷新,如果终端是一个前台进程组的控制终端,这个进程组中所有进程将收到 SIGINT 信号。如果既未设置 IGNBRK 也未设置 BRKINT,BREAK 将视为与NUL 字符同义,除非设置了 PARMRK,这种情况下它被视为序列 377 � �。 IGNPAR :忽略桢错误和奇偶校验错。 PARMRK :如果没有设置 IGNPAR,在有奇偶校验错或桢错误的字符前插入377 �。如果既没有设置 IGNPAR 也没有设置 PARMRK,将有奇偶校验错或桢错误的字符视为 �。 INPCK :启用输入奇偶检测。 ISTRIP :去掉第八位。 INLCR :将输入中的 NL 翻译为 CR。(将收到的换行符号转换为Return)IGNCR :忽略输入中的回车。 ICRNL :将输入中的回车翻译为新行 (除非设置了 IGNCR)(否则当输入信号有 CR 时不会终止输入)。 IUCLC :(不属于 POSIX) 将输入中的大写字母映射为小写字母。 IXON :启用输出的 XON/XOFF 流控制。 IXANY :(不属于 POSIX.1;XSI) 允许任何字符来重新开始输出。(?) IXOFF :启用输入的 XON/XOFF 流控制。 IMAXBEL:(不属于 POSIX) 当输入队列满时响零。Linux 没有实现这一位,总是将它视为已设置。

嵌入式串口通信设计

湖南文理学院 课程设计报告 课程名称:嵌入式系统课程设计 专业班级:通信工程11101班学号(2位)学生姓名:石春波 指导教师:王丽娟 完成时间:2014年6月5日 报告成绩: 湖南文理学院制

嵌入式Linux 系统的串口通信研究

摘要 嵌入式是以应用为中心,以计算机技术为基础,软件硬件可剪裁,适应应用系统对功能、可靠性、成本、体积、功耗严格要求的专用计算机系统。随着嵌入式系统的发展和大规模应用,为了提升系统的整体性能,必须实现PC机和嵌入式计算机之间的通信。在实际开发应用中,串口通信是不可缺少的部分。 目前嵌入式系统与PC机之间一种非常重要而且普遍应用的通信方式。本文通过基于2410F 的嵌入式串口通信的实现,按照嵌入式系统的软、硬件结构组成,较为详细地介绍了串口通信的硬件电路和软件实现方法。通过与计算机串口间的接,实现在ARM 平台上,传输速率115200bps,接收来自串口(通过超级终端)的字符并将接收到的字符发送到超级终端,实现监测。与外部设备通信的基本功能。 关键字:嵌入式系统,串口通信,Linux系统

目录 前言------------------------------------------------------------------------------------------------ - 3- 一、串口通信概述 ----------------------------------------------------------------------- - 4 - 1.1 串口通信的原理 ----------------------------------------------------------------- - 4 - 1.2 串口通信的开发工具 -------------------------------------------------------- - 4 - 1.2.1 2410F硬件平台简介------------------------------------------------------- - 5 - 1.2.2 ARM简介------------------------------------------------------------------ - 5 - 1.2.3 Linux系统简介------------------------------------------------------- - 6 - 1.3 串口通信的基本任务 -------------------------------------------------------- - 7 - 二、系统分析--------------------------------------------------------------------------------- - 8- 2.1 RS-232C标准--------------------------------------------------------------- - 8 - 2.2 系统硬件结构原理------------------------------------------------------- - 15 - 三、串口驱动程序设计 ------------------------------------------------------------- - 16 - 3.1 串口操作需要的头文件 --------------------------------------------------- - 16 - 3.2 打开串口--------------------------------------------------------------------------- - 16 - 3.3 串口设置--------------------------------------------------------------------------- - 17 - 3.4 串口读写--------------------------------------------------------------------------- - 19 - 3.5 关闭串口--------------------------------------------------------------------------- - 21 - 四、总结 -------------------------------------------------------------------------------------- - 22 - 参考文献 -------------------------------------------------------------------------------------- - 23 - 附录 ------------------------------------------------------------------------------------------ - 24 -

嵌入式课设——串口通信

****************** 实践教学 ****************** 兰州理工大学 计算机与通信学院 2013年春季学期 嵌入式系统开发技术课程设计 题目:嵌入式串口通信的设计 专业班级:通信工程(1)班 姓名: 学号: 指导教师: 成绩:

目录 摘要 (1) 前言 (2) 一、串口通信概述 (3) 1.1通信方式 (3) 1.2串口通信 (3) 1.3串口通信的原理 (4) 1.4串口通信的基本任务 (4) 1.5串口通信的开发工具 (4) 1.5.1开发平台2410F的硬件简介 (5) 1.5.2 ARM简介 (5) 1.5.3 Linux系统简介 (5) 1.6系统硬件结构原理 (6) 1.7串口通信协议及实现 (7) 1.8串行接口标准 (7) 二、串口通信程序设计流程 (9) 2.1总体程序设计流程图 (9) 2.2串口操作需要的头文件 (10) 2.3打开串口 (10) 2.4串口设置 (10) 2.5串口读写 (13) 2.6关闭串口 (15) 三、设计结果与测试 (16) 3.1编写串口通信的程序serial_com.c (16) 3.2硬件配置 (16) 3.3串口通信测试 (17) 总结 (19) 参考文献 (20) 致谢 (21) 附录 (22)

摘要 嵌入式系统(Embedded System)在于结合微处理器或微控制器的系统电路与其专用的软件,来达到系统运作效率成本的最优化。本课程设计就是基于2410F 的嵌入式串口通信的实现,按照嵌入式系统的软、硬件结构组成,较为详细地介绍了串口通信的硬件电路和软件实现方法,并分析了串口驱动的开发方法。该系统的硬件主体设计以三星S3C2410 处理器为核心控制器件,实现连接PC机、ARM9-2410开发板、仿真器,实现串行通信,传输速率为115200bps,接收来自串口(通过超级终端)的字符并将接收到的字符发送到超级终端,实现在ARM 平台上与外部设备进行串口通信的基本功能。 关键词:嵌入式系统;串口通信;Linux系统

相关文档
最新文档