数学物理方程与特殊函数第二三章作业

合集下载

数学物理方程与特殊函数

数学物理方程与特殊函数

第7页/共20页
例3、热传导
热传导现象:当导热介质中各点的温度分布不均匀时,有 热量从高温处流向低温处。
所要研究的物理量:
温度 u(x, y, z,t)
根据热学中的傅立叶试验定律
在dt时间内从dS流入V的热量为:
S n
M V
S
dQ k u dSdt ku nˆdSdt ku dSˆdt
热场
横向: T cos T 'cos '
纵向: T sin T 'sin ' gds ma y
其中: cos 1 cos ' 1
sin tan u(x,t)
x
sin ' tan ' u(x dx,t)
x
M'
ds
T'
'
M
gds
T
x
x dx x
第3页/共20页
T T'
其中: m ds
和高阶微分方程。
3、线性偏微分方程的分类
按未知函数及其导数的系数是否变化分为常系数和变系数微分方 程
按自由项是否为零分为齐次方程和非齐次方程
第17页/共20页
思考判断下列方程的类型
2u 2t
a2
2u 2x
x
2u x2
a2
u t
xu
2u x2
a2
2u t 2
u1u源自122u2
0
4、叠加原理
线性方程的解具有叠加特性
第13页/共20页
2、边界条件——描述系统在边界上的状况
A、 波动方程的边界条件 (1)固定端:对于两端固定的弦的横振动,其为:
u |x0 0, 或: u(a,t) 0

数学物理方程第一章、第二章习题全解

数学物理方程第一章、第二章习题全解

18
数学物理方程与特殊函数导教·导学·导考
2δρ ut ( x , 0 ) = k ( c - δ≤ x ≤ c + δ) 在这个小段外,初速度仍为零, 我们想得到的是 x = c 处受到冲 击的初速度 , 所 以 最后 还 要 令 δ→ 0。此 外 , 弦是 没 有 初 位 移的 , 即 u( x, 0) = 0 , 于是初始条件为
3. 有一均匀杆 , 只要杆中任一小段有纵向位移或速度 , 必导致 邻段的压缩或伸长, 这种伸缩传开去, 就有纵波沿着杆传播, 试推导 杆的纵振动方程。
解 如图 1 9 所示, 取杆
长方向为 x 轴正向, 垂直于杆长
方向的 各截 面 均 用 它 的 平 衡 位 置 x 标记 , 在时刻 t, 此截面相对
u( x, 0) = 0 0,
ut ( x , 0 ) = δkρ,
| x - c| >δ | x - c | ≤ δ (δ→ 0)
所以定解问题为
utt - a2 uxx = 0
u(0 , t) = u( l, t) = 0 u( x, 0) = 0 , ut ( x , 0 ) =
0, | x - c| > δ δkρ, | x - c | ≤ δ (δ→ 0 )
16
数学物理方程与特殊函数导教·导学·导考
第一章 课后习题全解
1 .4 习题全解
1. 长为 l 的均匀杆 , 侧面绝缘 , 一端温度为零 , 另一端有恒定热
流 q进入 ( 即单位时间内通过单位截面积流入的热量为 q) , 杆的初始
温度分布是 x( l 2
x) ,试写出相应的定解问题。
解 见图 1 8, 该问题是一维热传导方程, 初始条件题中已给
u x

第二章 分离变量法 数理方程课件

第二章 分离变量法 数理方程课件

2 0 X 2 X 0
X (0) A 0
n
n
10
,n
1,2,3,
X (x) Acosx Bsin x X (10) Bsin10 0
n
n2 2
100
n
X n (x) Bn sin 10 x
数学物理方程与特殊函数
第2章分离变量法
2u u(t02,
t)
104
2u x2
第2章分离变量法
例1:设有一根长为10个单位的弦,两端固定,初速为零,初
位移为 (x) x(10 x) 1000,求弦作微小横向振动时的位移。
2u u(t02,
t)
104 u
2u x2
,
(1 0, t )
0,
u(x,0)
x(10 x) 1000
,
u(x,0) t
0,
0 x 10,t 0 t 0 0 x 10
数学物理方程与特殊函数
X X 0,
X
(0)
0,
2 0 X 2 X 0
X (0) A B 0
AB0
0
X 0 AB0
第2章分离变量法
0 xl X (l) 0 X (x) Aex Bex
X (l) Ael Bel 0
X (x) 0
X (x) Ax B X (x) 0
▪求特征值和特征函数 n n / l2
▪求另一个函数
Tn
Cn
cos
na
l
t
Dn
X n (x) Bn
sin na t
l
sin
n
l
x
na
na n
▪求通解 u un X nTn (Cn cos

西安邮电大学期末数理方程试题+答案

西安邮电大学期末数理方程试题+答案

数学物理方程与特殊函数09级试题选讲一、求解定解问题22200,0,(0,0)x x lt u u a t x u u x l t xx u x ===ì¶¶=ï¶¶ï¶¶ï==<<>í¶¶ïï=ïî)()(),(t T x X t x u =)()()()(2t T x X a t T x X ¢¢=¢22)()()()(b -=¢¢=¢x X x X t T a t T 0>b 设,代入原方程得,则)()(22=+¢t T a t T b 0)()(2=+¢¢x X x X b 则,0x x lu u xx==¶¶==¶¶'(0)'()0X X l Þ==又因为得固有值问题2()()0'(0)'()0X x X x X X l b ¢¢ì+=í==î22)(ln pb =()cos 0,1,2,n n n xX x A n lp ==则固有值固有函数,数学物理方程与特殊函数09级试题选讲)()()(2=+¢t T la n t T p 2()()n a tl n T t C ep -Þ=2()01(,)cosn a tln n n x u x t C C elp p ¥-==+å从而0t ux==有因为01cosnn n x x C C lp ¥==+å所以220022[(1)1]cos 12n ln l n x l C x dx l l nl C xdx lp p --====òò2()2212(1)1(,)cos 2n a ntln l l n xu x t enlp p p¥-=--=+å数学物理方程与特殊函数09级试题选讲二、求解定解问题2222,,0(),0(),0(0)(0)t x t x u ut x t t t x ux x u x x =-=ì¶¶=-<<>ï¶¶ïï=F £íï=Y ³ïïF =Y î解:特征变换为x t x tx h =-ìí=+î2u x h¶=¶¶原方程化为12()()u f f x h =+则它的通解为00(),()()(),()()2222t xt x ux u x u u h x x h x h x h=-====F =Y +-Þ=F =F =Y =Y 又因为数学物理方程与特殊函数09级试题选讲1212(0)()()2()(0)()2f f f f h h xx +=Y +=F 2112()()(0)2()()(0)2f f f f h h x x ì=Y -ïïÞíï=F -ïî12()()((0)(0))22()()(0)22u f f x t x tx h=F +Y -+-+=F +Y -F 则它的解为三、求解定解问题)0,(,0,3,03202022222>+¥<<-¥ïïïîïïíì=¶¶==¶¶-¶¶¶+¶¶==y x y ux u y uy x u x u y y 解:原方程的特征方程为22()23()0dy dydx dx --=13C x y +=2C x y +-=,则特征线为3x y x yx h =-ìí=+î特征变换20ux h¶=¶¶原方程化为12()()u f f x h =+则它的通解为数学物理方程与特殊函数09级试题选讲12(,)(3)()u x y f x y f x y =-++即203,y y u ux y==¶==¶又因为21212(3)()3(3)()0f x f x xf x f x ì+=í¢¢-+=î则可得C x x f¢-=2149)3(C x x f ¢+=2243)(C x x f¢-=2141)(222234)(34)3(),(yx y x y x y x u +=++-=22()()C Du vv u u v d v u ds n n s ¶¶Ñ-Ñ=-¶¶òòò 四、证明平面上的格林公式其中n 为曲线的外法线向量。

数学物理方程与特殊函数老师给题答案汇总

数学物理方程与特殊函数老师给题答案汇总

1.证明二维laplace 方程 在极坐标下 证:2.长为l 的均匀杆,侧面绝缘,一端温度为零,另一端有恒定热流q 进入(即单位时间内通过单位截面积流入的热量为q ), 杆的初始温度分布为x (l-x ) / 2 ,试写出相应的定解问题。

解:对于杆上的一个微元d x ,流入的热量为:温度变化所需的热量为:两式相等:定解问题为:02222=∂∂+∂∂y u x u 22,arctan y x x y+==ρθθρθρρθθρθθsin ,cos 221cos ,sin /1122222=∂∂=⋅+=∂∂=∂∂-=-⋅+=∂∂y x y x x y x y x y x 2222222222222sin cos cos 2sin sin ρθθρθρρθθρθρθθρ∂∂-∂∂+∂∂+∂∂∂+∂∂=∂∂u u u u u y u x u x u x u ∂∂∂∂+∂∂∂∂=∂∂θθρρ2222222222222sin sin sin 2sin cos ρθθρθρρθθρθρθθρ∂∂+∂∂+∂∂+∂∂∂-∂∂=∂∂u u u u u x u ρρθρρ∂∂+∂∂+∂∂=∂∂+∂∂u u u y u x u 11222222222ρθθθρθθρρcos sin ∂∂+∂∂=∂∂∂∂+∂∂∂∂=∂∂u u y u y u y u 011222=∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂=θρρρρρu u ρθθθρsin cos ∂∂-∂∂=u u 02222=∂∂+∂∂y ux u 011222=∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂θρρρρρu u3.设弦的两端固定于x=0及x=l,弦的初始位移如图所示,初速度为零,又没有外力作用,求弦作横向振动时的位移函数u(x,t)。

解如果琴弦像上图的方法来放置,是不是边界条件将不再是齐次的。

4.解下列问题解:⎪⎪⎪⎩⎪⎪⎪⎨⎧≤≤=>=∂∂=∂∂><<∂∂=∂∂lxxxutxt luxtut lxxuatu),()0,(,0),(,0),0(,,222ϕ)()(),(tTxXtxu=XTaXT''='2XXTaT''='22=+'=+''TaTXXλλ⎩⎨⎧='='<<=+'')(,0)0(lXXlxXXλ)()(),()()0(),0(='=∂∂='=∂∂tTlXxt lutTXxtu)(,0)0(='='lXX,3,2,1,22=⎪⎭⎫⎝⎛==nlnnnπβλsin)(=-='lBlXββ)0(=='βAXxlnBXnnπcos=lnnπβ=xBxAXββcossin+=2=+''XXβ2>=βλBX=BAxX+==''X=λ==BAll eBeAlXββββ--=')()0(=-='ββBAXxx BeAeXββ-+=2=-''XXβ2<-=βλ2=+'TaTλ=λ0='T00T A=>λ02222=+'nnTlnaTπtlnanneAT2222π-=nnnTXu=xlneC tlnanππcos2222-=CAB==∑∑∞=-∞=+==1cos2222ntlnannnxlneCCuuππTXu=xlneBA tlnannππcos2222-=001()d2l lC x xlϕ==⎰022()cos d2(1)1()lnnnC x x xl llnπϕπ=⎡⎤=--⎣⎦⎰xx=)(ϕ5.达朗贝尔公式推导 解:做如下代换得:所以 因为所以所以 又因为 因为 所以所以得:即因此⎪⎪⎩⎪⎪⎨⎧+∞<<∞-=∂∂=>+∞<<∞-∂∂=∂∂x x t x u x x u t x x u a t u ),()0,(),()0,(0,,22222ψϕ⎪⎭⎫ ⎝⎛∂∂⋅-∂∂=t a x 121⎪⎭⎫ ⎝⎛∂∂⋅+∂∂=t a x 121)()(21at x f at x f u -++=ηηη∂∂∂∂+∂∂∂∂=∂∂t t x x ξξξ∂∂∂∂+∂∂∂∂=∂∂t t x x a t 2ηξ-=2ηξ+=x at x -=ηat x +=ξ)()(21ηξf f u +=)(ξξf u =∂∂02=⎪⎪⎭⎫ ⎝⎛∂∂∂∂=∂∂∂ηξηξu u t a x ∂∂⋅-∂∂=∂∂1ηt a x ∂∂⋅+∂∂=∂∂1ξ011=⎥⎦⎤⎢⎣⎡∂∂⋅-∂∂⎥⎦⎤⎢⎣⎡∂∂⋅+∂∂u t a x t a x 0122=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂⋅-⎪⎭⎫ ⎝⎛∂∂u t a x 0122222=⎪⎪⎭⎫ ⎝⎛∂∂⋅-∂∂u t a x 0122222=∂∂⋅-∂∂t u a x u )()()()0,(21x x f x f x u ϕ=+=)()()()0,(21x x f a x f a t x u ψ='-'=∂∂C a x f x f x +=-⎰021d )(1)()(ξξψ2d )(21)(21)(01C a x x f x ++=⎰ξξψϕ2d )(21)(21)(02Ca x x f x --=⎰ξξψϕ2d )(21)(212d )(21)(2100C a at x C a at x u at x at x ---++++=⎰⎰-+ξξψϕξξψϕ[]11()()()d 22x atx at u x at x at a ϕϕψξξ+-=++-+⎰6.解定解问题解:令所以因为 所以得7.P81T1求方程0,1,22>>=∂∂∂y x y x yx u满足边界条件y y u x x u cos ),1(,)0,(2==的解解:用积分法求解:对y 进行积分)(2122x g y x x u ==∂∂,再对x 积分)()(612123y f x f y x u ++=利用边界条件得 ,再用一次边界条件用积分变换法求解:对y 取拉普拉斯变换利用边界条件 得22d 2d d 3d y x y x --x y +=η2=∂∂∂ηξu )()3()0,(21x f x f x x u +-==)()3(0)0,(21x f x f y x u '+-'==∂∂Cx f x f =+--)()3(3121Cx x f 4343)3(1-=-C x x f 4341)(21-=C x x f 4343)(2+=()2222343)(4343341y x C y x C y x u +=+++--=(d 3d )(d d )0y x y x =-+=)()3(21x y f x y f ++-=x y 3-=ξ)()(21ηξf f u +=y y f f y y u x f x f x u cos )()1(61),1(,)0()()0,(212221=++=+=⎪⎪⎩⎪⎪⎨⎧+∞<<∞-=∂∂=+∞<<-∞>=∂∂-∂∂∂+∂∂x y x u x x u x y y u y x u x u ,0)0,(,)0,(,0,032222228.推导空间格林公式由高斯公式⎰⎰⎰⎰⎰ΓΩ++=∂∂+∂∂+∂∂dS x n R y n Q x n P dV z R y Q x P )],cos(),cos(),cos([)(推导 证:设函数u(x,y,z)和υ(x,y,z)在Γ+Ω上具有一阶连续偏导数,在Ω内具有连续的所有二阶偏导数。

高中数学第二章函数2.4.2二次函数的性质课时作业3北师大版必修1(2021年整理)

高中数学第二章函数2.4.2二次函数的性质课时作业3北师大版必修1(2021年整理)

2018-2019学年高中数学第二章函数2.4.2 二次函数的性质课时作业3 北师大版必修1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018-2019学年高中数学第二章函数2.4.2 二次函数的性质课时作业3 北师大版必修1)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018-2019学年高中数学第二章函数2.4.2 二次函数的性质课时作业3 北师大版必修1的全部内容。

2.4.2 二次函数的性质|基础巩固|(25分钟,60分)一、选择题(每小题5分,共25分)1.函数y=x2-2x+3在(-1,5)上的最小值为( )A.2 B.6C.18 D.22【解析】判断对称轴x=1在区间(-1,5)内部,在x=1取得最小值2.【答案】A2.函数f(x)=x2+mx+1的图像关于直线x=1对称,则( )A.m=-2 B.m=2C.m=-1 D.m=1【解析】函数f(x)=x2+mx+1的图像的对称轴为x=-错误!,且只有一条对称轴,所以-错误!=1,即m=-2.【答案】A3.二次函数f(x)=ax2+bx+c的顶点为(4,0),且过点(0,2),则abc等于() A.-6 B.11C.-错误! D.错误!【解析】因为f(x)图像过点(0,2),所以c=2。

又顶点为(4,0),所以-错误!=4,错误!=0.解得b=-1,a=错误!,所以abc=-错误!。

【答案】C4.若f(x)=(m-1)x2+2mx+3(m≠1)的图像关于y轴对称,则f(x)在(-3,1)上( )A.单调递增 B.单调递减C.先增后减 D.先减后增【解析】由f(x)的图像关于y轴对称,得m=0,所以函数f(x)=-x2+3,由f(x)的图像(图略)知其在(-3,1)上先增后减.故选C.【答案】C5.函数f(x)=ax2+2(a-3)x+1在区间(-2,+∞)上是单调递减,则a的取值范围是()A.[-3,0] B.(-∞,-3]C.[-3,0) D.[-2,0]【解析】若a=0,则f(x)=-6x+1(符合题意),a〉0不合题意,若a<0,则-错误!≤-2,解得-3≤a<0,综上得-3≤a≤0。

数理方程与特殊函数(10-11-2A)参考答案

数理方程与特殊函数(10-11-2A)参考答案

10---11-2 数学物理方程与特殊函数(A 卷)参考答案一.填空题1,自由项,齐次方程,非齐次方程,初值条件,(第三类)边界条件,初边值(混合)问题; 2,函数()t z y x u u ,,,= 1),具有二阶连续偏导函数;2),满足方程; 3,()xt t x w =,;4,)cos(t x π-;5,[]1,1-,t x t ≤≤-;6,4122≤+<y x ;122<+y x ; 7,()x x 35213-;()32331481-x dxd ;无界的; 8,⎪⎩⎪⎨⎧=+≠;,122,,0n m n n m ()()().,2,1,021211 =+⎰-n dx x P x f n n 二.解:相应方程的特征方程为:0)(2)(322=-+dt dxdt dx ,即:31=dt dx ,1-=dtdx。

由此得积分曲线:13C t x =-,2C t x =+。

作特征变换:t x -=3ξ,t x +=η,则:ηξ∂∂+∂∂-=∂∂u u t u ,ηξ∂∂+∂∂=∂∂u u x u 3;22222222ηηξξ∂∂+∂∂∂-∂∂=∂∂u u u t u , 22222223ηηξξ∂∂+∂∂∂+∂∂-=∂∂∂u u u x t u ,222222239ηηξξ∂∂+∂∂∂+∂∂=∂∂uu u x u 。

代入原方程,整理得:02=∂∂∂ηξu,则通解为:()()ηξ21f f u +=,其中21,f f 是任意两个连续二次可微函数。

因此原方程通解为: ()()()t x f t x f t x u ++-=213,。

由初值条件有: ()()22133x x f x f =+,()()0321='+'-x f x f 。

由微分方程有:()()C x f x f =-2133 因此 ()449321Cx x f +=,()44121C x x f +=,()44322C x x f -=。

数学物理方程与特殊函数课后答案

数学物理方程与特殊函数课后答案

29.0(,)11cos ,sin (,)(cos ,sin ),cos sin ;sin cos .sin cos ;s xx yy rr r r x y x y x r y laplace u u r u u u r rx r y r u x y u r r u u u u r u r u u u u ru θθθθθθθθθθθθθθθ+=++==⎧⎨=⎩∴==+⎧⎪⎨=−+⎪⎩=−⇒=∵ 证明方程在极坐标下为 证明: sin cos ;cos cos in .sin .sin ()cos ()sin sin cos cos r xx x r r u u r y r r u u u x x r r x u u r r r r θθθθθθθθθθθθθθθθθθ⎧∂∂∂⎛⎞⎧=−⎜⎟⎪⎪∂∂∂⎝⎠⎪⎪⇒⎨⎨∂∂∂⎛⎞⎪⎪+=+⎜⎟⎪⎪⎩∂∂∂⎝⎠⎩∂∂∂∂∂⎛⎞==−⎜⎟∂∂∂∂∂⎝⎠∂∂∂∂⎛⎞⎛=−−⎜⎟⎜∂∂∂∂⎝⎠⎝ 从而2222222222222sin cos sin cos sin cos sin cos sin cos sin .cos ()sin ()sin yy u u u u r r r r r r u u ur r r r u u u y y r r y θθθθθθθθθθθθθθθθθθθ⎞⎟⎠∂∂∂∂=+−+∂∂∂∂∂∂∂∂−++∂∂∂∂∂∂∂∂∂⎛⎞==+⎜⎟∂∂∂∂∂⎝⎠= 2222222222222cos cos sin sin cos sin cos cos sin sin cos sin cos cos .1u u r r r r u u u u r r r r r r u u ur r r r u u u u θθθθθθθθθθθθθθθθθθθθθθ∂∂∂∂⎛⎞⎛⎞++⎜⎟⎜⎟∂∂∂∂⎝⎠⎝⎠∂∂∂∂=−++∂∂∂∂∂∂∂∂+−+∂∂∂∂+=+ 所以 10.u +=21.(01,0),(0,)(1,)0,1,0.(2)2(,0)11,1,2(,0)(1);tt xx tu a u x t u t u t x x u x x x u x x x ⎧=<<>⎪==⎪⎪⎧⎪<≤⎪⎨⎪=⎨⎪⎪⎪−<<⎪⎩⎪⎪=−⎩求下列问题的解22(,)()().()()0,()()0.(0)(1)0.()()0,(0)(1)0.(),()si n n n u x t X x T t T t a T t X x X x X X X x X x X X n X x B λλλλπ=′′+=′′+===′′+=⎧⎨==⎩==解:应用分离变量法,令 代入方程分离变量,得 由边界条件分离变量,得 求解固有值问题得, 111212202n (1,2,).()cos sin (1,2,).(,)(cos sin )sin .42sin (1)sin sin .2n n n n n n n n x n T t C an t D an t n u x t a an t b an t n x n a x n xdx x n xdx n ππππππππππ∞===+==+⎡⎤=+−=⎢⎥⎣⎦∑∫∫ 代入另一常微分方程,得则其中 ()()14402244124(1)sin 11.44(,)(sin cos 11sin )sin .2nn nn b x x n xdx an n a n u x t an t an t n x n n a πππππππππ∞=⎡⎤=−=−−⎣⎦⎡⎤=+−−⎣⎦∫∑ 因此,所求定解问题的解为2(0,0),(0,)(,)0,(3)35(,0)3sin6sin ,22(,0)0.tt xx x t u a u x l t u t u l t x xu x l l u x ππ⎧=<<>⎪==⎪⎪⎨=+⎪⎪=⎪⎩ ()22(,)()().()()0,()()0.(0)()0.()()0,(0)()0.21(),(2n n u x t X x T t T t a T t X x X x X X l X x X x X X l n X l λλλπλ=′′+=′′+=′==′′+=⎧⎨′==⎩+=解:应用分离变量法,令 代入方程分离变量,得 由边界条件分离变量,得 求解固有值问题得, ()()()()()()121)sin (0,1,2,).22121()cossin (0,1,2,).22212121(,)(cossin )sin .222235(3sin6sin 22n n n n n n n n n x B x n la n a n T t C t D t n l la n a n n u x t a tb t x l l l x x a l l ππππππππ∞=+==++=+=+++=+=+∑ 代入另一常微分方程,得则 其中 ()03,1;21)sin 6,2;20,12.0.3355(,)3cos sin 6cos sin .2222l n n n xdx n l l n b a a u x t t x t x l l l lπππππ=⎧+⎪==⎨⎪≠⎩==+∫、 因此,所求定解问题的解为3.4(0,0),(2)(0,)0,(,)0,(,0)().t xx x x u u x l t u t u l t u x x l x =<<>⎧⎪==⎨⎪=−⎩求下列定解问题的解:2(,)()().()4()0,()()0.(0)()0.()()0,(0)()0.(),()n n u x t X x T t T t T t X x X x X X l X x X x X X l n X x A lλλλπλ=′+=′′+=′′==′′+=⎧⎨′′==⎩==解:应用分离变量法,令 代入方程分离变量,得 由边界条件分离变量,得 求解固有值问题得, 222()2()012000cos (0,1,2,).()(0,1,2,).1(,)cos .222().62()cos n n t ln n n t ln n l l n n x n l T t D e n n u x t a a e x l l a x l x dx l n a x l x xd l l πππππ−∞−=====+=−==−∑∫∫ 代入另一常微分方程,得则 其中 2222222()2212[1(1)].2[1(1)](,)cos .6n n n t ln l x n l l n u x t e x n lππππ∞−=−−+−=−−+−=+∑ 因此,所求定解问题的解为2110(01),,0,(1,)0,.,.rr r u u u r r r A u A θθθαθαθπα⎧++=<<⎪⎪⎨⎧≤≤⎪⎪=⎨⎪<≤⎪⎩⎩其中为已知常数22(,)()().()()()0,()()0.()()0,()(2).(),()cos sin n n n n u r R r r R r rR r R r n X x A n B n θθλθλθθλθθθπλθθ=Φ′′′+−=′′Φ+Φ=′′Φ+Φ=⎧⎨Φ=Φ+⎩==+解:应用分离变量法,令 代入方程分离变量,得求解固有值问题得,()2010(0,1,2,).()()()0,(0).()(0,1,2,).1(,)cos sin .212n n n n n n n n n r R r rR r R r R R r C r n u r a a n b n r Aa Ad a ααλθθθαθππ∞=−=′′′⎧+−=⎨<+∞⎩===++==∑∫ 代入另一常微分方程的定解问题得, 则 其中 112cos sin ,1sin 0.2(,)sin cos .n nn AA n d n n b A n d A A u x t r n n n ααααθθαππθθπααθππ−−∞======+∫∫∑ 因此,所求定解问题的解为0(0,0),(0,)0,(,)0(0),(,0)(1),lim (,)0(0),.xx yy y u u x l y u y u l y y x u x A u x y x l l A →∞⎧+=<<<<∞⎪⎪==≤<∞⎨⎪⎪=−=<<⎩其中为已知常数 2(,)()().()()0,()()0.(0)()0.()()0,(0)()0.(),()sin n n n u x y X x Y y X x X x Y y Y y X X l X x X x X X l n X x B lλλλπλ=′′+=′′−===′′+=⎧⎨==⎩==解:应用分离变量法,令 代入方程分离变量,得 由边界条件分离变量,得 求解固有值问题得, 10(1,2,).()(1,2,).(,)sin.22()sin .lim (,)0n n y y lln n n n n y y l ln n n l n n y n x n l Y y C e D e n n u x y a e b e x l x n A a b A l xdx l l l n u x y a ππππππππ−∞−=→∞==+=⎛⎞=+⎜⎟⎝⎠+=−==⇒∑∫ 代入另一常微分方程,得则 其中 10.2(,)sin .n n y l n A n u x t e x n l πππ∞−===∑因此,所求定解问题的解为()22228.-10.cos ,sin ,111(0),0.{cos sin }.,()xx yy x y a rr r r an a u u u x r y r u u u r a r r u A n B n u r a r θθθθθθθ+==+====⎧++=−<<⎪⎨⎪=⎩+= 在以原点为心,为半径的圆内,试求泊松方程 的解,使它满足边界条件解:令作极坐标变换,得由固有函数法,相应的固有函数系为 因此,设方程的解为[]()()()()()()()0002222cos ()sin .11,110,0210,323()0()n n n n n n n n n nn n nn n n n b r n a a r n a a a n r r nb b b r r a r A r B r n b r C r D θθ∞=−+⎧′′′+=−⎪⎪⎪′′′+−=≠⎨⎪⎪′′′+−=⎪⎩=+≠=+∑ 代入方程,得方程,的通解:, ()()2000(0),()0;(0),()0.()00()0.11()ln ,4(0),()n n n n n n n n r a a a b b a a r n b r a r A r B r a a a −<+∞=<+∞==≠==+−<+∞=. 由有界性条件及边界条件,得 , 方程的通解: 由有界性条件及边界条件,()()()()()220222220.1().41,.41,.a r a r u r a r u x y a x y θ=−=−⎡⎤=−+ 得 则定解问题的解为 化成直角坐标,则得21210.sin ,(2)(0,)0,(,)0(0),(,0)0,(,0)0(0);{sin }.(,)()sin .tt xx tn n n u a u t x l u t u l t t u x u x x l n x ln u x t u t x l n a u u l ππππ∞=⎧=+⎪⎪==≥⎨⎪==≤≤⎪⎩=⎛⎞′′+⎜⎟⎝⎠∑求下列问题的解:解:由固有函数法,相应的固有函数系为 设方程的解为 代入原方程,得()2111020(1),.(0)(0)0(1,2,),1()0;1()sin sin .n n n n t n a u u t l u u n n u t l an u t t d al l l a t t a a l ππτττππππ=≠⎛⎞′′+=⎜⎟⎝⎠′===≠===−⎛⎞⎛⎞=−⎜⎟⎜⎟⎝⎠⎝⎠∫"" 由初始条件,得当时, 当时, 2(,)sin sin l l a u x t t t x a a l l ππππ⎛⎞⎛⎞=−⎜⎟⎜⎟⎝⎠⎝⎠ 故所求的解为2110(0,0),(3)(0,)0,(,)0,(,0)0.,{sin}.(,)()sin .sin 22sin [1(t xx n n n n l n u a u A x l t u t u l t u x n x ln u x t u t x l n A A A x l n A A A xdx l l n πππππ∞=∞=⎧=+<<>⎪==⎨⎪=⎩====−∑∑∫ 解:由固有函数法相应的固有函数系为 设方程的解为 并将展为: ,其中 222()023321)].2[1(1)],(0)0.2()[1(1)]2[1(1)][1].(,n n n n n n a t tn l n n a t n ln a A u u l n u Au t e d n Al e n au x πτπππτππ⎛⎞−−⎜⎟⎝⎠⎛⎞−⎜⎟⎝⎠−⎧⎛⎞′+=−−⎪⎜⎟⎨⎝⎠⎪=⎩=−−=−−−∫ 代入原方程可得得: 故所求的解为2233212)[1(1)][1]sin .n a tnl n Al n t e x n alπππ⎛⎞∞−⎜⎟⎝⎠==−−−∑()2211.224sin cos ,(2)(0,)0,(,)(0),(,0),(,0)()(0).(,)(,)().224sin cos ,(0,)(0ttxx t ttxx u a u x x l lu t u l t B t Bu x x u x x l x x l l u x t v x t w x v a v w x x l lv t w ππππ⎧=+⎪⎪==≥⎨⎪⎪==−≤≤⎩=+′′=+++求下列问题的解解:设问题的解为 将其代入上面的定解问题,得22222)0,(,)(),(,0)(),(,0)().224sincos 0,(0)0().4()sin.8(0,)0,(,)0,(,0)t tt xx v l t w l B Bv x w x x v x x l x l a w x x l lw w l B B l w t x x l a l v a v v t v l t v x ππππ⎧⎪⎪=+=⎨⎪⎪+==−⎩⎧′′+=⎪⎨⎪==⎩=+==== 化成下面两个问题:(1) , 解得: (2) 12222022340(),(,0)().(,)cos sin sin .0,4;24sin sin 8, 4.824()sin t n n n l n l n Bx w x v x x l x l n a n a n v x t a t b t x l l l n l n a x xdx l l a l l n an l b x l x xdx n a l n ππππππππππ∞=⎧⎪⎪⎨⎪⎪−=−⎩⎛⎞=+⎜⎟⎝⎠≠⎧⎪=−⋅=⎨−=⎪⎩=−⋅=∑∫∫ 解得: 其中, ()()43222441222[11].4[11]44(,)cos sin sin sin .844(,)(,)()1cossin 8nn n al l a n a n v x t t x t x a l l n a l l B l a u x t v x t w x x t x l a l l πππππππππ∞=−−−−=−+⎛⎞=+=+−⎜⎟⎝⎠∑ 则 因此,原问题的解为14..0,(2)(-)(),(-)().0().:0X X X X X X X x Be Ae Be A B λππππλ′′+=⎧⎨′′==⎩<=++=+−=−==⇒求下列问题的固有值与固有函数解:当时,方程的通解为 由边界条件,有, ; 得0()0.0().-0.:().0().sin ,X x X x Ax B A B A B A X x C X x A B A B A Bλππλ===++=+⇒==>=+−=++=− 当时,方程的通解为 由边界条件,有 得当时,方程的通解为 由边界条件,有22sin ;()0sin 0(1,2,);()cos sin .(0,1,2,),()cos sin .n n n n n n n n X x n n X x A nx B nx n n X x A nx B nx λλ+====+===+"""" 要不恒等于,则,得故,固有值 固有函数222()()0,(3)(1)()0.ln ,()0.0()00:x y x xy x y y y e x e x d y y d y x Be Bx A B Be τλτλττλ′′′⎧++=⎨==⎩==+=<=+=++=+=解:方程通过自变量代换 或 得: 当时,方程的通解为 由边界条件,有 , ; 得))0()0.0()ln .0,0.:()0.0()cos ln sin ln .0,A B y x y x A B A x B B A y x y x A B A x B x A λτλ==⇒===+=+===>=+=+= 当时,方程的通解为 由边界条件,有 得当时,方程的通解为 由边界条件,有()()2220;()00(1,2,);()sin ln .(1,2,),()sin ln .n n n n n n B y x n n y x B n x n n y x B n x λππλπ========"""" 要不恒等于,则,得 故,固有值 固有函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习 题 2.14. 一根长为L 、截面面积为1的均匀细杆,其x=0端固定,以槌水平击其x=L 端,使之获得冲量I 。

试写出定解问题。

解:由题意可知定解问题为:⎪⎪⎩⎪⎪⎨⎧<<-=-<<===========)(,)/(,)0(,0,00,0)/(000002L x L I u L x u u u u u a u Y u t t t t t x x x xx xxtt εερερ习 题 2.23. 设物体表面的绝对温度为u ,它向外辐射出去的热量,按斯特凡—玻尔兹曼定律正比于u 4,即d Q =k u 4d S d t ,设物体与周围介质之间,只有热辐射而无热传导,周围介质的绝对温度为已知函数 ),,,(t z y x ϕ。

试写出边界条件。

解:由题意可知:dsdt u dsdt nuk)(44ϕσ-=∂∂- ∴边界条件为:)(44ϕσ--=∂∂u knu s习 题 2.34. 由静电场Gauss 定理⎰⎰⎰⎰⎰=⋅VSV S E d 1d 0ρε,求证:0▽ερ=⋅E ,并由此导出静电势u 所满足的Poisson 方程。

证明:由题意可知由静电场高斯定理:⎰⎰⎰⎰⎰⎰⎰⎰==⋅VSVV V divE S E d 1d d 0ρε∴ 00▽ερερ=⋅⇒=E divE 习 题 2.42. (1) 032=-+yy xy xx u u u 解:由题意可知:△=12-1×(-3)=4﹥0 => 双曲型03d d 2d d 2=--⎪⎭⎫⎝⎛x y x y => 3d d =x y 或 -1 令 ⎩⎨⎧+=-=yx yx ηε3则 ⎥⎦⎤⎢⎣⎡-=⎥⎥⎦⎤⎢⎢⎣⎡=1113 y x y x Q ηηεε => ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡''''08801113311111132212121122121211 T Q a a a a Q a a a a 00b 0b 21='='=-='=-='f c c L c L ηηεε∴ )()3()()(016y x g y x f g f u u ++-=+=⇒=ηεεη (5) 031616=++yy xy xx u u u 解:由题意可知:△=82-16×3=16﹥0 => 双曲型03d d 16d d 162=+-⎪⎭⎫⎝⎛x y x y =>43d d =x y 或 41 令 ⎩⎨⎧-=-=y x yx 443ηε则 ⎥⎦⎤⎢⎣⎡--=⎥⎥⎦⎤⎢⎢⎣⎡=4143y x y x Q ηηεε => ⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡''''03232044133881641432212121122121211 T Q a a a a Q a a a a 00b 0b 21='='=-='=-='f c c L c L ηηεε∴ )4()43()()(064y x g y x f g f u u -+-=+=⇒=-ηεεη习 题 2.52.试证明:若),,(τt x V 是定解问题⎪⎩⎪⎨⎧====><<=-====),(,00,0,0,002ττττx f V V V V t L x V a V t t t L x x xx tt的解,则⎰=td t x V t x u 0);,(),(ττ是定解问题⎪⎩⎪⎨⎧====><<=-====0,00,00,0),,(0002t t t L x x xx tt u u u u t L x t x f u a u的解。

证明:由题意可知:00==t u 0);0,(0===τx V u t t其次,因),,(τt x V 是齐次定解问题的解,因此,0,00====L x x u u∴ ⎰=td t x V t x u 0);,(),(ττ是定解问题⎪⎩⎪⎨⎧====><<=-====0,00,00,0),,(0002t t t L x x xx tt u u u u t L x t x f u a u的解。

习 题 2.61. (3) 证明公式:)0()()(≠=a ax ax δδ证明:由题意可知:1)()(1)()(=⇒=⎰⎰+∞∞-+∞∞-x d ax a ax d ax δδ且 1)()(=⎰+∞∞-x d x δ⎰⎰+∞∞-+∞∞-=)()()()(x d ax x d ax δδ∴ )0()()(≠=a ax ax δδ习 题 3.13. (4) []⎪⎩⎪⎨⎧=+'==+''==0,0002L x x hX X X X Xβ解:由题意可知:可分为两种情况来讨论(令2βλ=)a) 当02==βλ时,方程0=''X 的通解为X(x)=Ax+B. (A 、B 为任意常数) 代入边界条件得X(0)= B=0 [X ´(L)+hX(L)]=A+h(AL+B)=0 => (1+hL) A=0b) 当02>=βλ时,方程0=+''X X λ的通解为x x x X λλBsin Acos )(+=.(A 、B 为任意常数) 代入边界条件得 X(0)=A=0[]L hBsin L hAcos L cos B L sin A(L)(L)λλλλλλ+++-=+'hX X=> 0L hBsin L cos B =+λλλ => hL tg λλ-=∴ 边值问题的固有值n λ为 hL tg λλ-=的正根。

相应的固有函数为 x x X n n n λsin B )(=7. 一根长为L 的杆,一端固定,另一端受力F 0而被拉长。

求杆在去掉F 0时的振动。

设杆的截面积为S ,杨氏模量为Y 。

解:由题意可知定解问题为:⎪⎩⎪⎨⎧====><<=====0,)(0,00,0,00002t t t L x x x xx tt u x SY F u u u t L x u a u=> ⎩⎨⎧='==+'' 0)L (,0)0(0X X X X λ=> 当0< λ时,边值问题只有零解。

当0= λ时, X(x)=Ax+B. 当A=0,B ≠0时,方程满足条件。

当0> λ时, x x x X λλBsin Acos )(+=. (A 、B 为任意常数) 代入边值条件得: X(0)= A=0,0L cos B )(=='λλL X =>2)12(πλ+=n L(n=0,1,2··)则固有值为2224)12(L n n πλ+= ,相应固有函数为x Ln x X n n 2)12(sin B )(π+=(B n 为任意非零常数) ∴x Ln L at n L at n t x u n n n 2)12(sin ]2)12(sin D 2)12(cosC [),(0πππ++++=∑∞= (n=0,1,2··)代入初始条件为:∑∑∞=∞=++==+==002)12(sin 2)12(D )()0,(,2)12(sin C )()0,(n n t n n x L n L a n x x u x L n x x u ππψπϕ=> ⎪⎪⎩⎪⎪⎨⎧=+⋅=+-=+=⎰⎰L n L n n d L n a n L L n SY LF d L n L 0022002)12(sin )(2D )12()1(82)12(sin)(2C ξπξξψππξπξξϕ∴ ∑∞=+++-=02202)12(sin 2)12(cos )12()1(8),(n n L xn L at n n SY LF t x u πππ (n=0,1,2··) 习 题 3.22. 一根长为L 的细杆侧面和两端绝热,初始时刻细杆上的温度为)(x ϕ。

求细杆上的温度变化的规律。

其定解问题为:⎪⎩⎪⎨⎧===><<====)(0,00,0,002x u u u t L x u a u t L x x x x xx t ϕ解:由题意可知定解问题的固有值问题为:⎩⎨⎧='='=+'' 0)L (,0)0(0X X X X λ => 当0< λ时,边值问题只有零解。

当0= λ时, X(x)=Ax+B. 当A=0,B=0时,边值问题只有零解。

当0> λ时, x x x X λλBsin Acos )(+=. (A 、B 为任意常数) 代入边值条件得:0)0(=='B X λ,0L sin A )(=='λλL X =>πλn L = (n=0,1,2··)∴固有值为222L n n πλ= ,相应固有函数为x Ln x X n n πcos A )(=(A n 为任意非零常数)又 t a n n n e t T t T a t T 2C )(0)()(2λλ-=⇒=+' ∴ x Ln et x u tL a n n ππcos A ),(2222-= , ⎰=L n d L n L 0cos )(2A ξξπξϕ习 题 3.34. 求解圆域内Laplace 方程Neumann 问题:⎪⎪⎩⎪⎪⎨⎧=∂∂<<-<<=∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂=)(,0,011222θρπθπρθρρρρρρf uR uu R 解:由题意可知Laplace 方程一般解为:∑∞=++=100)sin cos (2),(n n n nn b n a a u θθρθρ 其中0a 为任意常数⎰--=ππθθθπd n f R n a n n cos )(11,⎰--=ππθθθπd n f Rn b n n sin )(11 (n=1,2,··) 习 题 3.42. 一个长、宽各为a 的方形膜,边界固定,膜的振动方程为⎪⎪⎩⎪⎪⎨⎧====><<<<+=====0,0,0),(002a y y a x x yy xx tt u u u u t a y a x u u k u 求方形膜振动的固有频率。

解:由题意可知将定解问题进行时空分离和空间变量分离:相应空间固有值问题的固有值为()2222m nanm +=πλ求解关于T(t)的常微分方程,可得通解为:t m n at m n at T )(sinB )(cosA )(22mn 22mn +++=ππ∴相应的方形膜振动的固有频率am n m n af nm2)(2)(2222+=+=υυππ习 题 3.52. 求解定解问题:⎪⎩⎪⎨⎧===><<=+-===-00020,00,0,0T u u u t L x Ae u a u t L x x x xx tα 其中,T 0是常数。

相关文档
最新文档