九年级数学二次函数应用题-含答案

合集下载

人教版九年级上册数学第二十二章二次函数应用题训练(含答案)

人教版九年级上册数学第二十二章二次函数应用题训练(含答案)

人教版九年级上册数学第二十二章二次函数应用题训练1.某品牌头盔4月份销售150个,6月份销售216个,且从4月份到6月份销售量的月增长率相同.(1)求该品牌头盔销售量的月增长率;(2)若此种头盔的进价为30元/个,测算在市场中,当售价为40元/个时,月销售量为600个,若在此基础上售价每上涨0.5元/个,则月销售量将减少5个,为使月销售利润达到10000元,而且尽可能让顾客得到实惠,则该品牌头盔的实际售价应定为多少元/个?2.某大学生创业团队抓住商机,购进一批干果分装成营养搭配合理的小包装后出售,每袋成本3元.试销期间发现每天的销售量y(袋)与销售单价x(元)之间满足一次函数关系y=﹣80x+560,其中3.5≤x≤5.5,另外每天还需支付其他各项费用80元.(1)如果每天获得160元的利润,销售单价为多少元?(2)设每天的利润为w元,当销售单价定为多少元时,每天的利润最大?最大利润是多少元?3.某批发商以每件40元的价格购进600件T恤,第一个月以单价60元销售,售出了200件,第二个月如果单价不变,预计仍可售出200件,批发商为增加销售量,决定降价销售,根据市场调查,单价每降低1元,可多售出20件,但最低单价应高于购进的价格;第二个月结束后,批发商将对剩余T恤清仓销售,清仓时单价为30元,设第二个月单价降低x 元.(1)填表(不需要化简)(2)若批发商希望通过销售这批T恤获利7680元,则第二个月的单价应是多少元?(3)如果批发商希望通过销售这批T恤获利达到了最大值,则第二个月的单价应是多少元?可获利多少元?4.一大型商场经营某种品牌商品,该商品的进价为每件6元,根据市场调查发现,该商品每周的销售量y (件)与售价x (元件)(x 为正整数)之间满足一次函数关系,表格记录的是某三周的有关数据:(1)求y 与x 的函数关系式(不求自变量的取值范围);(2)在销售过程中要求销售单价不低于成本价,且不高于17元/件,若某一周该商品的销售最不少于6000件,求这一周该商场销售这种商品获得的最大利润和售价分别为多少元?(3)抗疫期间,该商场这种商品售价不大于17元/件时,每销售一件商品便向某慈善机构捐赠m 元(16m ≤≤),捐赠后发现,该商场每周销售这种商品的利润仍随售价的增大而增大.请直接写出m 的取值范围.5.南浔区某校增设拓展课程之“开心农场”,如图,准备利用现成的一堵“L ”字形的墙面(粗线ABC 表示墙面,已知AB ⊥BC ,AB =3米,BC =1米)和总长为11米的篱笆围建一个“日”字形的小型农场DBEF (细线表示篱笆,小型农场中间GH 也是用篱笆隔开),点D 可能在线段AB 上(如图1),也可能在线段BA 的延长线上(如图2),点E 在线段BC 的延长线上.(1)当点D 在线段AB 上时,⊥设DF的长为x米,请用含x的代数式表示EF的长;⊥若要求所围成的小型农场DBEF的面积为9平方米,求DF的长;(2)DF的长为多少米时,小型农场DBEF的面积最大?最大面积为多少平方米?6.某经销商销售一种新品种壶瓶枣,这种新品种进价每千克50元(规定每千克销售利润不低于5元且不高于25元),现在以75元/千克的售价卖出,则每周可卖出80千克.该经销商通过对当地市场调查发现:若每千克降价5元,则每周多卖出20千克;因疫情原因,该经销商决定暂时降价销售,设每千克销售价降低x元,每周销售利润为y元.(1)当售价为每千克65元时,每周销售量为千克,利润为元.(2)求y与x之间的函数关系式并直接写出自变量x的取值范围.(3)当销售单价定为多少元时,该经销商每周可获得最大利润?最大利润是多少元?7.某服装超市购进单价为30元的童装若干件,物价部门规定其销售单价不低于每件30元,不高于每件60元.销售一段时间后发现:当销售单价为60元时,平均每月销售量为80件,而当销售单价每降低10元时,平均每月能多售出20件.同时,在销售过程中,每月还要支付其他费用450元.设销售单价为x元,平均月销售量为y件.(1)求出y与x的函数关系式.(2)当销售单价为多少元时,销售这种童装每月获得利润最大?最大利润是多少?8.在双十二活动期间,商店将对某商品进行促销活动.已知进价为每件6元,平时以单价10元的价格售出一天可卖100件.根据调查单价每降低1元,每天可多售出50件;设商品单价降低x元(售价不低于进价),这批商品的日利润为y元(利润=售价-成本),请解决以下问题:(1)当商品的销售单价降低多少元时,销售这批商品的日利润最大,最大值为多少?(2)当日利润达到400元时,求x的值.(3)若商店以第(2)问中的方式销售2天后,第三天单价再减a元,当天的销售量不低于前两天总和的70%,求第三天的日利润最大值.9.某商品的进价为每件33元,现在的售价为每件60元,每星期可卖出300件.市场调查反映,如果调整商品售价,每降价1元,每星期可多卖出20件.(1)商场要想平均每星期盈利8500元,每件商品的售价应为多少元?(2)商场要想平均每星期获得最大利润,每件商品的售价应为多少元?10.某厂商投产一种新型电子产品,每件制造成本为18元,试销过程中发现,每月销量y(万件)与销售单价x(元)之间的关系可以近似看成一次函数y=-2x+100.(1)写出每月的利润z(万元)与销售单价x(元)之间的函数解析式.(2)当销售单价为多少元时,厂商每月能够获得最大利润?最大利润是多少?(3)根据相关部门的规定,这种电子产品的销售单价不得高于32元,如果厂商要获得每月不低于350万元的利润,那么制造这种产品每月的最低制造成本是多少万元?11.某商店购进一批成本为每件30元的商品,经调查发现,该商品每天的销售量y(件)与销售单价x(元)之间有如表关系:(1)求该商品每天的销售量y与销售单价x之间的函数关系式;(2)该商店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为保证捐款后销售该商品每天获得的利润不低于650元,则每天的销售量最少应为多少件?12.成绵苍巴高速正在修建中,某单向通行隧道设计图由抛物线与矩形的三边组成,尺寸如图所示,隧洞限高4米,隧洞道路正中间标有一条实线.(1)水平安置一根限高杆,两端固定在洞门上,求限高杆的最小长度.(2)某卡车若装载一集装箱箱宽3m,车与车箱共高3.8m,此车能否不跨越标线通过隧道(标线宽度不计)?说明理由.13.某超市计划共进货50件饮料,其中A款饮料成本为每件20元;当B款饮料进货10件时,成本为每件48元,且每多进货1件,平均每件B款饮料成本降低2元.为保证饮料x x 件.的多样性,规定A款饮料必须进货至少20件,设进货B款饮料(10)(1)根据信息填表:(2)设总成本为W元,写出W关于x的函数关系式,并写出自变量x的取值范围;(3)为了增加盈利,降低进货成本,该超市如何进货才能使得进货总成本最低,最低成本是多少元.14.如图,在一块正方形ABCD木板上要贴三种不同的墙纸,正方形EFCG部分贴A型墙纸,⊥ABE部分贴B型墙纸,其余部分贴C型墙纸.A型、B型、C型三种墙纸的单价分别为每平方60元、80元、40元.(1)探究1:如果木板边长为2米,FC=1米,则一块木板用墙纸的费用需_____元;(2)探究2:如果木板边长为1米,当FC的长为多少时,一块木板需用墙纸的费用最省?最省是多少元?(3)探究3:设木板的边长为a(a为整数),当正方形EFCG的边长为多少时,墙纸费用最省?15.某商店代销一批季节性服装,每套代销成本40元,第一个月每套销售定价为60元时,可售出300套.应市场变化需上调第一个月的销售价,预计销售定价每增加1元,销售量将减少10套.(1)若设第二个月的销售定价每套增加x元,填写表格:(2)若商店预计要在第二个月的销售中获利4000元,则第二个月销售定价每套多少元?(3)若要使第二个月利润达到最大,应定价为多少?此时第二个月的最大利润是多少?16.经市场调研:某类型口罩进价每袋为20元,当售价为每袋25元时,销售量为250袋,若销售单价每提高1元,销售量就会减少10袋.(1)直接写出小明销售该类型口罩销售量y(袋)与销售单价x(元)之间的函数关系式______;所得销售利润w(元)与销售单价x(元)之间的函数关系式______.(2)销售单价定为多少元时,所得销售利润最大,最大利润是多少?17.某水果批发商场经销一种水果,如果每千克盈利10元,每天可售出400千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.(1)假设每千克涨价x元,商场每天销售这种水果的利润是y元,请写出y关于x的函数解析式;(2)若商场只要求保证每天的盈利为4420元,同时又可使顾客得到实惠,每千克应涨价为多少元?(3)当每千克涨价为多少元时,每天的盈利最多?最多是多少?18.某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现:若每箱以50元的价格出售,平均每天销售80箱,价格每提高1元,平均每天少销售2箱.(1)求平均每天销售量y(箱)与销售价x(元/箱)之间的函数关系式;(2)求该批发商平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式;(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?19.某商场要经营一种新上市的文具,进价为20元/件.试营销阶段发现:当销售单价25元/件时,每天的销售量是250件;销售单价每提高1元,每天的销售量就减少10件.(1)写出商场销售这种文具,每天所得的销售利润w(元)与销售单价提高x(元)之间的函数关系式.(2)求销售单价提高多少元时,该文具每天的销售利润最大?20.戴口罩是阻断呼吸道病毒传播的重要措施之一,某商家对一款成本价为每盒50元的医用口罩进行销售,如果按每盒70元销售,每天可卖出20盒.通过市场调查发现,每盒口罩售价每降低1元,则日销售量增加2盒(1)若每盒售价降低x元,则日销量可表示为_______盒,每盒口罩的利润为______元.(2)若日利润保持不变,商家想尽快销售完该款口罩,每盒售价应定为多少元?(3)当每盒售价定为多少元时,商家可以获得最大日利润?并求出最大日利润.参考答案:1.(1)该品牌头盔销售量的月增长率为20%;(2)该品牌头盔的实际售价应定为50元/个2.(1)如果每天获得160元的利润,销售单价为4元(2)当销售单价定为5元时,每天的利润最大,最大利润是240元3.(1)60﹣x ;200+20x ;600﹣200﹣(200+20x )(2)该T 恤第二个月单价为54或46元,该批T 恤总获利为7680元(3)降价10元,单价为50元,获利8000元4.(1)50012000y x =-+(2)这一周该商场销售这种商品获得的最大利润为54000元,售价为12元(3)36m ≤≤5.(1)⊥(12﹣3x )米;⊥3米(2)饲养场的宽DF 为52米时,饲养场DBEF 的面积最大,最大面积为758平方米 6.(1)120;1800(2)24202000y x x =-++(0≤x ≤20)(3)当销售单价定为72.5元时,该经销商每周可获得最大利润,最大利润是2025元 7.(1)2200y x =-+()3060x ≤≤(2)当销售单价为60元时,销售这种童装每月获得的利润最大,最大为1950元 8.(1)当商品的销售单价降低1元时,销售这批商品的日利润最大,最大值为450元(2)x =2(3)第三天的日利润最大值为1129.(1)50元或58元(2)54元10.(1)221361800z x x =-+-;(2)当销售单价为34元时,厂商每月能够获得最大利润,最大利润是512万元;(3)制造这种产品每月的最低制造成本是648万元.11.(1)y =﹣2x +160(2)20件12.(1)(2)能不跨越标线通过隧道13.(1)50-x ;68-2x(2)W =22x -+48x +1000(10≤x ≤30)(3)当A 款饮料进货20件,B 款饮料进货30件时进货总成本最低,最低成本是640元 14.(1)220;(2)当FC 的长为12m 时,一块木板需用墙纸的费用最省,最省是55元; (3)当正方形EFCG 的边长为12a 时,墙纸费用最省. 15.(1)60x +,30010x -(2)第二个月销售定价每套应为80元(3)要使第二个月利润达到最大,应定价为65元,此时第二个月的最大利润是6250元 16.(1)10500y x =-+;21070010000w x x =-+-(2)销售单价定为35元时,所得销售利润最大,最大利润是2250元17.(1)2202004000y x x =-++(2)每千克应涨价3元(3)当每千克涨价为5元时,每天的盈利最多,最多是4500元18.(1)y =﹣2x +180(2)w =﹣2x 2+260x ﹣7200(3)55元,1050元19.(1)2102001250w x x =-++(2)10元20.(1)(20+2x )盒,(20-x ) 元(2)每盒售价应定为60元(3)每盒售价应定为65元时,最大日利润是450元。

中考二次函数应用题(含答案解析)

中考二次函数应用题(含答案解析)

中考二次函数应用题(含答案解析)二次函数应用题1.春节前夕,某花店采购了一批鲜花礼盒,成本价为30元/件,物价局要求,销售该鲜花礼盒获得的利润率不得高于120%.分析往年同期的鲜花礼盒销售情况,发现每天的销售量y (件)与销售单价x (元/件)近似的满足一次函数关系,数据如下表: 销售单价x (元/件) … 40 50 60 … 每天的销售量y (件)…300250200…(1)直接写出y 与x 的函数关系式:_______;(2)试确定销售单价取何值时,花店销售该鲜花礼盒每天获得的利润最大?并求出最大利润;(3)为了确保今年每天销售此鲜花礼盒获得的利润不低于5000元,请预测今年销售单价的范围是多少?2.如图,有一位同学在兴趣小组实验中,设计了一个模拟滑雪场地截面图,平台AB (水平)与x 轴的距离为6,与y 轴交于B 点,与滑道AM :y =kx交于A ,且AB =2,MN ⊥x轴,测得MN =1,P 到x 轴的距离为3,设ON=b .(1)k 的值为_______,点P 的坐标是________,b =_________;(2)当一号球落到P 点后立即弹起,弹起后沿另外一条抛物线G 运动,若它的最高点Q 的坐标为(8,5)①求G 的解析式,并说明抛物线G 与滑道AM 是否还能相交;②在x 轴上有线段NC =1,若一号球恰好能倍NC 接住,则NC 向上平移距离d 的最大值和最小值各是多少?3.2022年冬奥会成功在北京张家口举行,奥林匹克精神鼓舞了越来越多的年轻人从事冰雪运动,在长8m ,高6m 的斜面上,滑雪运动员P 从顶端腾空而起,最终刚好落在斜面底端,其轨迹可视为抛物线的一部分.按如图方式建立平面直角坐标系,设斜面所在直线的函数关系式为1y kx b =+,运动员轨迹所在抛物线的函数关系式为2214y ax x c =++,设运动员P 距离地面的高度为()m h ,腾空过程中离开斜面的距离为()m d ,回答下列问题:(1)分别求出1y、2y与x之间的函数关系式;(2)求出d的最大值和此时点P的坐标.4.某农场拟建两间矩形种牛饲养室,饲养室的一面靠现有墙(墙长>50m),中间用一道墙隔开(如图).已知计划中的建筑材料可建围墙的总长为50m,设两间饲养室合计长x (m),总占地面积为y(m2).(1)求y关于x的函数表达式和自变量的取值范围;(2)在所给出的坐标系中画出函数的图象;(3)利用图象判断:若要使两间饲养室占地总面积达到200m2,则各道墙的长度为多少5.疫情期间,某销售商在网上销售A、B两种型号的电脑“手写板”,其进价、售价和每日销量如表所示:进价(元/个)售价(元/个)销量(个/日)A型400600200B 型 800 1200 400根据市场行情,该销售商对A 型手写板降价销售,同时对B 型手写板提高售价,此时发现A 型手写板每降低5元就可多卖1个,B 型手写板每提高5元就少卖1个,销售时保持每天销售总量不变,设其中A 型手写板每天多销售x 个,每天获得的总利润为y 元. (1)求y 与x 之间的函数关系式,并直接写出x 的取值范围; (2)要使每天的利润不低于212000元,求出x 的取值范围;6.因疫情防控需要,消毒用品需求量增加.某药店新进一批桶装消毒液,每桶进价45元,每天销售量y (桶)与销售单价x (元)之间满足一次函数关系,当销售单价为50元时,每天的销售量为90桶;当销售单价为60元时,每天的销售量为70桶. (1)求y 与x 之间的函数表达式;(2)每桶消毒液的销售价定为多少元时,药店每天获得的利润最大,最大利润是多少元?(利润=销售价-进价)7.2022年北京冬奥会即将召开,激起了人们对冰雪运动的极大热情.如图是某跳台滑雪训练场的横截面示意图,取某一位置的水平线为x 轴,过跳台终点A 作水平线的垂线为y 轴,建立平面直角坐标系,图中的抛物线211:215C y x x =-++近似表示滑雪场地上的一座小山坡,某运动员从点O 正上方4米处的A 点滑出,滑出后沿一段抛物线221:4C y x bx c =-++运动.(1)求山坡坡顶的高度;(2)当运动员运动到离A 处的水平距离为2米时,离水平线的高度为7米,求抛物线2C 的函数解析式(不要求写出自变量x 的取值范围);(3)在(2)的条件下,当运动员运动的水平距离为多少米时,运动员与小山坡的竖直距离为1米?8.鄂北公司以10元/千克的价格收购一批产品进行销售,日销售量y (千克)与销售价格x (元/千克)符合一次函数关系,经过市场调查获得部分数据如表: 销售价格x (元/千克) 10 15 日销售量y (千克)300225(1)求y 与x 的函数解析式;(2)鄂北公司应该如何确定这批产品的销售价格,才能使日销售利润W 1最大?(3)若鄂北公司每销售1千克这种产品需支出a 元(a >0)的相关费用,当20≤x ≤25时,鄂北公司的日获利W 2的最大值为1215元,直接写出a 的值.9.某商店购进一批单价为20元的日用商品,如果以单价30元销售,那么一个月内可以售出400件.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.售价为多少元时,才能在一个月内获得最大利润?10.我国铅球运动员巩立姣在2021年8月1日东京奥运会铅球比赛中以20.53米的成绩力压群雄夺得冠军.如图是在她的一次赛前训练中,铅球行进高度y (米)与水平距离x (米)之间存在的函数关系式是2119512123y x x =-++.求:(1)这次训练中,巩立姣推铅球的成绩是多少米; (2)这次训练中,铅球距离地面的最大高度为多少米.【参考答案】二次函数应用题1.(1)5500y x =-+(2)销售单价为65元时,销售利润最大,最大利润为6125元 (3)5066x ≤≤ 【解析】 【分析】(1)利用待定系数法求出函数解析式;(2)列出函数解析式()()2550030565015000W x x x x =-+-=-+-﹐二次函数的性质得到最大值;(3)根据抛物线的性质得到取值范围. (1)解:设y 关于x 的函数解析式为y kx b =+, 把40300x y ==、和50250x y ==、代入,得:4030050250k b k b +=⎧⎨+=⎩,解得5500k b =-⎧⎨=⎩,∴y 关于x 的函数解析式为5500y x =-+, 故答案是:5500y x =-+; (2)设用W (元)表示每天销售的利润,则()()2550030565015000W x x x x =-+-=-+-﹐∵03030120%x ≤-≤⨯, ∴3066x ≤≤,∵开口方向向下,对称轴是直线65x =, ∴当65x =时,W 有最大值,为6125,答:销售单价为65元时,销售利润最大,最大利润为6125元. (3)当5000W =时,25650150005000x x -+-=,解得,1250,80x x ==, 由二次函数的图像可知,当5000W ≥时,5080x ≤≤, 又∵66x ≤, ∴5066x ≤≤. 【点睛】本题考查利用二次函数解决实际问题,利用利润=单个利润×数量列出函数解析式是解决问题的关键. 2.(1)12,(4,3),12(2)21(8)58y x =--+,不能相交,理由见解析;d 的最大值是3,最小值是158【解析】 【分析】(1)由题意写出点A 的坐标,代入k y x =即可求出k 值,得到12y x=,将点P 、点M 的纵坐标分别代入12y x=求出点P 和点M 的横坐标,即可求解; (2)①由抛物线G 的最高点Q 的坐标写出抛物线的顶点式2(8)5y a x =-+,将点A 坐标代入求出a 值,即可得到抛物线的解析式;求出抛物线上12x =时对应的y 值,判断此点在点M 的上方还是下方,即可得出抛物线与AM 是否相交.②当线段NC 平移后的线段11N C 的1N 点在抛物线上,即1N 点与D 重合时,平移距离最大,当线段NC 平移后的线段22N C 的2C 点在抛物线上时,平移距离最小,求出相应坐标即可求解. (1)解:平台AB (水平)与x 轴的距离为6,AB =2, ∴点A 、点B 的坐标为(2,6)A ,(0,6)B .将(2,6)A 代入k y x =得,62k =, 解得12k =,∴滑道AM 所在图象的函数解析式为:12y x=点P 到x 轴的距离为3,∴点P 的纵坐标为3P y =,将3P y =代入到12y x =得,1243P x ==, ∴点P 的坐标为(4,3),MN ⊥x 轴,测得MN =1, ∴点M 的纵坐标为1=M y ,将1=M y 代入到12y x =得,12121M x ==, ∴点M 的坐标为(12,1), 12ON ∴=,故答案依次为:12,(4,3),12; (2)解:①由题意抛物线G 的最高点Q 的坐标为(8,5), ∴设抛物线G 的函数解析式为:2(8)5y a x =-+,将点P 坐标代入2(8)5y a x =-+得23(48)5a =-+, 解得18a =-,∴设抛物线G 的函数解析式为:21(8)58y x =--+,点M 的纵坐标(12,1),设12x =时抛物线G 上对应点为点D ,则点D 的坐标(12,)D y ,将12x =代入到21(8)58y x =--+,解得3D y =,D M y y >,∴一号球可以飞行到点M 的正上方, ∴抛物线G 与滑道AM 不能相交;②将线段NC 向上平移,平移后线段与抛物线有交点时,说明可以接到一号球,如图所示,当线段NC 平移后的线段11N C 的1N 点与D 重合时,平移距离最大, ∴最大平移距离为303D N y y -=-=;当线段NC 平移后的线段22N C 的2C 点在抛物线上时,平移距离最小, 1NC =,12ON =,∴点C 的坐标为(13,0), ∴点2C 的横坐标为13,将213C x =代入到21(8)58y x =--+,解得2158C y =∴最小平移距离为21515088C C y y -=-=; ∴平移距离d 的最大值是3,最小值是158. 【点睛】本题考查反比例函数、二次函数的实际应用,熟练掌握待定系数法求反比例函数解析式、二次函数顶点式,通过点的坐标判断函数图像是否相交等是解题的关键. 3.(1)1364y x =-+,2211684y x x =-++;(2)max 85d =m ,P (4,5)【解析】 【分析】(1)把点(8,0)和(0,6)分别代入直线的函数关系式1y kx b =+,运动员轨迹所在抛物线的函数关系式2214y ax x c =++,,进而得出答案; (2)设与抛物线2211684y x x =-++相切,且与1364y x =-+平行的直线:334y x h =-+,那么切点就是所求的点P ,直线1364y x =-+与直线334y x h =-+之间的距离就是所求的距离. (1)解:把点(8,0)和(6,0)代入直线 1y kx b =+得,806k b b +=⎧⎨=⎩解得346k b ⎧=-⎪⎨⎪=⎩ ∴1364y x =-+把点(8,0)和(6,0)代入抛物线2214y ax x c =++得, 210=8846a cc ⎧⨯+⨯+⎪⎨⎪=⎩ 解得186a c ⎧=-⎪⎨⎪=⎩ ∴2211684y x x =-++(2)解:设与抛物线2211684y x x =-++相切的直线为334y x h =-+,联立2y 与3y 得:211684x x -++34x h =-+,化简得:20168x x h ++-=-∵抛物线2y 与直线3y 相切∴20168x x h ++-=-有两个相等的实数根∴ ∆=114()(8)08h -⨯-⨯-=解得8h = ∴3384y x =-+联立抛2y 和3y 解得:45x y =⎧⎨=⎩此时点P 的坐标为(4,5)如图,过点A 作AC ⊥直线3y ,垂足为点C ,∵ 直线AC 与直线1y 垂直且过点A (0,6) ∴直线AC 的解析式为4463y x =+ 联立3y 和4y 得34384463y x y x ⎧=-+⎪⎪⎨⎪=+⎪⎩ 解得242518225x y ⎧=⎪⎪⎨⎪=⎪⎩∴ 点C 的坐标为(2425,18225) 线段AC 的长度就是所求的 d , 22max 24182408(0)(6)2525255d =-+-==. 【点睛】本题考查了一次函数和二次函数图像的综合题,解题的关键是数形结合,熟练掌握抛物线的三种解析式,特别是顶点式;还要注意当直线与抛物线相切时距离最大;两条直线互相垂直的直线:121k k =-.4.(1)215033y x x =-+ 其中0<x <50(2)画函数图象见解析(3)各道墙的长度分别为20m ,10m 或者30m ,20m 3时,总面积达到200m 2 【解析】 【分析】(1)根据题意用含x 的代数式表示出饲养室的宽,由矩形的面积=长×宽计算即可; (2)确定特殊点位置,继而可得函数图象; (3)构建方程即可解决问题. (1)解:∵围墙的总长为50 m ,2间饲养室合计长x m , ∴饲养室的宽=503x- m ,∴总占地面积为y =x •503x -=-13x 2+503x (0<x <50); (2)解:y =-13x 2+503x =()216252533x --+,顶点坐标为(25,6253), 当y =200时,()216252520033x --+=, 解得x =20或30,图象经过点(20,200)和(30,200), 当y =0时,()2162525033x --+=, 解得x =0或50,图象经过点(0,0)和(50,0), 描点,连线,函数图象如图所示.(3)解:当两间饲养室占地总面积达到200 m 2时,则-13x 2+503x =200,解得:x =20或30;答:各道墙长分别为20 m 、10 m 或30 m 、203m 时,总面积达到200 m 2. 【点睛】此题主要考查了二次函数的应用,同时也利用了矩形的性质,解题时首先正确了解题意,然后根据题意列出方程即可解决问题.5.(1)210800200000y x x =-++,(040x ≤≤且x 为整数)(2)2040x ≤≤【解析】【分析】(1)设其中A 型手写板每天多销售x 个,每天获得的总利润为y 元,根据题意列出函数关系式,并化简即可,根据A 型手写板的利润为非负数,即可求得x 的取值范围; (2)根据题意列出不等式求解即可.(1)设其中A 型手写板每天多销售x 个,每天获得的总利润为y 元.由题意得,()()()()600400520012008005400y x x x x =--++-+-210800200000x x =-++,当()()6004005200x x --+0=时,解得12200,40x x =-=A 型手写板的利润为非负数()()60040052000x x ∴--+≥,20040x ∴-≤≤0x ≥∴040x ≤≤且x 为整数,即y 与x 之间的函数关系式是210800200000y x x =-++,(040x ≤≤且x 为整数);(2)∵()22108002000021600104000y x x x =+-++=--,∴当212000y =时,()21040216000212000x --+=,解得:120x =,260x =,要使212000y ≥,则2060x ≤≤,∵040x ≤≤,∴2040x ≤≤,即x 的取值范围是:2040x ≤≤;【点睛】本题考查了二次函数的应用,二次函数与不等式求自变量的范围,掌握二次函数的性质是解题的关键.6.(1)y =-2x +190(2)销售单价定为70元时,该药店每天获得的利润最大,最大利润1250元.【解析】【分析】(1)设y 与x 之间的函数表达式为y =kx +b ,将点(50,90)、(60,70)代入一次函数表达式,即可求解;(2)根据利润等于每桶的利润乘以销售量得w 关于x 的二次函数,根据二次函数的性质即可求解.(1)设y 与销售单价x 之间的函数关系式为:y kx b =+,据题意可得:50906070k b k b +=⎧⎨+=⎩,解得:2190k b =-⎧⎨=⎩ ∴函数关系式为y =-2x +190;(2)设药店每天获得的利润为W 元,由题意得:W =(x -45)(-2x +190)=-2(x -70)2+1250,∵–2<0,函数有最大值,∴当x =70时,W 有最大值,此时最大值是1250,故销售单价定为70元时,该药店每天获得的利润最大,最大利润1250元.【点睛】本题主要考查了二次函数的应用以及用待定系数法求一次函数解析式等知识,正确利用销量×每件的利润=w 得出函数关系式是解题关键.7.(1)山坡坡顶的高度为6米; (2)21244y x x =-++;(3)当运动员运动水平线的水平距离为1米【解析】【分析】(1)抛物线C 1的顶点纵坐标即为山坡的高度;(2)由两点坐标A (0,4),(2,7)待定系数法求函数解析式即可;(3)根据两函数y 值的差为1米,列方程求解即可;(1) 根据题意可()22111:215655C y x x x =-++=--+知: ∴坡顶坐标为()5,6,∴山坡坡顶的高度为6米;(2)解:根据题意把()0,4A ,点()2,7代入抛物线221:4C y x bx c =-++, 得:4127c b c =⎧⎨-++=⎩,解得:42c b =⎧⎨=⎩ ∴抛物线2C 的函数解析式21244y x x =-++; (3)解:∵运动员与小山坡的竖直距离为1米, ∴22112421145x x x x ⎛⎫-++--++= ⎪⎝⎭,解得:1x =-2x =故当运动员运动水平线的水平距离为1米;【点睛】本题考查了二次函数的实际应用,求二次函数解析式和顶点坐标,根据题意弄清条件所表达的坐标是解题关键.8.(1)y =﹣15x +450(2)20元/千克(3)2【解析】【分析】(1)根据表格中数据使用待定系数法即可求得y 与x 之间的函数解析式;(2)根据题意和(1)中的结果,可以得到W 1与x 的关系式,根据二次函数的最值求解即可;(3)根据题意和二次函数的性质,利用分类讨论的方法,可以求得a 的值.(1)解:设y 与x 之间的函数表达式时y =kx +b ,把对应值代入可得10300,15225k b k b +=⎧⎨+=⎩. 解得:15,450k b =-⎧⎨=⎩. 所以y 与x 之间的函数解析式是y =﹣15x +450.(2)解:由题意可得W 1=(x ﹣10)(﹣15x +450)=﹣15x 2+600x ﹣4500.当x 2b a=-=20时,W 1最大为1500. 所以当销售价格为20元/千克时,日销售利润W 1最大.(3)解:根据题意可得W 2=(x ﹣10﹣a )(﹣15x +450)=﹣15x 2+(600+15a )x ﹣450(10+a ).对称轴是直线x ()60015215a +=-=⨯-2012+a . 当a ≥10时,则当x =25时,W 2取得最大值,此时W 2=1125﹣75a <1215,不符合题意;当0<a <10时,则当x =2012+a 时,W 2取得最大值,此时W 2=﹣15×(2012+a )2+(600+15a )(2012+a )﹣450(10+a )154=a 2﹣150a +1500. 当W 2=1215时,1215154=a 2﹣150a +1500. 解得a 1=2,a 2=38(舍去).所以a 的值是2.【点睛】本题考查二次函数的实际应用,熟练掌握该知识点是解题关键.9.售价为35元时,才能在一个月内获得最大利润【解析】【分析】设销售单价为x 元,月销售利润为y 元,根据月销售利润=单件利润×月销量,求得函数关系式,利用二次函数的性质即可解决问题.【详解】解:设销售单价为x 元,销售利润为y 元,依题意得,单件利润为(20)x -元,月销量为[]40020(30)x --件,月销售利润[](20)40020(30)y x x =---,整理得220140020000y x x =-+-,配方得220(35)4500y x =--+,所以35x =时,y 取得最大值4500.故售价为35元时,才能在一个月内获得最大利润,最大利润为4500元.【点睛】本题考查了二次函数的实际应用,解题的关键是能够根据题意构建二次函数解决最值问题.10.(1)20米 (2)14716米 【解析】【分析】(1)令y =0,得到关于x 的方程,解方程即可;(2)将二次函数关系式化为顶点式,再求铅球距离地面的最大高度.(1)解:令y =0,则21195012123x x =-++, 解得x 1=20,x 2=-1(舍去),∴巩立姣推铅球的成绩是20米;(2)2211951191471212312216y x x x ⎛⎫=-++=--+ ⎪⎝⎭, ∴当192x =时,y 有最大值,为14716, ∴铅球距离地面的最大高度为14716米. 【点睛】本题考查了二次函数的应用中函数式中变量与函数表达的实际意义,需要结合题意,取函数或自变量的特殊值列方程求解是解题关键.。

九年级数学二次函数应用题-含答案

九年级数学二次函数应用题-含答案

九年级数学专题二次函数的应用题一、解答题1.一位运动员在距篮下4米处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2. 5米时,达到最大高度3.5米,然后准确落入篮圈。

已知篮圈中心到地面的距离为3.05米。

(1)建立如图所示的直角坐标系,求抛物线的解析式;(2)该运动员身高1.8米,在这次跳投中,球在头顶上方0.25米处出手,问:球出手时,他跳离地面的高度是多少?2.某商场购进一批单价为16元的日用品,经试验发现,若按每件20元的价格销售时,每月能卖360件,若按每件25元的价格销售时,每月能卖210件,假定每月销售件数y(件)是价格x(元/件)的一次函数.(1)试求y与x之间的关系式;(2)在商品不积压,且不考虑其他因素的条件下,问销售价格定为多少时,才能使每月获得最大利润?每月的最大利润是多少?3.在体育测试时,初三的一名高个子男同学推铅球,已知铅球所经过的路线是某个二次函数图像的一部分,如图所示,如果这个男同学的出手处A点的坐标(0,2),铅球路线的最高处B点的坐标为(6,5)(1)求这个二次函数的解析式;(2)该男同学把铅球推出去多远?(精确到0.01米,)4.某商场以每件42元的价钱购进一种服装,根据试销得知:这种服装每天的销售量(件),与每件的销售价(元/件)可看成是一次函数关系:1.写出商场卖这种服装每天的销售利润与每件的销售价之间的函数关系式(每天的销售利润是指所卖出服装的销售价与购进价的差);2.通过对所得函数关系式进行配方,指出:商场要想每天获得最大的销售利润,每件的销售价定为多少最为合适;最大销售利润为多少?5.某跳水运动员进行10米跳台跳水训练时,身体(看成一点)在空中的运动路线是如图所示坐标系下经过原点O的一条抛物线(图中标出的数据为已知条件),在跳某个规定动作时,正常情况下,该运动员在空中的最高处距水面10米,入水处距池边的距离为4米,运动员在距水面高度为5米以前,必须完成规定的翻腾动作,并调整好入水姿势,否则就会出现失误。

2023-2024学年人教版九年级上册数学期末专题训练:二次函数应用题(含答案)

2023-2024学年人教版九年级上册数学期末专题训练:二次函数应用题(含答案)

2023-2024学年人教版九年级上册数学期末专题训练:二次函数应用题1.某汽车出租公司有50辆汽车对外出租,下面是该公司经理租车的方案:公司经理:如果我公司每辆汽车月租费3000元,那么50辆汽车可以全部租出.如果每辆汽车的月租费每增加40元,那么每月将少租出1辆汽车.另外,公司为每辆租出的汽车支付月维护费200元.若该公司月出租的汽车是x辆,月利润为y元.(1)求y与x的函数关系式;(2)该公司热心公益事业,每租出1辆汽车捐出10元给慈善机构,该公司捐款后的月利润为w元,求w与x的函数关系式;并求出该公司某月租出30辆汽车,捐款后剩余的月利润是多少?2.某服装店的销售中发现:进货价为每件50元.销售价为每件90元的某品牌服装平均每天可售出20件,现服装店决定采取适当的降价措施,扩大销售量,增加盈利.经市场调查发现:如果每件服装降低1元,那么平均每天就可多售出2件.(1)求销售价在每件90元的基础上,每件降价多少元时,平均每天销售这种服装能盈利1200元,同时又要使顾客得到较多的实惠?(2)求降价多少元利润最大?最大利润是多少?AB=,当水位上升3m时,水面宽3.有一座抛物线型拱桥,在正常水位时水面宽20mCD=.按如图所示建立平面直角坐标系.10m4 DE(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大,最大利润多少?9.垃圾分类作为一个公共管理的综合系统工程,需要社会各个方面共同发力.洛阳市某超市计划定制一款家用分类垃圾桶,独家经销,生产厂家给出如下定制方案:不收设计费,定制不超过200套时.每套费用60元;超过200套后,超出的部分8折优惠.已知该超市定制这款垃圾桶的平均费用为56元1套(1)该超市定制了这款垃圾桶多少套?(2)超市经过市场调研发现:当此款垃圾桶售价定为80/套时,平均每天可售出20套;售价每降低1元.平均每天可多售出2套,售价下降多少元时.可使该超市平均每天销售此款垃圾桶的利润最大?10.一人一盔安全守规,一人一带平安常在!某商店销售一批头盔,售价为每顶80元,每月可售出200顶.在“创建文明城市”期间,计划将头盔降价销售,经调查发现:每降价1元,每月可多售出20顶.已知头盔的进价为每顶50元.设每顶头盔降价x元,每月的销售量为y顶,每月获利w元.(1)直接写出y与x之间的函数表达式;(2)求w与x之间的函数表达式,并求出每顶头盔降价多少元时,每月的销售利润最大?最大利润是多少元?(1)分别求1y 和2y 的函数解析式;(2)该公司同时对Ⅰ型、Ⅰ型两种设备共投资100万元购买,请你设计一个能获得最大补贴金额的方案,并求出按此方案能获得的最大补贴金额.12.嘉嘉和淇淇在玩沙包游戏,某同学借此情境编制了一道数学题,请解答这道题. 如图,在平面直角坐标系中,一个单位长度代表 1m 长. 嘉嘉在点 ()6,1A 处将沙包(看成点)抛出,其运动路线为抛物线 1C 的一部分,当沙包运动到距离嘉嘉水平距离3米,8 a物价部门发现这种乱象后,统一规定各药店该型号口罩的销售价格不得高于1元/只,该药店从第6天起将该型号口罩的价格调整为1元/只.据统计,该药店从第6天起销量q (只)与第x 天的关系为2280200q x x =-+-(630x ≤≤,且x 为整数),已知该型号口罩的进货价格为0.5元/只.(1)直接写出....该药店该月前5天的销售价格p 与x 和销量q 与x 之间的函数关系式; (2)求该药店该月销售该型号口罩获得的利润W (元)与x 的函数关系式,并判断第几天的利润最大;(3)物价部门为了进一步加强市场整顿,对此药店在这个月销售该型号口罩的过程中获得的正常利润之外的非法所得部分处以m 倍的罚款,若罚款金额不低于2000元,则m 的取值范围为______.参考答案:15630x x x x 且为整数且为整数85m .。

数学九下《二次函数》应用题专项练习(带答案)

数学九下《二次函数》应用题专项练习(带答案)

数学九下《二次函数》应用题专项练习(带答案)1.如图所示,已知△ABC 的面积为2400cm 2,底边BC 长为80cm.若点D 在BC 边上,E 在AC 边上,F 在AB 边上,且四边形BDEF 为平行四边形,设BD=xcm, BDEFS =ycm 2,求:(1)y 与x 的函数关系式; (2)自变量x 的取值范围;(3)当x 为何值时,y 有最值,最值是多少?BF A CDE2.如图所示,一个运动员推铅球,铅球在点A 处出手,出手时球离地面约213.铅球落地点在B 处,铅球运行中在运动员前4m 处(即OC=4)达到最高点,最高点高为3m.已知铅球经过的路线是抛物线,根据图示的直角坐标系,你能算出该运动员的成绩吗?3.有一条长7.2米的木料,做成如图所示的“日”字形的窗框, 问窗的高和宽各取多少米时,这个窗的面积最大?(不考虑木料加工时损耗和中间木框所占的面积)x B A C D y O4.某公司生产的A 种产品,每件成本是2元,每件售价是3元,一年的销售量是10万件.为了获得更多的利润,公司准备拿出一定资金来做广告.根据经验,每年投入的广告费为x(万元)时,产品的年销售量是原来的y 倍,且y 是x 的二次函数,公司作了预测,知x 与y 之间的对应关系如下表:(1)根据上表,求y 关于x 的函数关系式;(2)如果把利润看成是销售总额减去成本和广告费,请你写出年利润S(万元) 与广告费x(万元)的函数关系式;(3)从上面的函数关系式中,你能得出什么结论?5.有一个抛物线形的拱形桥洞,桥洞离水面的最大高度为4m,跨度为10m,如图所示,把它的图形放在直角坐标系中.(1)求这条抛物线所对应的函数关系式;(2)在对称轴右边1m 处,桥洞离水面的高是多少?410mx y Ohb BF A CE 答案1.解:(1)设△DCE 的高为hcm,如答图所示.△ABC 的高为bcm,则y=BDEFS=x ·h∵S △ABC =12BC ·b, ∴2400=12×80b,∴b=60(cm).∵ED∥AB,∴△EDC∽△ABC.∴h DCb BC=, 即806080h x -=, ∴h=3(80)4x -. ∴y=3(80)4x -·x=-34x 2+60x.(2)自变量x 的取值范围是0<x<80. (3)∵a= -34<0,∴y 有最大值. 当x=40时,y 最大值=1200(cm 2).2.解:能.∵OC=4,CD=3,∴顶点D 坐标为(4,3),设 y=a(x-4)2+3,把A 50,3⎛⎫ ⎪⎝⎭代入上式,得 53=a(0-4)2+3,∴a=-112-, ∴y= -112-(x-4)2+3,即y=112-x 2+2533x +.令y=0,得112-x 2+2533x +=0,∴x 1=10,x 2=-2(舍去),故该运动员的成绩为10m.3.解:设窗框的宽为x 米,则窗框的高为7.232x-米. 则窗的面积S=x ·7.232x -=231825x x -+.当x=1853222b a -=-⎛⎫⨯- ⎪⎝⎭=1.2(米)时,S 有最大值. 此时,窗框的高为7.23 1.22-⨯ =1.8(米). 4.解:(1)设所求函数关系式为y=ax 2+bx+c,把(0,1),(1,1.5),(2,1.8)分别代入上式,得11.51.842ca b c a b c=⎧⎪=++⎨⎪=++⎩, 解得13,,1105a b c =-==,∴2131105y x x =-++ (2)S=(3-2)×10y -x=(2131105x x -++)×10-x=-x 2+5x+10.(3)∵S=-x 2+5x+10=-256524x ⎛⎫-+ ⎪⎝⎭.∴当0≤x≤2.5时,S 随x 的增大而增大,因此当广告费在0-2.5万元之间时, 公司的年利润随广告费的增大而增大. 5.解:(1)B 点坐标为(10,0),作AB 的中垂线CD 交AB 于D,交抛物线于C, ∵AB=10m,∴OD=12×10=5(m). 又∵CD=4m,∴抛物线顶点为(5,4).设所求抛物线的关系式为y=a(x-5)2+4, 把B(10,0)代入上式,得0=a(10-5)2+4,a=-425. ∴y=-425(x-5)2+4(0≤x≤10). (2)设对称轴右边1m 处的点为M.∵OM=5+1=6,∴当x=6时,y=-425(6-5)2+4=3.84(m). 故桥洞离水面的高是3.84m.。

九年级数学二次函数测试题含答案(精选5套)

九年级数学二次函数测试题含答案(精选5套)

九年级数学二次函数测试题含答案(精选5套)九年级数学二次函数测试题含答案(精选5套)第一套:1. 将函数 $y = 2x^2 - 3x - 2$ 化简为标准形式,并求出它的顶点坐标。

答案:将函数化简为标准形式得到 $y = 2(x-\frac{3}{4})^2 -\frac{33}{8}$,顶点坐标为 $(\frac{3}{4}, -\frac{33}{8})$。

2. 求函数 $y = -x^2 + 4x + 1$ 的零点。

答案:将函数化简为标准形式得到 $y = -(x-2)^2 + 5$,令 $y = 0$,解得 $x = 2 \pm \sqrt{5}$,即零点为 $x_1 = 2 + \sqrt{5}$ 和 $x_2 = 2 -\sqrt{5}$。

3. 给定函数 $y = x^2 - 6x + 5$,求其对称轴的方程式。

答案:对称轴的方程式为 $x = \frac{-b}{2a}$,代入 $a = 1$ 和 $b = -6$ 得到 $x = \frac{6}{2} = 3$。

4. 若函数 $y = ax^2 + bx - 9$ 与 $y = -x^2 + 7x$ 有相同的图像,求$a$ 和 $b$ 的值。

答案:由于两个函数有相同的图像,所以它们的系数相等。

比较两个函数的对应系数得到 $a = -1$ 和 $b = 7$。

5. 已知函数 $y = x^2 - 4x + 5$ 的图像上存在一点 $(h, k)$,使得 $x= h - 3$ 时,$y = 2k + 12$,求点 $(h, k)$ 的坐标。

答案:将 $x = h - 3$ 代入函数得到 $y = (h-3)^2 - 4(h-3) + 5$。

代入$y = 2k + 12$ 得到 $(h-3)^2 - 4(h-3) + 5 = 2k + 12$。

整理得到 $(h-3)^2 -4(h-3) - 2k - 7 = 0$。

由于该方程为二次方程,必然存在实数解。

二次函数的应用题(含答案)

二次函数的应用题(含答案)

二次函数的应用题(含答案)1.如图,抛物线y=x2+bx+c经过坐标原点,并与x轴交于点A(2,0).(1)求此抛物线的解析式;(2)写出顶点坐标及对称轴;(3)若抛物线上有一点B,且S△OAB=3,求点B的坐标.2.如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点,与y轴交于点C,点O为坐标原点,点D为抛物线的顶点,点E在抛物线上,点F在x轴上,四边形OCEF为矩形,且OF=2,EF=3,(1)求抛物线所对应的函数解析式;(2)求△ABD的面积;(3)将△AOC绕点C逆时针旋转90°,点A对应点为点G,问点G是否在该抛物线上?请说明理由.3.如图,已知二次函数L1:y=x2﹣4x+3与x轴交于A、B两点(点A在点B的左边),与y轴交于点C.(1)写出A、B两点的坐标;(2)二次函数L2:y=kx2﹣4kx+3k(k≠0),顶点为P.①直接写出二次函数L2与二次函数L1有关图象的两条相同的性质;②是否存在实数k,使△ABP为等边三角形?如果存在,请求出k的值;如不存在,请说明理由;③若直线y=8k与抛物线L2交于E、F两点,问线段EF的长度是否会发生变化?如果不会,请求出EF的长度;如果会,请说明理由.4.如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点,与y轴交于点C,且OA=2,OC=3.(1)求抛物线的解析式.(2)若点D(2,2)是抛物线上一点,那么在抛物线的对称轴上,是否存在一点P,使得△BDP的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由.5.如图,抛物线y=﹣x 2+bx+c 经过坐标原点,并与x 轴交于点A (2,0). (1)求此抛物线的解析式; (2)写出顶点坐标及对称轴;(3)若抛物线上有一点B ,且S △OAB =8,求点B 的坐标.6.如图,在平面直角坐标系中放置一直角三角板,其顶点为A (0,1),B (2,0),O (0,0),将此三角板绕原点O 逆时针旋转90°,得到△A ′B ′O .(1)一抛物线经过点A ′、B ′、B ,求该抛物线的解析式;(2)设点P 是在第一象限内抛物线上的一动点,是否存在点P ,使四边形PB ′A ′B 的面积是△A ′B ′O 面积的4倍?若存在,请求出P 的坐标;若不存在,请说明理由.(3)在(2)的条件下,试指出四边形PB ′A ′B 是哪种形状的四边形?并写出四边形PB ′A ′B 的两条性质.7.某汽车租赁公司拥有20辆汽车.据统计,当每辆车的日租金为400元时,可全部租出;当每 辆车的日租金每增加50元,未租出的车将增加1辆;公司平均每日的各项支出共4800元.设公司每日租出工辆车时,日收益为y元.(日收益=日租金收入一平均每日各项支出) (1)公司每日租出x 辆车时,每辆车的日租金为 _________ 元(用含x 的代数式表示); (2)当每日租出多少辆时,租赁公司日收益最大?最大是多少元? (3)当每日租出多少辆时,租赁公司的日收益不盈也不亏?8.某工厂生产一种合金薄板(其厚度忽略不计),这写薄板的形状均为正方向,边长在(单位:cm)在5~50之间.每张薄板的成本价(单位:元)与它的面积(单位:cm2)成正比例,每张薄板的出厂价(单位:元)有基础价和浮动价两部分组成,其中基础价与薄板的大小无关,是固定不变的.浮动价与薄板的边长成(2)已知出厂一张边长为40cm的薄板,获得的利润为26元(利润=出厂价﹣成本价),①求一张薄板的利润与边长之间满足的函数关系式.②当边长为多少时,出厂一张薄板所获得的利润最大?最大利润是多少?9.牡丹花会前夕,我市某工艺厂设计了一款成本为10元/件的工艺品投放市场进行试销.经过调查,得到如下数据:(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?(3)菏泽市物价部门规定,该工艺品销售单价最高不能超过35元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?答案得×,解得±;x得,﹣,﹣+解得,y=﹣时,×+1=,故,5.(2012•黑龙江)解:(1)把(0,0),(2,0)代入y=﹣x2+bx+c,得,解得b=2,c=0,所以解析式为y=﹣x2+2x;(2)∵a=﹣1,b=2,c=0,∴﹣=﹣=1,==1,∴顶点为(1,1),对称轴为直线x=1;(3)设点B的坐标为(a,b),则×2|b|=8,∴b=8或b=﹣8,∵顶点纵坐标为1,8>1(或﹣x2+2x=8中,x无解),∴b=﹣8,∴﹣x2+2x=﹣8,解得x解:(1)△A′B′O是由△ABO绕原点O逆时针旋转90°得到的,又A(0,1),B(2,0),O(0,0),∴A′(﹣1,0),B′(0,2).设抛物线的解析式为:y=ax2+bx+c(a≠0),∵抛物线经过点A′、B′、B,∴,解得:,∴满足条件的抛物线的解析式为y=﹣x2+x+2.(2)∵P为第一象限内抛物线上的一动点,设P(x,y),则x>0,y>0,P点坐标满足y=﹣x2+x+2.连接PB,PO,PB′,∴S四边形PB′A′B=S△B′OA′+S△PB′O+S△POB,=×1×2+×2×x+×2×y,=x+(﹣x2+x+2)+1,=﹣x2+2x+3.假设四边形PB′A′B的面积是△A′B′O面积的4倍,则4=﹣x2+2x+3,即x2﹣2x+1=0,解得:x1=x2=1,此时y=﹣12+1+2=2,即P(1,2).∴存在点P(1,2),使四边形PB′A′B的面积是△A′B′O面积的4倍.(3)四边形PB′A′B为等腰梯形,答案不唯一.①等腰梯形同一底上的两个内角相等;②等腰梯形对角线相等;③等腰梯形上底与下底平行;④等腰梯形两腰相等.或用符号表示:①∠B′A′B=∠PBA′或∠A′B′P=∠BPB′;②PA′=B′B;③B′P∥A′B;④B′A′=PB.由表格中的数据,得,解得﹣<==35解:(1)画图如图:由图可猜想y与x是一次函数关系,设这个一次函数为y=kx+b(k≠0),∵这个一次函数的图象经过(20,500)、(30,400)这两点,∴,解得:,∴函数关系式是y=﹣10x+700.(2)设工艺厂试销该工艺品每天获得的利润是W元,依题意得:W=(x﹣10)(﹣10x+700),=﹣10x2+800x﹣7000,=﹣10((x﹣40)2+9000,∴当x=40时,W有最大值9000.(3)对于函数W=﹣10((x﹣40)2+9000,当x≤35时,W的值随着x值的增大而增大,故销售单价定为35元∕件时,工艺厂试销该工艺品每天获得的利润最大.。

经典二次函数应用题(含答案)

经典二次函数应用题(含答案)

二次函数应用题1、某体育用品商店购进一批滑板,每件进价为100元,售价为130元,每星期可卖出80件.商家决定降价促销,根据市场调查,每降价5元,每星期可多卖出20件.(1)求商家降价前每星期的销售利润为多少元?(2)降价后,商家要使每星期的销售利润最大,应将售价定为多少元?最大销售利润是多少?2、某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?3、张大爷要围成一个矩形花圃.花圃的一边利用足够长的墙另三边用总长为32米的篱笆恰好围成.围成的花圃是如图所示的矩形ABCD .设AB 边的长为x 米.矩形ABCD 的面积为S 平方米.(1)求S 与x 之间的函数关系式(不要求写出自变量x 的取值范围).(2)当x 为何值时,S 有最大值?并求出最大值.(参考公式:二次函数2y ax bx c =++(0a ≠),当2b x a=-时,244ac b y a-=最大(小)值)4、某电视机生产厂家去年销往农村的某品牌电视机每台的售价y (元)与月份x 之间满足函数关系,去年的月销售量p (万台)与月份x 之间成一次函数关系,其502600y x =-+中两个月的销售情况如下表:月份1月5月销售量 3.9万台 4.3万台(1)求该品牌电视机在去年哪个月销往农村的销售金额最大?最大是多少?(2)由于受国际金融危机的影响,今年1、2月份该品牌电视机销往农村的售价都比去年12月份下降了,且每月的销售量都比去年12月份下降了1.5m%.国家实施“家电下%m 乡”政策,即对农村家庭购买新的家电产品,国家按该产品售价的13%给予财政补贴.受此政策的影响,今年3至5月份,该厂家销往农村的这种电视机在保持今年2月份的售价不变的情况下,平均每月的销售量比今年2月份增加了1.5万台.若今年3至5月份国家对这种电视机的销售共给予了财政补贴936万元,求的值(保留一位小数).m)5.831 5.9166.083 6.1645、某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量(件)与销售单价(元)符合一次函数y x ,且时,;时,.y kx b =+65x =55y =75x =45y =(1)求一次函数的表达式;y kx b =+(2)若该商场获得利润为元,试写出利润与销售单价之间的关系式;销售单价定W W x 为多少元时,商场可获得最大利润,最大利润是多少元?(3)若该商场获得利润不低于500元,试确定销售单价的范围.x 6、某商场在销售旺季临近时 ,某品牌的童装销售价格呈上升趋势,假如这种童装开始时的售价为每件20元,并且每周(7天)涨价2元,从第6周开始,保持每件30元的稳定价格销售,直到11周结束,该童装不再销售。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9.某地要建造一个圆形喷水池,在水池中央垂直于水面安装一个花形柱子OA,O恰在水面中心,安置在柱子顶端A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,且在过OA的任一平面上,抛物线形状如图所示,如图建立直角坐标系,水流喷出的高度 与水平距离 之间的关系式是 . 请回答下列问题:1.柱子OA的高度为多少米2.喷出的水流距水平面的最大高度是多少米3.若不计其它因素,水池的半径至少要多少米,才能喷出的水流不至于落在池外
参考答案
1、解:(1)由于抛物线的顶点是 (0,),故可设其解析式为y=ax2+。又由于抛物线过(,),于是求得a=。∴抛物线的解析式为y=+。(2)当x=时,y=。∴球出手时,他距地面高度是(米)。
2、解:(1)依题意设y=kx+b,则有 所以y=-30x+960(16≤x≤32).(2)每月获得利润P=(-30x+960)(x-16)=30(-x+32)(x-16)=30(-x2+48x-512)=-30(x-24)2+1920.所以当x=24时,P有最大值,最大值为1920.答:当价格为24元时,才能使每月获得最大利润,最大利润为1920元.
3、解:(1) 设二次函数的解析式为 ,顶点坐标为 (6,5)A(0,2)在抛物线上 (2) 当 时, = 0x= ,x=6- (不合题意,舍去)x= ≈(米)答:该同学把铅球抛出米.
4、解:(1)由题意,销售利润 与每件的销售价 之间的函数关系为 =( -42)( -3+204),即 =-3 2+330x-8568(2)配方,得 =-3(x-55)2+507∴当每件的销售价为55元时,可取得最大利润,每天最大销售利润为507元.
2.某商场购进一批单价为16元的日用品,经试验发现,若按每件20元的价格销售时,每月能卖360件,若按每件25元的价格销售时,每月能卖210件,假定每月销售件数y(件)是价格x(元/件)的一次函数. (1)试求y与x之间的关系式;(2)在商品不积压,且不考虑其他因素的条件下,问销售价格定为多少时,才能使每月获得最大利润每月的最大利润是多少
6.某服装经销商甲,库存有进价每套400元的A品牌服装1200套,正常销售时每套600元,每月可卖出100套,一年内刚好卖完,现在市场上流行B品牌服装,此品牌服装进价每套200元,售出价每套500元,每月可买出120套(两套服装的市场行情互不影响)。目前有一可进B品牌的机会,若这一机会错过,估计一年内进不到这种服装,可是,经销商手头无流动资金可用,只有低价转让A品牌服装,经与经销商乙协商,达成协议,转让价格(元/套)与转让数量(套)有如下关系:转让数量(套) 1200 1100 1000 900 800 700 600 500 400 300 200 100价格(元/套) 240 250 260 270 280 290 300 310 320 330 340 350方案1:不转让A品牌服装,也不经销B品牌服装;方案2:全部转让A品牌服装,用转让来的资金购B品牌服装后,经销B品牌服装;方案3:部份转让A品牌服装,用转让来的资金购B品牌服装后,经销B品牌服装,同时经销A品牌服装。问:①经销商甲选择方案1与方案2一年内分别获得利润各多少元②经销商甲选择哪种方案可以使自己一年内获得最大利润若选用方案3,请问他转让给经销商乙的A品牌服装的数量是多少(精确到百套)此时他在一年内共得利润多少元
3.在体育测试时,初三的一名高个子男同学推铅球,已知铅球所经过的路线是某个二次函数图像的一部分,如图所示,如果这个男同学的出手处A点的坐标(0,2),铅球路线的最高处B点的坐标为(6,5) (1)求这个二次函数的解析式;(2)该男同学把铅球推出去多远(精确到米, )
4.某商场以每件42元的价钱购进一种服装,根据试销得知:这种服装每天的销售量 (件),与每件的销售价 (元/件)可看成是一次函数关系: 1.写出商场卖这种服装每天的销售利润 与每件的销售价 之间的函数关系式(每天的销售利润是指所卖出服装的销售价与购进价的差);2.通过对所得函数关系式进行配方,指出:商场要想每天获得最大的销售利润,每件的销售价定为多少最为合适;最大销售利润为多少
7.某商场以每件30元的价格购进一种商品,试销中发现,这种商品每天的销量 (件)与每件的销售价x(元)满足一次函数: (1)写出商场卖这种商品每天的销售利润y与每件的销售价x间的函数数关系式.(2)如果商场要想每天获得最大的销售利润,每件商品的售价定为多少最合适最大销售利润为多少
8.如图,一边靠学校院墙,其它三边用40米长的篱笆围成一个矩形花圃,设矩形 的边 米,面积为 平方米。(1)求: 与x之间的函数关系式,并求当 米2时,x的值;(2)设矩形的边 米,如果x、y满足关系式 , 即矩形成黄金矩形,求此黄金矩形的长和宽
5.某跳水运动员进行10米跳台跳水训练时,身体(看成一点)在空中的运动路线是如图所示坐标系下经过原点O的一条抛物线(图中标出的数据为已知条件),在跳某个规定动作时,正常情况下,该运动员在空中的最高处距水面10米,入水处距池边的距离为4米,运动员在距水面高度为5米以前,必须完成规定的翻腾动作,并调整好入水姿势,否则就会出现失误。(1)求这条抛物线的解析式;(2)在某次试跳中,测得运动员在空中的运动路线是(1)中的抛物线,且运动员在空中调整好入水姿势时,距池边的水平距离为3米,问此次跳水会不会失误并通过计算说明理由
九年级数学专题 二次函数处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为米时,达到最大高度米,然后准确落入篮圈。已知篮圈中心到地面的距离为米。(1)建立如图所示的直角坐标系,求抛物线的解析式;(2)该运动员身高米,在这次跳投中,球在头顶上方米处出手,问:球出手时,他跳离地面的高度是多少
相关文档
最新文档