自动控制原理复习总结材料(精辟)

合集下载

自动控制原理知识点总结

自动控制原理知识点总结

自动控制原理知识点总结咱们先来聊聊啥是自动控制原理哈。

想象一下,你有一辆遥控小汽车,你想让它按照你期望的速度和方向跑,这中间的种种操作和规律,就是自动控制原理要研究的东西。

这门学问里,首先得知道啥是控制系统。

简单说,就是一堆能让某个东西按照咱想法动起来的部件组合。

比如说家里的空调,你设定个温度,它就能自己调节制冷制热,让屋里保持在那个温度,这里面就有控制系统在工作。

再来说说反馈,这可是个重要概念。

就像你考试完了,老师给你打分告诉你哪儿对哪儿错,你才能知道咋改进,下次考得更好。

控制系统里也是这样,通过反馈,能把实际情况和期望情况做比较,然后进行调整。

开环控制和闭环控制也是不得不提的。

开环控制就像你蒙着眼睛扔飞镖,扔出去就不管了,结果咋样全靠运气。

闭环控制呢,则是你睁着眼睛扔,能看到飞镖的位置,随时调整扔的力度和角度,直到命中目标。

咱举个例子哈,比如说你想做个自动浇花的装置。

如果是开环控制,你就设定好每天几点浇水,浇多长时间,不管花需不需要,都这么浇。

但要是闭环控制,就会有个传感器能检测土壤的湿度,湿度不够了才浇水,够了就不浇,这多智能!还有系统的稳定性,这就好比你骑自行车,要是车不稳,东倒西歪的,你肯定骑不了。

控制系统也一样,不稳定就没法正常工作。

传递函数也是个关键知识点。

它就像是系统的“身份证”,通过它能了解系统的特性。

在自动控制原理里,时域分析能让我们直接看到系统对输入的响应随时间的变化。

比如说,你按了一下遥控器,遥控车多长时间能达到你想要的速度,这就是时域分析要研究的。

频域分析呢,则是从另一个角度看系统的性能。

就好像你听音乐,不同的频率有不同的声音,频域分析就是研究系统对不同频率输入的反应。

根轨迹法能帮我们分析系统参数变化对系统性能的影响。

想象一下,你调整遥控车的某个零件,看看车的速度和灵活性会怎么变,这就是根轨迹法在起作用。

最后说说校正装置,这就像是给系统“治病”。

如果系统性能不好,通过加上校正装置,能让它变得更好用。

自动控制原理知识点总结

自动控制原理知识点总结

自动控制原理知识点总结自动控制原理是一门研究自动控制系统的基本理论和方法的学科,它对于理解和设计各种控制系统具有重要意义。

下面将对自动控制原理的一些关键知识点进行总结。

一、控制系统的基本概念控制系统是由控制对象、控制器和反馈环节组成的。

控制对象是需要被控制的物理过程或设备,例如电机的转速、温度的变化等。

控制器则是根据输入的控制信号和反馈信号来产生控制作用,以实现对控制对象的期望控制。

反馈环节则将控制对象的输出信号反馈给控制器,形成闭环控制,从而提高系统的控制精度和稳定性。

在控制系统中,常用的术语包括输入量、输出量、偏差量等。

输入量是指施加到系统上的外部激励,输出量是系统的响应,而偏差量则是输入量与反馈量的差值。

二、控制系统的数学模型建立控制系统的数学模型是分析和设计控制系统的基础。

常见的数学模型有微分方程、传递函数和状态空间表达式。

微分方程描述了系统输入与输出之间的动态关系,通过对系统的物理规律进行分析和推导,可以得到微分方程形式的数学模型。

传递函数则是在零初始条件下,输出量的拉普拉斯变换与输入量的拉普拉斯变换之比。

它将复杂的微分方程转化为简单的代数形式,便于系统的分析和设计。

状态空间表达式则是用一组状态变量来描述系统的内部动态特性,能够更全面地反映系统的性能。

三、控制系统的性能指标为了评估控制系统的性能,需要定义一些性能指标。

常见的性能指标包括稳定性、准确性和快速性。

稳定性是控制系统能够正常工作的前提,如果系统不稳定,输出将无限制地增长或振荡,无法实现控制目标。

准确性通常用稳态误差来衡量,它表示系统在稳态时输出与期望输出之间的偏差。

快速性则反映了系统从初始状态到达稳态的速度,常用上升时间、调节时间等指标来描述。

四、控制系统的稳定性分析判断控制系统的稳定性是自动控制原理中的重要内容。

常用的稳定性判据有劳斯判据和赫尔维茨判据。

劳斯判据通过计算系统特征方程的系数来判断系统的稳定性,具有计算简单、直观的优点。

自动控制原理知识点总结

自动控制原理知识点总结

自动控制原理知识点总结自动控制原理是一门研究自动控制系统的分析与设计的学科,它对于理解和实现各种工程系统的自动化控制具有重要意义。

以下是对自动控制原理中一些关键知识点的总结。

一、控制系统的基本概念控制系统由控制对象、控制器和反馈通路组成。

控制的目的是使系统的输出按照期望的方式变化。

开环控制系统没有反馈环节,输出不受控制,精度较低;闭环控制系统通过反馈将输出与期望的输入进行比较,从而实现更精确的控制。

二、控制系统的数学模型数学模型是描述系统动态特性的工具,常见的有微分方程、传递函数和状态空间表达式。

微分方程是最直接的描述方式,但求解较为复杂。

传递函数适用于线性定常系统,将输入与输出的关系以代数形式表示,便于分析系统的稳定性和性能。

状态空间表达式则能更全面地反映系统内部状态的变化。

三、时域分析在时域中,系统的性能可以通过单位阶跃响应来评估。

重要的性能指标包括上升时间、峰值时间、调节时间和超调量。

一阶系统的响应具有简单的形式,其时间常数决定了系统的响应速度。

二阶系统的性能与阻尼比和无阻尼自然频率有关,不同的阻尼比会导致不同的响应曲线。

四、根轨迹法根轨迹是指系统开环增益变化时,闭环极点在复平面上的轨迹。

通过绘制根轨迹,可以直观地分析系统的稳定性和动态性能。

根轨迹的绘制遵循一定的规则,如根轨迹的起点和终点、实轴上的根轨迹段等。

根据根轨迹,可以确定使系统稳定的开环增益范围。

五、频域分析频域分析使用频率特性来描述系统的性能。

波特图是常用的工具,包括幅频特性和相频特性。

通过波特图,可以评估系统的稳定性、带宽和相位裕度等。

奈奎斯特稳定判据是频域中判断系统稳定性的重要方法。

六、控制系统的校正为了改善系统的性能,需要进行校正。

校正装置可以是串联校正、反馈校正或前馈校正。

常见的校正方法有超前校正、滞后校正和滞后超前校正。

校正装置的设计需要根据系统的性能要求和原系统的特性来确定。

七、采样控制系统在数字控制系统中,涉及到采样和保持、Z 变换等概念。

自动控制原理知识点复习资料整理

自动控制原理知识点复习资料整理

自动控制原理知识点总结第一章1、自动控制:是指在无人直接参与的情况下,利用控制装置操纵受控对象,是被控量等于给定值或按给定信号的变化规律去变化的过程。

2、被控制量:在控制系统中.按规定的任务需要加以控制的物理量。

3、控制量:作为被控制量的控制指令而加给系统的输入星.也称控制输入。

4、扰动量:干扰或破坏系统按预定规律运行的输入量,也称扰动输入或干扰掐入。

5、反馈:通过测量变换装置将系统或元件的输出量反送到输入端,与输入信号相比较。

反送到输入端的信号称为反馈信号。

6、负反馈:反馈信号与输人信号相减,其差为偏差信号。

7、负反馈控制原理:检测偏差用以消除偏差。

将系统的输出信号引回插入端,与输入信号相减,形成偏差信号。

然后根据偏差信号产生相应的控制作用,力图消除或减少偏差的过程。

8、自动控制系统的两种常用控制方式是开环控制和闭环控制。

9、开环控制:控制装置与受控对象之间只有顺向作用而无反向联系特点:开环控制实施起来简单,但抗扰动能力较差,控制精度也不高。

10、闭环控制:控制装置与受控对象之间,不但有顺向作用,而且还有反向联系,既有被控量对被控过程的影响。

主要特点:抗扰动能力强,控制精度高,但存在能否正常工作,即稳定与否的问题。

11、控制系统的性能指标主要表现在:(1)、稳定性:系统的工作基础。

(2)、快速性:动态过程时间要短,振荡要轻。

(3)、准确性:稳态精度要高,误差要小。

12、实现自动控制的主要原则有:主反馈原则、补偿原则、复合控制原则。

第二章1、控制系统的数学模型有:微分方程、传递函数、动态结构图、频率特性。

2、传递函数:在零初始条件下,线性定常系统输出量的拉普拉斯变换域系统输入量的拉普拉斯变换之比3、求传递函数通常有两种方法:对系统的微分方程取拉氏变换,或化简系统的动态方框图。

对于由电阻、电感、电容元件组成的电气网络,一般采用运算阻抗的方法求传递函数。

4、结构图的变换与化简化简方框图是求传递函数的常用方法。

完整版)自动控制原理知识点汇总

完整版)自动控制原理知识点汇总

完整版)自动控制原理知识点汇总自动控制原理总结第一章绪论在自动控制中,被控对象是要求实现自动控制的机器、设备或生产过程,而被控量则是表征被控对象工作状态的物理参量或状态参量,如转速、压力、温度、电压、位移等。

控制器是由控制元件组成的调节器或控制装置,它接受指令信号,并输出控制作用信号于被控对象。

给定值或指令信号r(t)是要求控制系统按一定规律变化的信号,是系统的输入信号。

干扰信号n(t)又称扰动值,是一种对系统的被控量起破坏作用的信号。

反馈信号b(t)是指被控量经测量元件检测后回馈送到系统输入端的信号。

偏差信号e(t)是指给定值与被控量的差值,或指令信号与反馈信号的差值。

闭环控制的主要优点是控制精度高,抗干扰能力强。

但是使用的元件多,线路复杂,系统的分析和设计都比较麻烦。

对控制系统的性能要求包括稳定性、快速性和准确性。

稳定性和快速性反映了系统的过渡过程的性能,而准确性则是衡量系统稳态精度的指标,反映了动态过程后期的性能。

第二章控制系统的数学模型拉氏变换是一种将时间域函数转换为复频域函数的数学工具。

单位阶跃函数1(t)、单位斜坡函数、等加速函数、指数函数e-at、正弦函数sinωt、余弦函数cosωt和单位脉冲函数(δ函数)都有其典型的拉氏变换。

拉氏变换的基本法则包括线性法则、微分法则、积分法则、终值定理和位移定理。

传递函数是线性定常系统在零初始条件下,输出信号的拉氏变换与输入信号的拉氏变换之比,称为系统或元部件的传递函数。

动态结构图及其等效变换包括串联变换法则、并联变换法则、反馈变换法则、比较点前移“加倒数”和比较点后移“加本身”,以及引出点前移“加本身”和引出点后移“加倒数”。

梅森公式是一种求解传递函数的方法,典型环节的传递函数包括比例(放大)环节、积分环节、惯性环节、一阶微分环节、振荡环节和二阶微分环节。

第三章时域分析法时域分析法是一种分析控制系统时域特性的方法。

其中,时域响应包括零状态响应和零输入响应。

自动控制原理知识点总结(通用4篇)

自动控制原理知识点总结(通用4篇)

自动控制原理知识点总结第1篇频率特性分为两种,分别是A(ω) 幅频特性和 φ(ω) 相频特性。

对于一个一阶线性定常系统对正弦输入信号 Asinωt 的稳态输出 Ysin(ωt +ψ) ,仍是一个正弦信号,其特点:①频率与输入信号相同;②振幅 Y为输入振幅A的 |G(jω)| 倍;③相移为 ψ = ∠G(jω)。

振幅 Y 和相移 ψ都是输入信号频率 ω 的函数,对于确定的 ω 值来说,振幅Y和相移 ψ 都将是常量。

|G(jω)| = Y / A 正弦输出对正弦输入的幅值比—幅频特性∠G(jω) = ψ正弦输出对正弦输入的相移—相频特性理论上可将频率特性的概念推广的不稳定系统,但是,系统不稳定时,瞬态分量不可能消失,它和稳态分量始终同时存在,所以,不稳定系统的频率特性是观察不到的。

(1)幅相曲线:对于一个确定的频率,必有一个幅频特性的幅值和一个幅频特性的相角与之对应,幅值与相角在复平面上代表一个向量。

当频率ω从零变化到无穷时,相应向量的矢端就描绘出一条曲线。

这条曲线就是幅相频率特性曲线,简称幅相曲线。

(2)幅频特性曲线:对数幅频特性曲线又称为伯德图(曲线)。

对数频率特性曲线的横坐标是频率 ω ,并按对数分度,单位是[rad/s] .对数幅频曲线的纵坐标表示对数幅频特性的函数值,线性分度,单位是[dB],此坐标系称为半对数坐标系。

对数相频特性曲线的纵坐标表示相频特性的函数值,线性分度 , 单位是 (0) 或(弧度),频率特性G(jω) 的对数幅频特性定义如下 L(ω) = 20lg |G(jω)| 对数分度优点:扩大频带、化幅值乘除为加减、易作近似幅频特性曲线图。

(3)对数幅相曲线(又称尼柯尔斯曲线):其特点是纵、横坐标都线性分度,对数幅相图的横坐标表示对数相频特性的相角,纵坐标表示对数幅频特性的幅值的分贝数。

自动控制原理知识点总结第2篇一阶系统的数学模型(1)单位阶跃响应——输入 r(t) = 1(t),输出 h(t) = 1 - e-t/T, t >0 特点:●可以用时间常数去度量系统的输出量的数值。

(完整word版)自动控制原理复习提纲(整理版)

(完整word版)自动控制原理复习提纲(整理版)《自动控制原理》课程概念性知识复习提纲详细版第一章:1.自动控制的任务(背):是在没有人直接参与下,利用控制装置操纵被控对象,使被控量等于给定值。

2.自动控制基本方式一.按给定值操纵的开环控制二.按干扰补偿的开环控制三.按偏差调节的闭环控制3.性能要求:稳快准第二章:4.微分方程的建立:课后2.55.传递函数定义(背)线性定常系统(或元件)的传递函数为在零初始条件下,系统(或元件)的输出变量拉氏变换与输入变量拉氏变换之比。

这里的零初始条件包含两方面的意思,一是指输入作用是在t=0以后才加于系统,因此输入量及其各阶导数,在t=0-时的值为零。

二是指输入信号作用于系统之间系统是静止的,即t=0-时,系统的输出量及其各阶导数为零。

这是反映控制系统的实际工作情况的,因为式(2-38)表示的是平衡工作点附近的增量方程,许多情况下传递函数是能完全反映系统的动态性能的。

6.结构图化简:课后2.14(结构图化简一道大题,梅森公式化简一道大题)复习要点7.几种传递函数(要求:懂得原理)一.输入信号r(t)作用下的系统闭环传递函数二.干扰信号n(t)作用下的系统闭环传递函数三.闭环系统的误差传递函数8.阶跃响应,脉冲响应,传递函数之间的关系阶跃响应:H(s)=1s 单位斜坡响应:t C (s )=21s 单位脉冲响应:K(s)=Φ(s) 11()()()H s s K s s s =Φ?=? 211()()()t C s s H s s s=Φ?=? 综合可得 K(s)=sH(s) H(s)=s t C第三章:9.阶跃响应的性能指标有哪些,各个性能指标的意义是什么。

10.从平稳性,快速性和稳态精度三个方面,简述典型二阶欠阻尼系统结构参数,n对阶跃相应的影响。

由于欠阻尼二阶系统具有一对实部为负的共轭复特征根,时间响应呈衰减振荡特性,故又称为振荡环节。

系统闭环传递函数的一般形式为222()()2n n nC s R s s s ωζωω=++ 由于0<ζ<1,所以一对共轭复根为1,2n s j ζωω=-±d j σω-±式中,n σζω=,为特征根实部之模值,具有角频率量纲。

自动控制原理总经典总结

《自动控制原理》总复习第一章自动控制的基本概念一、学习要点1.自动控制基本术语:自动控制、系统、自动控制系统、被控量、输入量、干扰量、受控对象、控制器、反馈、负反馈控制原理等。

2.控制系统的基本方式:①开环控制系统;②闭环控制系统;③复合控制系统。

3.自动控制系统的组成:由受控对象和控制器组成。

4.自动控制系统的类型:从不同的角度可以有不同的分法,常有:恒值系统与随动系统;线性系统与非线性系统;连续系统与离散系统;定常系统与时变系统等。

5.对自动控制系统的基本要求:稳、快、准。

6.典型输入信号:脉冲、阶跃、斜坡、抛物线、正弦。

二、基本要求1.对反馈控制系统的基本控制和方法有一个全面的、整体的了解。

2.掌握自动控制系统的基本概念、术语,了解自动控制系统的组成、分类,理解对自动控制系统稳、准、快三方面的基本要求。

3.了解控制系统的典型输入信号。

4.掌握由系统工作原理图画方框图的方法。

三、内容结构图四、知识结构图第二章 控制系统的数学模型一、学习要点1.数学模型的数学表达式形式(1)物理系统的微分方程描述;(2)数学工具—拉氏变换及反变换; (3)传递函数及典型环节的传递函数;(4)脉冲响应函数及应用。

2.数学模型的图形表示(1)结构图及其等效变换,梅逊公式的应用;(2)信号流图及梅逊公式的应用。

二、基本要求1、正确理解数学模型的特点,对系统的相似性、简化性、动态模型、静态模型、输入变量、输出变量、中间变量等概念,要准确掌握。

2、了解动态微分方程建立的一般方法及小偏差线性化的方法。

3、掌握运用拉氏变换解微分方程的方法,并对解的结构、运动模态与特征根的关系、零输入响应、零状态响应等概念有清楚的理解。

4、正确理解传递函数的定义、性质和意义。

熟练掌握由传递函数派生出来的系统开环传递函数、闭环传递函数、误差传递函数、典型环节传递函数等概念。

(#)5、掌握系统结构图和信号流图两种数学模型的定义和绘制方法,熟练掌握控制系统的结构图及结构图的简化,并能用梅逊公式求系统传递函数。

《自动控制原理》胡寿松——总结与复习


三、绘制常规根轨迹的基本规则
根轨迹的分支数、对称性、 起点和终点、实轴上的根轨迹、 渐近线(倾角,与实轴的交点)、 分离点和会合点、与虚轴的交点、 出射角和入射角、 特征方程的根之和=开环极点之和(n-m≥2)
分析与设计:
确定主导极点→根轨迹增益→其他闭环极点→闭环传递函数
第五章 频域分析法
一、频率特性的定义 输出的稳态分量与输入正弦信号之间的关系; 幅频特性,相频特性
(参数的稳定域) ➢ 分析系统的相对稳定性。
5. 控制系统的稳态误差
• 稳态误差的定义和分类 跟踪稳态误差、扰动稳态误差。
• 利 用 终 值 定 理 求 稳 态 误差
前 提 :E(s) 除 原 点 外 , 其 余 极 点 均在 左 半 平 面 。
• 不 能 利 用 终 值 定 理 时 如何 求 稳 态 误 差
串联校正的两种常用思路
1. 根据性能要求确定希望的开环频率特性的 Bode图,再由Bode图求开环传递函数, 最后得到校正装置的传递函数。
2. 限定校正装置为简单结构,通过改变其参 数来获得尽可能好的开环频率特性。
思路2的常用校正方式: 超前校正,滞后校正,滞后超前校正
R(s) E(s)
-
Gc (s)
• 稳定性的基本概念 • 稳定性的两种常用定义
运动稳定性 有界输入有界输出稳定性( BIBO 稳定) • 线性定常系统的稳定条件 系统极点均具有负实部 • 反馈控制系统稳定的充要条件 特征方程的根(闭环极点)均具有负实部
•劳斯-赫尔维茨稳定判据
劳斯表的计算规律
劳斯判据的应用:
➢ 判断系统是否稳定; ➢ 判断不稳定极点的个数; ➢ 求出保证系统稳定的参数取值范围;
二、频率特性的几何表示 幅相频率特性图(极坐标图,Nyquist图); 对数幅频特性和对数相频特性(伯德图);

自动控制原理知识点总结

自动控制原理知识点总结一、自动控制系统的基本概念自动控制,简单来说,就是在没有人直接参与的情况下,通过控制器使被控对象按照预定的规律运行。

一个典型的自动控制系统通常由控制对象、控制器、测量元件和执行机构等部分组成。

控制对象就是我们要控制的那个东西,比如一个电机、一个温度场或者一个生产过程。

控制器则是根据输入的偏差信号,按照一定的控制规律产生控制作用,去驱动执行机构。

测量元件负责测量被控量,并将其转化为电信号反馈给控制器。

执行机构接受控制器的控制信号,对控制对象施加作用。

自动控制系统按照有无反馈可以分为开环控制系统和闭环控制系统。

开环控制系统的输出量对系统的控制作用没有影响,结构相对简单,但控制精度较低。

闭环控制系统则将输出量反馈回来与给定值进行比较,形成偏差,然后根据偏差来调整控制作用,因此控制精度高,但系统相对复杂,可能会出现稳定性问题。

二、控制系统的数学模型要对一个控制系统进行分析和设计,首先要建立它的数学模型。

数学模型就是用数学语言来描述系统的输入、输出和内部状态之间的关系。

常见的数学模型有微分方程、传递函数和状态空间表达式。

微分方程是最基本的描述形式,但求解比较复杂。

传递函数则是在零初始条件下,输出量的拉普拉斯变换与输入量的拉普拉斯变换之比。

它可以方便地分析系统的频率特性和稳定性。

状态空间表达式则能更全面地描述系统的内部状态和动态特性。

建立数学模型的方法有分析法和实验法。

分析法是根据系统的物理规律和结构,推导出数学方程。

实验法则是通过对系统施加输入信号,测量输出响应,然后用系统辨识的方法得到数学模型。

三、控制系统的时域分析时域分析是直接在时间域上研究系统的性能。

主要的性能指标有稳态误差、上升时间、峰值时间、调节时间和超调量。

稳态误差反映了系统的准确性,它与系统的类型和输入信号的形式有关。

对于单位阶跃输入, 0 型系统有稳态误差,1 型及以上系统稳态误差为零。

上升时间、峰值时间和调节时间反映了系统的快速性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2009 年秋季 自动控制理论(一)复习指南和要求第二章 控制系统的数学模型复习指南与要点解析要求: 根据系统结构图应用结构图的等效变换和简化或者应用信号流图与梅森公式求传递函数(方法不同,但同一系统两者结果必须相同)一、控制系统3种模型,即时域模型----微分方程;※复域模型——传递函数;频域模型——频率特性。

其中重点为传递函数。

在传递函数中,需要理解传递函数定义(线性定常系统的传递函数是在零初始条件下,系统输出量的拉氏变换式与输入量的拉氏变换式之比)和性质。

零初始条件下:如要求传递函数需拉氏变换,这句话必须的。

二、※※※结构图的等效变换和简化--- 实际上,也就是消去中间变量求取系统总传递函数的过程。

1.等效原则:变换前后变量关系保持等效,简化的前后要保持一致(P45)2.结构图基本连接方式只有串联、并联和反馈连接三种。

如果结构图彼此交叉,看不出3种基本连接方式,就应用移出引出点或比较点先解套,再画简。

其中:※引出点前移在移动支路中乘以()G s 。

(注意:只须记住此,其他根据倒数关系导出即可)引出点后移在移动支路中乘以1/()G s 。

相加点前移在移动支路中乘以1/()G s 。

相加点后移在移动支路中乘以()G s 。

[注]:乘以或者除以()G s ,()G s 到底在系统中指什么,关键看引出点或者相加点在谁的前后移动。

在谁的前后移动,()G s 就是谁。

例1:)解法 1:1) 3()G s 前面的引出点后移到3()Gs 的后面(注:这句话可不写,但是必须绘制出下面的结构图,)2) 消除反馈连接)3) 消除反馈连接4) 得出传递函数123121232123()()()()()1()()()()()()()()()G s G s G s C s R s G s G s H s G s G s H s G s G s G s =+++ [注]:可以不写你是怎么做的,但是相应的解套的那步结构图必须绘制出来。

一般,考虑到考试时间限制,化简结构图只须在纸上绘制出2-3个简化的结构图步骤即可,最后给出传递函数()()C s R s =。

) 解法 2: 1()G s 后面的相加点前移到1()G s 前面,并与原来左数第二个相加点交换位置,即可解套,自己试一下。

[注]:条条大路通罗马,但是其最终传递函数()()C s R s =一定相同) [注]:※※※比较点和引出点相邻,一般不交换位置※※※,切忌,否则要引线) 三. ※※※应用信号流图与梅森公式求传递函数梅森公式: ∑=∆∆=nk k k P P 11式中,P —总增益;n —前向通道总数;P k —第k 条前向通道增益;△—系统特征式,即 +-+-=∆∑∑∑f e d c b a L L L L L L 1Li —回路增益;∑La —所有回路增益之和;∑LbLc —所有两个不接触回路增益乘积之和; ∑LdLeLf —所有三个不接触回路增益乘积之和;△k —第k 条前向通道的余因子式,在△计算式中删除与第k 条前向通道接触的回路。

[注]:一般给出的是结构图,若用梅森公式求传递函数,则必须先画出信号流图。

注意2:在应用梅森公式时,一定要注意不要漏项。

前向通道总数不要少,各个回路不要漏。

例2: 已知系统的方框图如图所示 。

试求闭环传递函数C (s )/R (s ) (提示:应用信号流图及梅森公式)解1[注]2) 应用梅森公式求闭环传递函数: 前向通道增益3211G G G P =;342G G P =;回路增益221H G L -=;133212H H G G G L -=;53G L -=;43431L G G H H =- 特征式2212313534312521G H G G G H H G G G H H G G H ∆=+++++;余因子式(对应各个前项通道的)511G +=∆;521G +=∆;------经验:一般余因子式不会直接等于1,不然太简单了闭环传递函数1243522123135252()(1)()()1G G G G G C s R s G H G G G H H G G G H ++=++++ 四、知道开环传递函数的定义,并会求闭环系统的传递函数 1.开环传递函数,如图:12()()()()()()()G s H s B s G s G s H s s ε==,则()()()()()()B s G s s s G H s s H ε== )())((G s H s G s =------常见)2.四个闭环系统的传递函数----特点分母相同,即特征方程相同1212()()()()()1()()()G s G s C s s R s G s G s H s Φ==+(通常说的输出对输入的传递函数);212()()()()1()()()n G s C s s N s G s G s H s Φ==+12()1()()1()()()s s R s G s G s H s εεΦ==+212()()()()()1()()()n G s H s s s N s G s G s H s εεΦ-==+[注]:后面求稳态误差需要第三章 线性系统的时域分析要求:1) 会分析系统的时域响应()c t ,包括动态性能指标;2) 会用劳斯判据判定系统稳定性并求使得系统稳定的参数条件; 3)会根据给出的系统结构图,求出系统稳态误差,并减小或消除之。

一、时域分析方法和思路:已知系统输入()r t 和系统模型()s Φ,求时域响应()c t 。

例1:求一阶系统的单位阶跃响应。

1)输入)(1)(t t r =,则其拉氏变换为ss R 1)(=,则 2)11111()()()111/T C s s R s Ts s s Ts s s TΦ==⋅=-=-+++ 3)对上式取拉氏反变换,得其响应单位阶跃信号的响应为: /()1e ,0t T ss ts c t c c t -=+=-≥[注1]:※※ss c 为稳态分量,它的变化由输入信号的形式(上例中)(1)(t t r =)决定;※ ※ts c (上例中/e t T ts c -=-)为暂态分量,由闭环传递函数的极点(上例中1s T=-)决定。

二、线性系统稳定的充要条件是闭环特征根均需具有负实部或者说()s Φ的极点都在在s 平面[左]半部分。

---系统稳定性是系统本来的固有特性,与外输入信号无关。

1.只有当系统的特征根全部具有负实部时,系统达到稳定。

2.如果特征根中有一个或一个以上具有正实部,则这表明系统不稳定;3. 如果特征根中具有一个或一个以上的零实部根,而其余的特征根均具有负实部,则脉冲响应函数趋于常数,或者趋于等幅正弦(余弦)振荡,称为临界稳定。

[注2]: 根据如果()s Φ极点都在s 平面左半部分,则暂态分量ts c 随时间增大而衰减为0;如果()s Φ极点有一个都在s 平面右半部分,则暂态分量ts c 随时间增大而发散。

三、※※※二阶系统单位阶跃响应及其欠阻尼情况下指标计算1.熟悉二阶系统单位阶跃响应的3个对应关系,即:不同阻尼比ζ类型—不同单位阶跃的时间响应波形图()c t ---不同系统稳定性2.二阶系统欠阻尼单位阶跃响应的指标计算:欠阻尼二阶系统上升时间、峰值时间、调节时间、超调量计算(公式必须牢记)p d t πω==r d t πβω-==()()%100%e100%()p p c t c c σσ-∞==⨯=⨯∞,43,0.02,,0.05s s nnt t ζωζω=∆==∆=或其中,阻尼角arctanβ=,阻尼振荡频率d ωω=例2:2004年考题已知控制系统如图所示,(1) 确定使闭环系统具有7.0=ζ及)/(6s rad n =ω的k 值和τ值;)6()(1+=s s s G ;s s H τ=)((2) 计算系统响应阶跃输入时的超调量p σ和峰值时间p t 。

解:(1) 22222)6()(nn n s s k s k s ks ωζωωτ++=+++=Φ; 23626n n k k ωζωτ⎧==⎪⎨=+⎪⎩, 则360.067k τ=⎧⎨=⎩ (2) 21/2%exp([1]) 4.6%σζπζ-=--=;s t d p 733.0/==ωπ。

例3 2006年考题:已知控制系统如图所示,)6()(+=s s ks G ;s s H τ=)(在0)(br =s G 时,闭环系统响应阶跃输入时的超调量%6.4=p σ、峰值时间733.0=p t 秒,确定系统的k 值和τ值;解:(1) 2222()(6)2n n nks s k s k s s ωΦτζωω==+++++; % 4.6%0.70.7336p n t σζω=⇒=⎧⎨=⇒=⎩;则262n n k k ωτζω⎧=⎪⎨+=⎪⎩则360.067k τ=⎧⎨=⎩ 四、附加闭环负实零点对系统影响具有闭环负实零点时的二阶系统分析对系统的作用表现为: 1. 仅在过渡过程开始阶段有较大影响;2. ※附加合适的闭环负实零点可使系统响应速度加快,但系统的超调量略有增大;3. ※负实零点越接近虚轴,作用越强。

五、高阶系统的时域分析---利用闭环主导极点降阶如果在系统所有的闭环极点中,距离虚轴最近的闭环极点周围没有闭环零点,而其他闭环极点又远离虚轴,且满足1|Re ||5|Re |i s s ≥式中,1s ——为主导极点; i s ——为非主导极点。

则距离虚轴最近的闭环极点所对应的响应分量随着时间的推移衰减得最慢,从而在系统的响应过程中起主导作用。

一般闭环主导极点为共轭闭环主导极点或者一个实闭环主导极点。

六、※※※利用劳斯判据判定系统稳定性并求使得系统稳定的参数条件。

1.※根据特征方程:1110()0n n n n D s a s a s a s a --=++++=,则线性系统稳定的充要条件是劳斯表首列元素均大于零;首列系数符号改变次数与分布在s 平面右半部的极点个数相同。

2.劳斯表特殊情况时,系统临界稳定或者不稳定。

3. 如果系统稳定,则特征方程1110()0n n n n D s a s a s a s a --=++++=系数同号且不缺项; 4.※利用劳斯判据判定系统稳定性例4: 已知系统结构图,试用劳斯稳定判据确定使闭环系统稳定的k 的取值范围。

解:2()(1)(2)ks s s s s kΦ=++++整理,432()332ks s s s s kΦ=++++从高到低排列特征方程系数 列劳斯表:S 4 1 3 k S 3 3 2 0 S 2 7/3 k S 1 (14-9 k )/70 S 0k如果劳斯表中第一列的系数均为正值,因此,1490,14/97kk -><,且0k >。

相关文档
最新文档