逻辑代数基础 作业题
逻辑代数基础习题

《逻辑代数基础》练习题及答案[1.1]将下列二进制数转为等值的十六进制数的等值的十进制数。
(1)(10010111)2 ;(2)(1101101)2 ;(3)(0.01011111)2 ;(4)(11.001)2 。
[解](1)(10010111)2 = (97)16 = (151)10,(2)(11011101)2 = (6D)16 = (109)10(3)(0.01011111)2 = (0.5F)16 = (0.37109375)10,(4)(11.001)2 = (3.2)16 = (3.125)10[1.2]将下列十六进制数化为等值的二进制数和等值的十进制数。
(1)(8C)16 ;(2)(3D.BE)16;(3)(8F.FF)16 ;(4)(10.00)16[解](1)(8C)16 = (10001100)2 = (140)10(2)(3D·BE)16 = (111101.1011111)2 = (61.7421875)10(3)(8F·FF)16 = (10001111.11111111)2 = (143.99609375)10(4)(10.00)16 = (10000.00000000)2 = (16.00000000)10[1.3]将下列十进制数转换成等效的二进制数和等效的十进制数。
要求二进制数保留小数点以后4位有效数字。
(1)(17)10 ;(2)(127 )10 ;(3)(0.39)10 ;(4)(25.7)10[解](1)(17)10 =(10001)2 =(11)16 ;(2)(127)10 = (1111111)2 = (7F)16(3)(0.39)10 = (0.0110)2 = (0.6)16;(4)(25.7)10 = (11001.1011)2 = (19.B)16[1.4]写出下列二进制数的原码和补码。
(1)(+1011)2 ;(2)(+00110)2 ;(3)(-1101)2 ;(4)(-00101)2 。
第3章 逻辑代数(习题)

CD
AB
00 01 11 10
00 1 1
1
01
1
(1) F1 m(0,1,2,4) d(5,6)
BC
11 1
1
10 1 1
1
(2) F2 m(3,5,6,7,10) d(0,1,2,4,8)
CD
AB
00 01 11 10
00 x x 1 x
(a)
BC
A
00 01 11 10
0 11
表 T3.4(3表)T3.4(3) A B CA FB C F 0 0 00 0 0 0 0 0 10 10 1 1 0 1 00 01 0 0 0 1 10 1 1 1 1 0 01 0 0 0 1 0 11 0 1 0 1 1 01 1 0 1 1 1 11 1 1 1
(3)
A
表 T3.4(1)
ABCD ABCD ABCD ABC D ABCD ABCD
3.2 答案
(1) 左边 AB B AB AB B A B 右边 (2) 左边 A B CCD (B C)(ABD BC)
(A B C) CD ABCD BC
A B C C D ABCD BC A B 1 D ABCD BC 1 右边
0 0 0X 0Y 1Z 1F
O 000 0
B
0 0 1 0 10 01 01
O
010 1
C
011 0
0 1 0 1 10 00 10
O
101 1
F 0 1 0 1 11 00 00
O
111 1
表 T3.4(2)
1 1A B C F t 000 0
1 10 0 1 1
0 1 0t 1
第1章 逻辑代数基础作业

第1章 逻辑代数基础1. 用真值表证明下列等式。
(1) (A B)C=A (B C)⊕⊕⊕⊕ (2) C B A C B A A +=++(1) A+ABC+ABC+CB+CB (CA B B C BC BC A +=++++=)()1(2) ABC+ABC+ABC+ABCAABB AC C AB C C B A =+=+++=)()(3.将下列各函数化为最小项之和的形式。
(1) Y=ABC+BC+AB7543)()(m m m m C B A C B A BC A ABC BC A C C B A A A BC BC A +++=++++=++++= (2) )( AB Y D C B C ABD +++=DC ABD C B D C AB D C B C D B D A D C B C AD B BD A D C B C ABD B A =+=+++++=+++++=++++=)()()()(4.根据下列各逻辑式, 画出逻辑图。
①Y=(A+B )C ; ②Y=AB+BC ; ③Y=(A+B )(A+C );5.试对应输入波形画出下图中 Y 1 ~ Y 4 的波形。
6.如果“与”门的两个输入端中, A 为信号输入端, B 为控制端。
设当控制端B=1和B=0两种状态时,输入信号端A 的波形如图所示, 试画出输出端Y 的波形。
如果A 和B 分别是“与非”门、“或”门、“或非”门的两个输入端,则输出端Y 的波形又如何?总结上述四种门电路的控制作用。
第2章 组合逻辑电路1.分析图示电路的逻辑功能。
要求写出逻辑式,列出真值表,然后说明逻辑功能。
ABY B A B A Y =+=21 半加器 真值表略2.已知逻辑式B A AB Y +=:①列出逻辑真值表,说明其逻辑功能;②画出用“与非”门实现其逻辑功能的逻辑图;③画出用双2/4线译码器74LS139实现其逻辑功能的逻辑图; ④画出用4选1数据选择器74LS153实现其逻辑功能的逻辑图;③双2/4线译码器74LS139 有两个2-4线译码器④用4选1数据选择器74LS1533.证明图(a )和(b )所示的两个逻辑电路具有相同的逻辑功能。
逻辑代数初步 测试卷

第十一章 逻辑代数初步 测试卷一、 选择题(本大题共10小题,每小题4分,共40分)1. 二进制数(1110)2转换为十进制数为 ( )A. 14B. 57C. 4D. 152. 十进制数37转换为二进制数为 ( )A. (101111)2B. (101001)2C. (100101)2D. (111100)23. 已知逻辑函数F=AB+CD ,下列可以使F=1的状态是 ( )A. A=0,B=0, C=0,D=0B. A=0,B=0,C=0, D=1C. A=1,B=1,C=0,D=0D. A=1,B=0,C=1, D=04. 若逻辑函数L=A+ABC+BC+C ,则L 可简化为 ( )A. L=A+BCB. L=A+CC. L=AB+CD. L=A5. 在逻辑式中,逻辑变量的取值是 ( )A. 任意数B. [0,1]C. (0,1)D. 0或16. 在逻辑代数中,下列推断正确的是 ( )A. 如果A+B=A+C ,则B=CB. 如果AB=AC ,则B=CC. 如果A+1=1,则A=0D. 如果A+A=1,则A=17. 若p 、q 是两个简单命题,且“p q ∨”为假命题,则必有 ( )A .p 真、q 真B .p 真、q 假C .p 假、q 真D .p 假、q 假8. 若p 、q 是两个简单命题,且“p q ∧”为真命题,则必有 ( )A .p 真、q 假B .p 假、q 真C .p 假、q 假D . p 真、q 真9. 与A B ⋅相等的是 ( )A .AB B .ABC .A B +D .A B +10.下列表达式中符合逻辑运算律的是 ( )A . 1+1=10B . 1+1=2C . 1·0=0D . 0=0二、 填空题(本大题共6小题,每小题5分,共30分)11. (93)10=( )2.12. 补充完成“按权展开式”:388448108=⨯+⨯ 10410410+⨯+⨯13. 化简:A+1= .14. 若Y=(A+B)(A+B),则当A=0,B=1时,Y 的值为 .15. 命题p :126是3的倍数;命题q :60既是3的倍数也是5的倍数.p ∧q 为 命题.16.命题p :三角形的内角和等于180°.则p ⌝:_______________________________.三、 解答题(本大题共3题,每小题10分,共30分)17.(10分)用“除2取余法”将十进制数(102)10换算成二进制数.请保留解题过程.18.(10分)列出下列函数的真值表:(1)Y AB B =+.(2) B A C B AC Y ++=19. 10分)证明下列逻辑等式: (1) ABC ABC ABC ++=AB AC +.(2) ABC ABC ABC ABC AB ++++B A +=第十二章 算法与程序框图 测试卷一、 选择题(本大题共12小题,每小题4分,共48分)1. 下列关于算法的说法,正确的有 ( ) ①求解某一类问题的算法是唯一的;②算法必须在有限步操作之后停止;③算法的每一步操作必须是明确的,不能有歧义或模糊;④算法执行后一定产生确定的结果.A .1个B .2个C .3个D .4个2. 下列哪项是算法不具有的特征 ( )A. 有限性B. 确切性C. 输入/输出性D. 无穷性3. 任何一个算法都必须有的基本结构是 ( )A. 顺序结构B. 条件结构C. 循环结构D. 三个都有4.循环结构中反复执行的处理步骤是 ( )A. 循环体B. 循环线C. 程序D. 路径5. 一个完整的程序框图至少包含 ( )A .起、止框和输入、输出框B .起、止框和处理框C .起、止框和判断框D .起、止框,处理框和输入、输出框6. 如图的三种程序框图,对应的是 ( )结束A. 顺序结构、 条件结构、 循环结构 B. 顺序结构、 循环结构、条件结构C. 循环结构、 顺序结构、 条件结构D. 循环结构、 条件结构、 顺序结构7. 在解方程ax 2+bx+c=0(a ≠0)的程序框图中,必需要用到的结构是 ( )A. 顺序结构和条件结构B. 顺序结构和循环结构C. 条件结构和循环结构D. 循环结构8. 如图的程序框图解决的是 ( )A. 找出a 、b 、c 最大值B. 找出a 、b 、c 最小值C. 把a 、b 、c 按从小到大排列D. 把a 、b 、c 按从大到小排列9. 在程序框图中下列图形符号叫判断框的是 ( )A .. C . D .10. 下列给出的赋值语句中正确的是 ( )A .16x -=B .16x =-C .1x y +=D .a b c ==11.如图1所示程序框图的功能是( )A .求2-x 的值B .求x -2的值C .求2-x 的值D .求2--x 的值图212.程序框图(如图2所示),能判断任意输入的数x的奇偶性:其中判断框内的条件是()A.m=0 B.x=0 C.x=1 D.m=1二、填空题(本大题共6小题,每小题4分,共24分)13. 给出以下五个问题:①输入一个数x,输出它的相反数;②求面积为6的正方形的周长;③求三个数a,b,c,中的最大数;④求函数1(0)()2(0)x xf xx x-≥⎧=⎨+<⎩的函数值;其中不需要用条件语句来描述其算法的 .14. 如图算法的运行结果是S= .(第14题图)15. 现有如下算法:第一步:A = 1 ,B = 2第二步:C = A第三步:A = B第四步:B = C第五步:输出A、B则最后输出的A和B的值分别为和。
数电 逻辑代数基础练习题

数字电子技术
第 1 章 逻辑代数基础
单项选择题
20、当变量 A、B、C 取值为101 时,下列三变量函数最小项中等于
1 的是
( )。
A m1
×
B m3
×
C m5
√
D m7
×
分析提示
将 ABC = 101 代入各最小项: m 1AB C1010 m3ABC 1010 m5ABC1011 m 7AB 1C 010
第 30 页
数字电子技术
第 1 章 逻辑代数基础
单项选择题
30、函数 Y = ABC + ABC + ABC + ABC 的最简化简结果为 ( ) 。
须先变换成同一进制,再比较大小、相等关系。
如统一表示成十进制数:
( 101111 ) 2 = ( 47 ) 10 ( 3A ) 16= ( 58 ) 10
( 55 ) 8= ( 45 ) 10 ( 01010110 ) 8421BCD= ( 56 ) 10
第2页
数字电子技术
第 1 章 逻辑代数基础
8
6
9
3
3
3
5
3
6
第4页
数字电子技术
第 1 章 逻辑代数基础
单项选择题
7、常用的BCD码有8421码、2421码、余3码等,其中既是有权码
又是自补码的是
( )。
A 8421码 C 余3码
×
B 2421码
√
×
D 余3循环码
×
分析提示
2421码代码中从左至右每一位的权分别为 2、4、2、1,为有 权码; 2421码代码中 0和9、 1和8、 2和7、 3和6、 4和5 互 补, 为自补码。
第3章 逻辑代数基础-习题答案

(3) ( A + B)(B + D)(C + D)( A + C + D)(B + C + D) 解:原式取对偶
F AB BD C D AC D BCD AB BD C D BCD AD AB BD C D BC AD AB BD C BD AD AB BD C AD 冗余定理 =BD C AD
2
(
)
解: F = ABC + ABC + BCD + BCD
F = ( A + B + C)( A + B + C)(B + C + D)(B + C + D)
(5) F = ( A + B)(BCD + E)(C + A) 解: F AB ( B C D) E AC (6) F = ( A + D)(B + C + D)( AB + C) 解: F = AD + BCD + ( A + B)C (7) F = BC + AB + ABC 解: F = ( B + C)( A + B)( A + B + C) (8) F = A + B + D + C 解: F = AB DC 3.6 将下列函数写成与非-与非式。 (1) XY X Z Y Z 解: XY X Z Y Z XY X Z Y Z XY X Z Y Z (2) XYZ X Y Z 解: XYZ X Y Z XYZ X Y Z XYZ X Y Z (3) A + C + D + ABCD + ABC D 解:
第3章 逻辑代数基础答案.docx

第3章逻辑代数习题33. 1求下列函数的反函数(1) F = AB + C(A + D)(2)y = A(万+ C万+ CD)解:(1)F = AB + C(A + D)=AB*C(A + D)= (A + B)*(C + AD)=AC + BC + ABD(2)F = AB + C(A + D)=AB*C(A + D)= (A + B)*(C + AD)=AC + BC + ABD3. 2求下列函数的对偶式(1)Y = AB* CD* DAB(2)Y = A + C + B + C + A + B + B + C解:(1)Y = AB* CD* DABY'=A + B + C + D + D + A + B(2)Y = A + C + B + C + A + B + B + CY'=ACB^CABB^C3. 3用基本定理和公式证明下列等式(1)ABC + ABC + ABC = AB + AC(2)AB+ AC+ BC AB + C(3)A万+ BD + AD + DC^A万+ Z)(4)BC + D +万(万 + C)(DA + B) = B + D(5)AB + AB + AB + AB = 1(6)(A + B)(A + B)(A + B)(A + B) = 0(7) AB + BC + CA = AB + BC + CA(8)(A + B + C) • AB + BC + CA + ABC = (A + 万 +。
・(AB + BC + CA) + 云万©(9)A©B©C=A0BOC(10)A®B = AQB证明:(1)ABC + ABC + ABC = AB + AC左式=ABC + ABC + ABC=(ABC + ABC) + (ABC + ABC)-AB(C + C) + AC(B + B)=AB + AC =右式(2)AB+ AC+ BC AB + C左式= AB + AC + BC=AB + AC(B + B) + BC=AB + ABC + ABC + BC= B(A + AC) + B(AC + C)=AB + BC + BC=AB + C =右式(3)A万+ BD + AD + DC^AB + D左式=A万+ 切+ l£)+ OC=AB + BD + A(B + B)D + DC=B(A + AZ)) + BD + ABD + DC=AB + BD + BD + ABD + DC=AB+D+ABD+DC=AB + D =右式(4)BC + D +万(万 + C)(DA + B) = B + D左式= BC + D + D(B + C)(DA + B)=BC + D + BD(B+ C}=BC+D+BCD=BC+D+BC=B + D =右式(5)AB + AB + AB + AB = 1&^ = AB + AB + AB + AB=A(B + B) + A(B + B)= A + A=]=右式(6)(A + B)(A + 万)Q + B)Q + 万)=0左式=(A + fi)(A + B)(A + B)(A + 万)=(A + B)(A + B)(A + B)(A + B)=(A + B) + (A + B) + (A + B) + (A + B)=AB + AB + AB + AB=1 = 0 =右式(7)AB + BC + CA = AB + BC + CA根据代入规则,令A=B,,B=C,,C=A,左式= AB + BC + CA= B'C'+C'A'+ A'B'再次利用代入规则可得左式= B'C'+C'A' + A'B'= XB + §C + C如右式(8)(A + 5 + C) • AB + BC + CA + ABC = (M + 万 + C)・(AB + BC + CA) + ~ABC左式=(A + B + C) • AB + BC + CA + ABC=(A + B + C) • AB + BC + CA + ABC= (A + B + C)*(AB + BC + CA) + ABC=右式(9)A©B©C=AOB©C左式=A㊉3㊉C= A©BC + (A ㊉B R= (AOB)C+(A©5)C=A©BOC=右式(10)万= AOB左式=A®B= AB + AB-AB+AB=A0B(11)若A®B = C则= A®C = B由A©5 = A5 + A5 = CnJMB(AB + AB) = BC B* AB + AB = 5C艮"万=BC AB = BC将以上两式相加得配+ BC = A(B + B)即B©C=A同理可MA © C = B3.4 设Y ,= Z…, (0, 4,8, 12), %=£,“(1,4, 7,9, 10),试求下列逻辑函数:(1) A =匕+匕(2)L2 =匕•匕(3)L} =Y X・K解:(1)Lj = Kj + Y2A=匕+匕= £〃?(0,4,8,12) + £〃?(l,4,7,9,10)= £〃?(0,l,4,7,8,9,10,12)(2)L2 =Y t»Y2右=约•匕= £m(0,4,8,12)・£m(l,4,7,9,10)= £m(4)(3)L} =Y X・KA=K况=£m(0,4,8,12)・却1,4,7,9,10)= £〃?(0,8,12)3.5已知Y,=riM (0,2, 4, 6), 丫亓日心(1, 3, 5, 7),试求下列逻辑函数:(1) A =匕+七(2)L2 =匕・*(3)£3 =工•匕(4)L4=1T«K解:匕=f[M(0,2,4,6)= £m(0,2,4,6)K = f[M(l,3,5,7)= £〃?(1,3,5,7)(1)Lj = Kj + Y2A=匕+匕=E=0(2)L2 =匕•匕= X+Y;= £m(0,2,4,6) + £m(l,3,5,7)=0(3)L3=K•匕♦ X •七=K・M= £〃?(0,2,4,6)・£〃?(l,3,5,7)= £m(0,2,4,6)(4)L4=Y[»Y^乙4="= £m(0,2,4,6)・£m(l,3,5,7)3.6试写出图P3. 6所示电路的逻辑函数表达式。
第三章 逻辑代数基础 作业题(参考答案)

第三章逻辑代数基础(Basis of Logic Algebra)1.知识要点逻辑代数(Logic Algebra)得公理、定理及其在逻辑代数化简时得作用;逻辑函数得表达形式及相互转换;最小项(Minterm)与最大项(Maxterm)得基本概念与性质;利用卡诺图(Karnaugh Maps)化简逻辑函数得方法。
重点:1.逻辑代数得公理(Axioms)、定理(Theorems),正负逻辑(Positive Logic, Negative Logic)得概念与对偶关系(Duality Theorems)、反演关系(plement Theorems)、香农展开定理,及其在逻辑代数化简时得作用;2.逻辑函数得表达形式:积之与与与之积标准型、真值表(Truth Table)、卡诺图(Karnaugh Maps)、最小逻辑表达式之间得关系及相互转换;3.最小项(Minterm)与最大项(Maxterm)得基本概念与性质;4.利用卡诺图化简逻辑函数得方法。
难点:利用卡诺图对逻辑函数进行化简与运算得方法(1)正逻辑(Positive Logic)、负逻辑(Negative Logic)得概念以及两者之间得关系。
数字电路中用电压得高低表示逻辑值1与0,将代数中低电压(一般为参考地0V)附近得信号称为低电平,将代数中高电压(一般为电源电压)附近得信号称为高电平。
以高电平表示1,低电平表示0,实现得逻辑关系称为正逻辑(Positive Logic),相反,以高电平表示0,低电平表示1,实现得逻辑关系称为负逻辑(Negative Logic),两者之间得逻辑关系为对偶关系。
(2)逻辑函数得标准表达式积之与标准形式(又称为标准与、最小项与式):每个与项都就是最小项得与或表达式。
与之积标准形式(又称为标准积、最大项积式):每个或项都就是最大项得或与表达式。
逻辑函数得表达形式具有多样性,但标准形式就是唯一得,它们与真值表之间有严格得对应关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章逻辑代数基础(Basis of Logic Algebra)1.知识要点逻辑代数(Logic Algebra)的公理、定理及其在逻辑代数化简时的作用;逻辑函数的表达形式及相互转换;最小项(Minterm)和最大项(Maxterm)的基本概念和性质;利用卡诺图(Karnaugh Maps)化简逻辑函数的方法。
重点:1.逻辑代数的公理(Axioms)、定理(Theorems),正负逻辑(Positive Logic, Negative Logic)的概念与对偶关系(Duality Theorems)、反演关系(Complement Theorems)、香农展开定理,及其在逻辑代数化简时的作用;2.逻辑函数的表达形式:积之和与和之积标准型、真值表(Truth Table)、卡诺图(Karnaugh Maps)、最小逻辑表达式之间的关系及相互转换;3.最小项(Minterm)和最大项(Maxterm)的基本概念和性质;4.利用卡诺图化简逻辑函数的方法。
难点:利用卡诺图对逻辑函数进行化简与运算的方法(1)正逻辑(Positive Logic)、负逻辑(Negative Logic)的概念以及两者之间的关系。
数字电路中用电压的高低表示逻辑值1和0,将代数中低电压(一般为参考地0V)附近的信号称为低电平,将代数中高电压(一般为电源电压)附近的信号称为高电平。
以高电平表示1,低电平表示0,实现的逻辑关系称为正逻辑(Positive Logic),相反,以高电平表示0,低电平表示1,实现的逻辑关系称为负逻辑(Negative Logic),两者之间的逻辑关系为对偶关系。
(2)逻辑函数的标准表达式积之和标准形式(又称为标准和、最小项和式):每个与项都是最小项的与或表达式。
和之积标准形式(又称为标准积、最大项积式):每个或项都是最大项的或与表达式。
逻辑函数的表达形式具有多样性,但标准形式是唯一的,它们和真值表之间有严格的对应关系。
由真值表得到标准和的具体方法是:找出真值表中函数值为1的变量取值组合,每一组变量组合对应一个最小项(变量值为1的对应原变量,变量值为0的对应反变量),将这些最小项相或,即得到标准和表达式。
由真值表得到标准积的具体方法是:找出真值表中函数值为0的变量取值组合,每一组变量组合对应一个最大项(变量值为1的对应反变量,变量值为0的对应原变量),将这些最大项相与,即得到标准积表达式。
每个真值表所对应的标准和与标准积表达方式是唯一的。
(3)利用卡诺图化简逻辑函数卡诺图是真值表的图形表示,利用卡诺图对逻辑函数进行化简的原理是反复使用公式AB+AB′=A,对应到卡诺图上,即为相邻的小方格可以合并。
通常:2个相邻的方格可以合并,并可消去1个变量;4个相邻的方格可以合并,并可消去2个变量;8个相邻的方格可以合并,并可消去3个变量……在相邻方格合并的过程中,通常采用画圈的方法进行标记。
利用卡诺图化简,圈1的结果是得到最简和的表达式,圈0的结果是得到最简积的表达式。
利用卡诺图化简的步骤(以最简和为例):①填卡诺图;②找出全部质主蕴含项;③找到奇异1单元,圈出对应的质主蕴含项;④若未圈完所有1方格,则从剩余的主蕴含项中找出最简的;⑤写出各圈所对应的与项表达式(取值发生变化的变量不写,取值无变化的变量保留,取值为0写反变量,取值为1写原变量)。
⑥将所得到的与项相或,即为化简结果。
化简的原则是:圈1不圈0,1至少圈1次,圈数越少越好,圈越大越好。
(4)利用卡诺图对逻辑函数进行运算利用卡诺图可以完成逻辑函数的逻辑加(或)、逻辑乘(与)、反演(非)、异或等运算。
进行这些运算时,要求参加运算的两个卡诺图具有相同的维数(即变量数相同)。
①卡诺图相加两函数做逻辑加(或)运算时,只需将卡诺图中编号相同的各相应方格中的0、1按逻辑加的规则相或,而得到的卡诺图应包含每个相加卡诺图所出现的全部1项。
②卡诺图相乘两函数做逻辑乘(与)运算时,只需将卡诺图中编号相同的各相应方格中的0、1按逻辑乘的规则相与,所得到的卡诺图中的1方格,是参加相乘的卡诺图中都包含的1格。
③反演卡诺图的反演(非),是将函数F的卡诺图中各个为1的方格变换为0,将各个为0的方格变换为1。
④卡诺图异或两函数做异或运算,只需将卡诺图中编号相同的各相应方格中的0、1按异或运算的规则进行运算,所得到的卡诺图中的1方格,是进行异或运算的卡诺图中取值不同的方格。
2.ExercisesProve theorems (X+Y)(X+Z) = X+Y·Z using perfect induction.If X = 0, Left = (0+Y)(0+Z) = Y·Z Right = 0+ Y·Z = Y·Z ∴ Left = RightIf X = 1, Left = (1+Y)(1+Z) = 1·1 = 1Right = 1+ Y·Z = 1∴ Left = RightAccording to DeMorgan’s theorem, the complement of WX+YZ is W′+X′Y′+Z′. Yet both functions are 1 for WXYZ= 1110. How can both a function and its complement be 1 for the same input combination? What’s wrong here?The mistake is that the original operation priority has been changed.The complement of WX+YZ should be (W′+X′)(Y′+Z′)Use the theorems of switching algebra to simplify each of the following logic functions:(1) F = WXYZ(WXYZ′+WX′YZ+W′XYZ+WXY′Z)(2) F = AB+ABC′D+ABDE′+ A′BC′E+A′B′C′E(3) F = MRP+ QO′R′+MN+ONM+QPMO′(1) F = W·X·Y·Z·(W·X·Y·Z'+W·X'·Y·Z+W'·X·Y·Z+W·X·Y'·Z)= W·X·Y·Z·W·X·Y·Z'+ W·X·Y·Z·W·X'·Y·Z+ W·X·Y·Z·W'·X·Y·Z+ W·X·Y·Z·W·X·Y'·Z= 0(2) F = A·B·(1+C'·D+D·E') + A'·C'·E·(B+B') = A·B + A'·C'·E(3) F = M·R·P + Q·O'·R' + M·N + Q·P·M·O' = M·P·R + Q·O'·R' + M·P·Q·O' + M·N = M·P·R + Q·O'·R' + M·NWrite the truth table for each of the following logic functions:(1) F = AB′+B′C+CD′+CA′(2) F = (A′+B+C′)(A′+B′+D)(B+C+D′)(A+B+C+D)(3) F = AB+AB′C′+A′BC(4) F = XY′+YZ+Z′X(1)0101001101011111000110011101011011111000110101110111110(2)A B C D F00000000100010100111010010101101101011111000110010101001011011000110111110011111(3)A B C F00000010010001111001101011011111(4)X Y Z F00000010010001111001101111011111Write the canonical sum and product for each of the following logic functions:(1) FX,Y (1,2)∑(2) F =A,B(0,1,2)∏(3) F =A,B,C,D (1,2,5,6)∑(4) F = A′B+B′C+A(1) F = ∑X,Y (1,2) = X'·Y+X·Y' (标准和)= ∏X,Y(0,3) = (X+Y)·(X'+Y') (标准积)(2) F = ∏A,B (0,1,2) = (A+B)·(A+B')·(A'+B) (标准积)= ∑A,B (3) = A·B (标准和)(3) F = ∑A,B,C,D (1,2,5,6) = A'·B'·C'·D + A'·B'·C·D' + A'·B·C'·D + A'·B·C·D' (标准和)= ∏A,B,C,D (0,3,4,7,8,9,10,11,12,13,14,15)= (A+B+C+D)·(A+B+C'+D')·(A+B'+C+D)·(A+B'+C'+D')·(A'+B+C+D)·(A'+B+C+D')·(A'+B+C'+D)(A'+B+C'+D')·(A'+B'+C+D)·(A'+B'+C+D')·(A'+B'+C'+D)·(A'+B'+C'+D') (标准积)(4) F = A'·B+B'·C+A = A'·B·(C+C')+(A+A')·B'·C+A·(B+B')·(C+C')= A'·B·C+A'·B·C'+A·B'·C+A'·B'·C+A·B·C+A·B·C'+A·B'·C+A·B'·C'= A'·B·C+A'·B·C'+A·B'·C+A'·B'C+A·B·C+A·B·C'+A·B'C' (标准和)F = A'·B+B'·C+A = A+B+C (标准积)If the canonical sum for an n -input logic function is also a minimal sum, how many literals are in each product term of the sum? Might there be any other minimal sums in this case?若某函数的标准和也是最小和,说明其卡诺图中的1都不相邻,无法合并。