丙烷制冷循环

合集下载

丙烷压缩机循环制冷系统工艺流程优化

丙烷压缩机循环制冷系统工艺流程优化

[ 摘 要]塔 中油 田10 . 2 ; 然气装置制冷 系统有3 5 ̄ 台制冷压缩机 :低压 制冷压 缩机 4 K 、 中压 制冷压缩机4 K 、高压制冷压 -1 一2 缩 机 4 K 。 当 高压 制 冷 压 缩 机 4 K 出现 故 障 时 , 无 法 对 原 料 天 然 气 进行 预 冷 ,导 致 装 置全 面 停 产 。本 文 通 过 工 艺 流 程 优 化 一3 一3 将 4 K 作 为 4 K 的 备 用 机 组 ,避 免 该 情 况 的发 生 。 一2 一3
[ 关键 词 ] 丙烷 制 冷 ;压 缩 机 ; 工 艺优 化
塔 中 油 田1 0 天然 气 装 置用 于 处理 塔 中四油 2万 田伴 生 气 。处理 后 水 、烃 的露 点均 <一0 。该装 3℃ 置采 用 分 子筛 脱 水 、丙 烷 制 冷 后 进 行 干 气 吸 收 的 工 艺流 程 。 回 收 的轻 烃 主 要 成 分 是 C 、C 组 分 , 达 到 回收 天 然 气 中重 组 分 的 目的 。装 置 制 冷 系 统 采 用 螺 杆 压 缩 机 , 该机 德 国YO RK公 司 制造 ,其 中4 K1 缩机 功 率 为 1 lk ,4K 压 缩 机功 率 为 . 压 15 W -2 4 5 W ,4 K3 缩机 功 率 为6 0 W 。机 组 主 要 由 1k 一 压 8k 微 处 理 器 、微 机通 讯 、 压 缩机 、润 滑 系 统 、 油分 离 系 统 、 压 缩机 液压 系 统 、冷 却 系 统 、 吸入 单 流 阀等 组成 。
均未 设 置 备 用 机 组 , 一 旦 当4K3 组 出现 故 障 , 一 机
2问题 提 出 由图 1 可看 出, 当2E1 法 对 原料 天 然气 进行 一 无 预冷 时 , 由于 原 料 天 然 气 温 度 过 高 ,导 致 分 子筛 的脱 水 效 率 降低 ,使 水 露 点 达 不 到 工 艺 要 求 ,装 置必 须全 厂 停产 。 由于制 冷 系 统 的3 台制 冷压 缩机

丙烷制冷压缩机工作原理

丙烷制冷压缩机工作原理

丙烷制冷压缩机工作原理Propane refrigeration compression can be explained through the process of heat transfer and compression within the refrigeration system. Propane is a type of refrigerant that is commonly used in compressors for its ability to absorb and release heat efficiently. The compression process begins when the gaseous refrigerant enters the compressor through the suction line.丙烷制冷压缩可以通过制冷系统内的传热和压缩过程来解释。

丙烷是一种常用于压缩机中的制冷剂,因为它具有高效吸收和释放热量的能力。

压缩过程始于气态制冷剂通过吸气管进入压缩机。

As the refrigerant enters the compressor, it undergoes a compression process where its pressure and temperature are increased. This is achieved through the use of a rotating compressor that squeezes the refrigerant gas, causing it to become more compact and pressurized. The increase in pressure and temperature allows the refrigerant to release the absorbed heat, which is crucial for the cooling process.当制冷剂进入压缩机时,它经历了一个压缩过程,使其压力和温度增加。

AspenHysys丙烷制冷循环

AspenHysys丙烷制冷循环

目的和背景
目的
本文旨在介绍AspenHysys软件在丙烷制冷循环中的应用,通过模拟和分析不同工况下的制冷性能,为实际制冷 系统的设计和优化提供参考。
背景
随着制冷技术的不断发展,制冷系统在工业、商业和家庭等领域的应用越来越广泛。如何提高制冷效率、降低能 耗和减少对环境的影响,是当前制冷技术领域研究的热点问题。AspenHysys软件作为一种先进的模拟工具,为 解决这些问题提供了有力支持。
系统优化的高级软件,广泛应用于化 工、石油和天然气等行业。它提供了 强大的计算引擎和丰富的模型库,能 够精确模拟各种复杂的工艺流程和系 统。
参考文献
参考文献
• - AspenHysys在丙烷制冷循环优化中的作 用
• AspenHysys可以通过模拟和优化工具, 帮助用户找到丙烷制冷循环的最佳操作条 件。通过调整循环参数,如制冷剂流量、 蒸发温度和冷凝压力等,AspenHysys可 以找到能效最高、成本最低的优化方案。
探索AspenHysys与其他制冷技术的集成方案,以提高系统整体能效 和减排效果。
深入研究AspenHysys丙烷制冷循环的动态特性和控制策略,以满足 复杂多变的制冷需求。
加强与实际应用的结合,开展AspenHysys丙烷制冷循环的示范项目 ,推动其商业化进程。
05
参考文献
参考文献
• - AspenHysys软件介绍 • AspenHysys是一款用于流程模拟和
• - AspenHysys在丙烷制冷循环中的局限性
THANKS
感谢观看
根据模拟结果,提出优化建议,如改 进冷凝器结构、调整压缩机转速等, 以提高制冷循环的效率和降低能耗。
能耗分析
计算制冷循环的能耗,包括压缩机的 能耗、冷凝器的能耗、蒸发器的能耗 等。

天然气液化工艺

天然气液化工艺

天然气液化工艺工业上,常使用机械制冷使天然气获得液化所必须的低温。

典型的液化制冷工艺大致可以分为三种:阶式(Cascade)制冷、混合冷剂制冷、带预冷的混合冷剂制冷。

一、阶式制冷液化工艺阶式制冷液化工艺也称级联式液化工艺。

这是利用常压沸点不同的冷剂逐级降低制冷温度实现天然气液化的。

阶式制冷常用的冷剂是丙烷、乙烯和甲烷。

图3-5[1]表示了阶式制冷工艺原理。

第一级丙烷制冷循环为天然气、乙烯和甲烷提供冷量;第二级乙烯制冷循环为天然气和甲烷提供冷量;第三级甲烷制冷循环为天然气提供冷量。

制冷剂丙烷经压缩机增压,在冷凝器内经水冷变成饱和液体,节流后部分冷剂在蒸发器内蒸发(温度约-40℃),把冷量传给经脱酸、脱水后的天然气,部分冷剂在乙烯冷凝器内蒸发,使增压后的乙烯过热蒸气冷凝为液体或过冷液体,两股丙烷释放冷量后汇合进丙烷压缩机,完成丙烷的一次制冷循环。

冷剂乙烯以与丙烷相同的方式工作,压缩机出口的乙烯过热蒸气由丙烷蒸发获取冷量而变为饱和或过冷液体,节流膨胀后在乙烯蒸发器内蒸发(温度约-100℃),使天然气进一步降温。

最后一级的冷剂甲烷也以相同方式工作,使天然气温度降至接近-160℃;经节流进一步降温后进入分离器,分离出凝液和残余气。

在如此低的温度下,凝液的主要成分为甲烷,成为液化天然气(LNG)。

阶式制冷是20世纪六七十年代用于生产液化天然气的主要工艺方法。

若仅用丙烷和乙烯(乙烷)为冷剂构成阶式制冷系统,天然气温度可低达近-100℃,也足以使大量乙烷及重于乙烷的组分凝析成为天然气凝液。

阶式制冷循环的特点是蒸发温度较高的冷剂除将冷量传给工艺气外,还使冷量传给蒸发温度较低的冷剂,使其液化并过冷。

分级制冷可减小压缩功耗和冷凝器负荷,在不同的温度等级下为天然气提供冷量,因而阶式制冷的能耗低、气体液化率高(可达90%),但所需设备多、投资多、制冷剂用量多、流程复杂。

图3-6[3]为阶式制冷液化流程。

为了提高冷剂与天然气的换热效率,将每种冷剂分成2~3个压力等级,即有2~3个冷剂蒸发温度,这样3种冷剂共有8~9个递降的蒸发温度,冷剂蒸发曲线的温度台阶数多,和天然气温降曲线较接近,即传热温差小,提高了冷剂与天然气的换热效率,也即提高了制冷系统的效率,见图3~7[6]。

丙烷制冷系统

丙烷制冷系统

启机注意事项
启机前首先进行预润滑,观察油压,必须待油压高 于排压 后方可停止润滑;
启机前,滑阀开度必须小于10%,并处于手动状态;
系统投用注意事项
投用时,丙烷增发器液相调节阀手动设定20%; 观察丙烷蒸发器液位达到20%时,缓慢增加滑阀 开度,同时根据露点情况,逐步增加丙烷系统负 荷; 丙烷系统前期运行时,应避免丙烷压缩机滑阀“
Propane
TEMP 32.8 º C 33.7 º C 34.5 º C 35.4 º C 36.3 º C 37.1 º C 37.9 º C 38.7 º C 39.5 º C 40.3 º C 41.1 º C 41.9 º C 42.7 º C 43.4 º C 44.2 º C 44.9 º C 45.6 º C 46.3 º C 47.0 º C 47.7 º C 48.4 º C 49.1 º C 49.8 º C 50.5 º C 51.1 º C 51.8 º C 52.4 º C 53.1 º C 53.7 º C 54.3 º C 55.0 º C 55.6 º C 56.2 º C 56.8 º C 57.4 º C 58.0 º C 58.6 º C 59.2 º C 59.8 º C 60.3 º C 60.9 º C 61.5 º C 62.0 º C 62.6 º C 63.1 º C 63.7 º C 64.2 º C 64.7 º C 65.3 º C 65.8 º C 66.3 º C 66.9 º C 67.4 º C 67.9 º C 68.4 º C 68.9 º C 69.4 º C 69.9 º C 70.4 º C 70.9 º C TEMP -80.0 º C -75.0 º C -70.0 º C -65.0 º C -60.0 º C -55.0 º C -50.0 º C -45.0 º C -40.0 º C -35.0 º C -30.0 º C -25.0 º C -20.0 º C -15.0 º C -10.0 º C -5.0 º C 0.0 º C 2.0 º C 4.0 º C 6.0 º C 8.0 º C 10.0 º C 12.0 º C 14.0 º C 16.0 º C 18.0 º C 20.0 º C 22.0 º C 24.0 º C 26.0 º C 28.0 º C 30.0 º C 32.0 º C 34.0 º C 36.0 º C 38.0 º C 40.0 º C 42.0 º C 44.0 º C 46.0 º C 48.0 º C 50.0 º C 52.0 º C 54.0 º C 56.0 º C 58.0 º C 60.0 º C 62.0 º C 64.0 º C 66.0 º C 68.0 º C 70.0 º C 72.0 º C 74.0 º C 76.0 º C CONVERSION TABLE TEMPERATURE/PRESSURE PRESS TEMP -88.3 KPa -83.4 KPa -77.0 KPa -68.9 KPa -58.7 KPa -46.2 KPa -30.9 KPa -12.5 KPa 9.6 KPa 35.6 KPa 66.2 KPa 101.7 KPa 142.7 KPa 189.7 KPa 243.2 KPa 303.8 KPa 372.1 KPa 401.6 KPa 432.5 KPa 464.8 KPa 498.5 KPa 533.7 KPa 570.4 KPa 608.6 KPa 648.4 KPa 689.8 KPa 732.9 KPa 777.7 KPa 824.2 KPa 872.5 KPa 922.6 KPa 974.6 KPa 1028.6 KPa 1084.4 KPa 1142.3 KPa 1202.2 KPa 1264.2 KPa 1328.4 KPa 1394.8 KPa 1463.3 KPa 1534.2 KPa 1607.4 KPa 1683.1 KPa 1761.1 KPa 1841.7 KPa 1924.8 KPa 2010.5 KPa 2098.9 KPa 2190.1 KPa 2284.1 KPa 2380.9 KPa 2480.7 KPa 2583.5 KPa 2689.5 KPa 2798.6 KPa PRESS

丙烷制冷的实际能效比

丙烷制冷的实际能效比

丙烷制冷的实际能效比丙烷制冷的实际能效比分析与探讨一、引言在如今能源紧缺和环境保护的背景下,能效比的概念越来越受到人们的重视。

能效比通常是指使用单位能量所能产生的实际有效输出,对于各种制冷设备尤其重要。

丙烷(C3H8)是一种常见的烃类气体,广泛用于家庭和商业用途的制冷设备中,如冰箱和空调。

了解丙烷制冷的实际能效比有助于我们更好地利用这一制冷技术。

二、丙烷制冷的基本原理1. 丙烷制冷原理丙烷制冷是一种基于蒸发冷却和压缩的制冷技术。

它利用丙烷气体在蒸发过程中吸收热量,将环境中的热量转移到冷却剂上,然后通过压缩使其升温,最终释放热量到环境中。

2. 蒸发和压缩的关系蒸发是丙烷制冷中的关键步骤。

通过降低丙烷的压力,使其在蒸发器中蒸发,吸收环境中的热量。

压缩机将蒸发的丙烷气体压缩,增加其温度和压力,并将其传输到冷凝器中。

在冷凝器中,丙烷气体通过释放热量而冷却,并转变为液体状态。

三、丙烷制冷的实际能效比了解丙烷制冷的实际能效比对于我们正确选择制冷设备和有效使用能源至关重要。

1. 实际能效比的定义实际能效比是制冷设备所能产生的实际制冷量与其所耗能量之比。

在丙烷制冷中,实际能效比一般以制冷量或制冷剂的耗能度量。

2. 影响实际能效比的因素实际能效比受到多种因素的影响,包括气候条件、制冷设备的设计和性能等。

在炎热的环境下,实际能效比可能会下降,因为制冷设备需要更多的能量来保持低温。

制冷设备的设计和性能也会直接影响其能效比。

3. 提高实际能效比的方法提高丙烷制冷的实际能效比是一个复杂的过程,需要从多个方面入手。

选择高效能的制冷设备是关键。

定期清洁和维护制冷设备,以确保其正常运行。

减少制冷需求和合理使用制冷设备也是提高实际能效比的重要手段。

四、丙烷制冷的优势和挑战1. 优势丙烷制冷相比于其他制冷技术具有多个优势。

丙烷是一种清洁能源,不会产生温室气体和有害物质。

丙烷的能效比相对较高,能够提供稳定而高效的制冷效果。

丙烷制冷设备经济实惠,易于维护和操作。

丙烷制冷系统

丙烷制冷系统

能量调节控制方式
控制逻辑: 入口压力控制滑阀,进出口压差
控制滑块。
滑閥控制简图
再循環口
塞柱在孔中移動
滑閥調節冷量但不 控制排气口位置
滑阀的作用是改变再循环量,滑阀开度越大,丙烷气 返回吸入口再循环的量越少
滑 阀
滑 块
作用:
通过改变容积改变压缩比,从而影响排量。
滑 块
经济器
经济器属于自立式换热器,同一介质通过外 部控制手段建立温差,完成热交换过程。即丙烷
中国石油
丙烷制冷系统
2010年1月11日
一、系统概述
板808、828储气库丙烷制冷装置负荷为1080KW,利用
丙烷气化时的吸热效应产生冷量来冷却天然气。主要
包括丙烷压缩机、丙烷缓冲罐、丙烷吸入罐,丙烷蒸 发器和丙烷后冷器。
流程描述
丙烷缓冲罐来的液体丙烷(1.15MPa、30℃),经经济器换热 后温度降至8℃,再进一步节流降温至0.35MPa、-10℃。与天 然气换热后,丙烷液蒸发为气态丙烷(蒸发温度为-10℃),
Propane
TEMP 32.8 º C 33.7 º C 34.5 º C 35.4 º C 36.3 º C 37.1 º C 37.9 º C 38.7 º C 39.5 º C 40.3 º C 41.1 º C 41.9 º C 42.7 º C 43.4 º C 44.2 º C 44.9 º C 45.6 º C 46.3 º C 47.0 º C 47.7 º C 48.4 º C 49.1 º C 49.8 º C 50.5 º C 51.1 º C 51.8 º C 52.4 º C 53.1 º C 53.7 º C 54.3 º C 55.0 º C 55.6 º C 56.2 º C 56.8 º C 57.4 º C 58.0 º C 58.6 º C 59.2 º C 59.8 º C 60.3 º C 60.9 º C 61.5 º C 62.0 º C 62.6 º C 63.1 º C 63.7 º C 64.2 º C 64.7 º C 65.3 º C 65.8 º C 66.3 º C 66.9 º C 67.4 º C 67.9 º C 68.4 º C 68.9 º C 69.4 º C 69.9 º C 70.4 º C 70.9 º C TEMP -80.0 º C -75.0 º C -70.0 º C -65.0 º C -60.0 º C -55.0 º C -50.0 º C -45.0 º C -40.0 º C -35.0 º C -30.0 º C -25.0 º C -20.0 º C -15.0 º C -10.0 º C -5.0 º C 0.0 º C 2.0 º C 4.0 º C 6.0 º C 8.0 º C 10.0 º C 12.0 º C 14.0 º C 16.0 º C 18.0 º C 20.0 º C 22.0 º C 24.0 º C 26.0 º C 28.0 º C 30.0 º C 32.0 º C 34.0 º C 36.0 º C 38.0 º C 40.0 º C 42.0 º C 44.0 º C 46.0 º C 48.0 º C 50.0 º C 52.0 º C 54.0 º C 56.0 º C 58.0 º C 60.0 º C 62.0 º C 64.0 º C 66.0 º C 68.0 º C 70.0 º C 72.0 º C 74.0 º C 76.0 º C CONVERSION TABLE TEMPERATURE/PRESSURE PRESS TEMP -88.3 KPa -83.4 KPa -77.0 KPa -68.9 KPa -58.7 KPa -46.2 KPa -30.9 KPa -12.5 KPa 9.6 KPa 35.6 KPa 66.2 KPa 101.7 KPa 142.7 KPa 189.7 KPa 243.2 KPa 303.8 KPa 372.1 KPa 401.6 KPa 432.5 KPa 464.8 KPa 498.5 KPa 533.7 KPa 570.4 KPa 608.6 KPa 648.4 KPa 689.8 KPa 732.9 KPa 777.7 KPa 824.2 KPa 872.5 KPa 922.6 KPa 974.6 KPa 1028.6 KPa 1084.4 KPa 1142.3 KPa 1202.2 KPa 1264.2 KPa 1328.4 KPa 1394.8 KPa 1463.3 KPa 1534.2 KPa 1607.4 KPa 1683.1 KPa 1761.1 KPa 1841.7 KPa 1924.8 KPa 2010.5 KPa 2098.9 KPa 2190.1 KPa 2284.1 KPa 2380.9 KPa 2480.7 KPa 2583.5 KPa 2689.5 KPa 2798.6 KPa PRESS

丙烷制冷压缩机组成及控制原理简介唐明洪

丙烷制冷压缩机组成及控制原理简介唐明洪

TIC
PIC
丙烷供液
备注: 当丙烷机加载≥90% YV101电磁阀得电打开,UCV101开始接受TIC控制
13
14
RWF II机组启动控制程序
15
关键参数联锁一览表
约克丙烷制冷机参数设定联锁表
联锁点
数值
单位
延时(秒)
吸气压力低 吸气压力高 排气压力高 排气温度高 油压低 油压差高 油温高 油温低 油分温度低 油位低 主蒸发器液位高 附蒸发器液位高 电机电流高 电机电流低 电机轴承温度高 电机定子温度高
3
流程简图
4
丙烷制冷原 理
丙烷制冷原理:是利用液体丙烷在绝热条件下膨 胀汽化,内能降低,自身温度随之下降而达到对工 艺介质降温的目的。
5
丙烷制冷原 理
丙烷制冷属蒸汽压缩制冷法,它包括四个过程:压缩、 冷凝、膨胀蒸发、制冷。
压缩:是利用丙烷压缩机对丙烷蒸气进行压缩,提高丙 烷蒸气的压力和温度;
冷凝:将压缩后的高温气态丙烷通过风冷式冷却器冷凝 成液态丙烷;
否 保护
否 保护
显示再循环 保护
显示吸气压力 低保护
是 -15KPa≤吸气压力≤1100KPa
平衡压力 是否满足
否 保护
显示高压差 保护
进出口压差≤340KPa是
低油温 是否满足
滑油温度≥9.4℃ 是
否 保护
显示低油温 保护
高油温 是否满足
否 保护
是 滑油温度≤ 80℃
排气温度 是否满足
否 保护
是 温度≤100℃
蒸发:低温气液混合丙烷进入换热器从制冷对象吸热,同时自 身蒸发成气态丙烷,从而达到制冷的目的。
7
油分离器气控制流程
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

丙烷制冷循环
1工况介绍
在这个模块中,要进行丙烷制冷循环模拟的搭接、运行、分析和调控。

然后,把完成的模拟转换成模板,以用于连接其它模拟。

2学习目的
●添加和连接单元操作模块,搭接模拟
●使用图形界面在H YSYS 中操纵流程
●理解H YSYS 中的前-后信息传递
●把模拟工况转换成模板
3搭接模拟
定义模拟基础
C3,Peng-Robinson 方程
安装物流
向流程中添加单元操作模块
在H YSYS 中,对于物流,有多种添加单元操作模块的方法:
丙烷制冷循环包含4个单元模块:阀、冷却器、压缩机、冷凝器使用F12热键添加阀
图1:从可应用的单元操作模块列表中选择阀。

2. 命名:J-T;输入物流:1;输出物流:2。

图2:
添加冷却器
在HYSYS 中我们用加热器模块模拟丙烷制冷循环中的冷却器模块。

冷却器的出口状态为露点。

添加加热器:
1 Ctrl+W→Unit Ops
图3:
2 在连接页上,输入如下信息:
图4:
3 到参数页上。

输入冷却器的压降值7.0kPa(1 psi ),热负荷值1.00e+06 kJ/h(1.00e+06Btu/hr)。

图5:
对于大多数单元操作模块来说参数页都是一样的,包含如压降、负荷和效率之类的参数。

添加压缩机
压缩机模块用于提高入口气体物流的压力。

添加压缩机:
1. 按F4,打开对象面板。

2. 双击对象面板上的压缩机图标,压缩机属性窗口出现。

3. 在连接页上,输入如下信息:
图6:
4. 完成参数页如下:
图7:
添加冷凝器
冷凝器是丙烷制冷循环的最后一环。

它被放在压缩机和阀之间,用冷却器模块来模拟。

因为可以用图形代表模块,所以你可以在P FD上搭接模拟,用鼠标来安装和连接对象。

下面就叙述了怎样拖动对象面板上的下陷图标技术来安装和连接冷却器。

1. 在对象面板上点击冷却器图标。

2. 把光标移动到PFD 上,光标会变成有一个框和一个加号相连的特殊形式,该框指示冷却器图标的尺寸和位置。

3. 再点击一下鼠标,把冷却器放到P FD 上。

在P FD 上,有两种方法把模块连接到物流上:
4.连接物流4到冷凝器入口,连接冷凝器出口到物流1上。

在参数页上,输入压降值为35kPa(5psi)。

图8:
4把模拟工况保存成模板
使用模板的优点如下:
· 提供使两个或更多的工况连接在一起的机制
· 使用与主工况不同的性质包
· 为把大的模拟分成易于管理的小块提供方便的方法
· 一旦创建,可以安装在多个工况中
在把工况转换成模板之前,需要把它制成通用的,使之能用于各种流率的气体厂。

在这个工况中,冷却器负荷限定了所需的丙烷流率。

1. 删除C hiller Duty 值。

2. 从模拟菜单中,选择主性质。

模拟工况窗口显示如下:
图9:
3. 点击转换成模板按钮。

4. 点击Y es 按钮,把模拟工况转换成模板。

5. 回答问题“你想保存模拟工况么?”,No。

6. 到文件菜单,把模板保存为“C3Loop.tpl”。

5深入模拟
练习1:设计和标定对比
在这个厂里,你不能精确测量或计算冷却器负荷。

但是,你知道压缩机标定为250 hp,而且现在正在以最大功率的90% 和72%的效率运行。

Chiller 的负荷分别是多少?
Chiller 的气体流率仪表最后校准,你可以确定Chiller 负荷。

它现在被确定为把Chiller 负荷提高到1.5MMBTU/hr。

假设压缩机以同样马力(250 hp)运行,当它还是运行在一个比较合理的操作点时,你能获得的最好的Chiller 出口温度(因此也是最大化冷凝工艺物流)是多少?
练习2:制冷剂的组成
你当地的丙烷生产厂发给你们厂的是95/5 摩尔百分比的丙烷/乙烷混合物。

与基础工况对比:。

相关文档
最新文档