三角形中位线专题训练

合集下载

专题 三角形中位线定理的运用(原卷版)

专题 三角形中位线定理的运用(原卷版)

八年级下册数学《第十八章 平行四边形》专题 三角形中位线定理的运用【例题1】(2022秋•长沙期中)如图,在△ABC 中,D ,E 分别是AB ,AC 的中点,F ,G 分别是AD ,AE 的中点,且FG =2cm ,则BC 的长度是( )A .4cmB .6cmC .8cmD .10cm【变式1-1】(2022秋•海淀区期中)如图,BD 是△ABC 的中线,E ,F 分别是BD ,BC 的中点,连接EF .若AD =4,则EF 的长为( )A .32B .2C .52D .4【变式1-2】(2022秋•莲池区校级期末)如图,在△ABC 中,∠B =45°,∠C =60°,AD ⊥BC 于点D ,BD =√6,若E ,F 分别为AB ,BC 的中点,则EF 的长为( )A .√2B .√62C .√63D .√3【变式1-3】(2022春•巨野县校级月考)如图,在△ABC 中,D 是AB 上一点,AE 平分∠CAD ,AE ⊥CD 于点E ,点F 是BC 的中点,若AB =10,AC =6,则EF 的长为( )A .4B .3C .2D .1【变式1-4】(2022秋•南关区校级期末)如图,四边形ABCD 中,∠A =90°,AB =12,AD =5,点M 、N 分别为线段BC 、AB 上的动点,点E 、F 分别为DM 、MN 的中点,则EF 长度的可能为( )A .2B .2.3C .4D .7【变式1-5】如图,在矩形ABCD中,M、N分别是边AD、BC的中点,E、F分别是线段BM、CM的中点.若AB=8,AD=12,则四边形ENFM的周长为.【变式1-6】(2022春•海淀区校级期中)如图,在Rt△ABC中,∠BAC=90°,点D和点E分别是AB,AC的中点,点F和点G分别在BA和CA的延长线上,若BC=10,GF=6,EF=4,则GD的长为.【变式1-7】(2022春•本溪期末)如图,AC,BD是四边形ABCD的对角线,点E,F分别是AD,BC 的中点,点M,N分别是AC,BD的中点,顺次连接EM,MF,FN,NE,若AB=CD=2,则四边形ENFM的周长是.【变式1-8】(2022春•雁塔区校级期末)如图,点D,E分别是△ABC的边AB,AC的中点,连接BE,过点C 作CF ∥BE ,交DE 的延长线于点F ,若EF =3,求DE 的长.【变式1-9】如图,在△ABC 中,AB =12cm ,AC =8cm ,AD 、AE 分别是其角平分线和中线,过点C 作CG ⊥AD 于点F ,交AB 于点G ,连接EF ,求线段EF 的长.【例题2】(2022秋•安岳县期末)如图,在△ABC 中,D 、E 、F 分别是AB 、AC 、BC 的中点,若∠CFE =55°,则∠ADE 的度数为( )A .65°B .60°C .55°D .50°【变式2-1】(2021秋•鼓楼区校级期末)如图,点M ,N 分别是△ABC 的边AB ,AC 的中点,若∠A =60°,∠B=75°,则∠ANM=.【变式2-2】(2022•永安市模拟)如图,DE是△ABC的中位线,∠ABC的平分线交DE于点F,若∠DFB =32°,∠A=75°,则∠AED=.【变式2-3】(2022春•顺德区校级期中)如图,在四边形ABCD中,点E、F分别是边AB、AD的中点,BC=15,CD=9,EF=6,∠AFE=50°,求∠ADC的度数.【变式2-4】(2022•九江二模)如图,在四边形ABCD中,点E,F,G分别是AD,BC,AC的中点,AB =CD,∠EGF=144°,则∠GEF的度数为.【变式2-5】(2022秋•新泰市期末)如图,四边形ABCD中,AD=BC,E,F,G分别是AB,DC,AC 的中点.若∠ACB=64°,∠DAC=22°,则∠EFG的度数为.【变式2-6】(2022春•鼓楼区期中)如图所示,在△ABC中,∠A=40°,D,E分别在AB,AC上,BD =CE,BE,CD的中点分别是M,N,直线MN分别交AB,AC于P,Q.求∠APQ的度数.【例题3】(2021秋•杜尔伯特县期末)如图,已知△ABC中,D是AB上一点,AD=AC,AE⊥CD,垂足是E,F是BC的中点.求证:BD=2EF.【变式3-1】(2021春•秦都区期末)如图,在△ABC中,AB=AC,点D、E分别是边AB、AC上的点,连接BE、DE,∠ADE=∠AED,点F、G、H分别为BE、DE、BC的中点.求证:FG=FH.【变式3-2】(2021秋•互助县期中)如图,已知AB=AC,BD=CD,DB⊥AB,DC⊥AC,且E、F、G、H分别为AB、AC、CD、BD的中点,求证:EH=FG.【变式3-3】已知:如图,E为▱ABCD中DC边的延长线上的一点,且CE=DC,连接AE分别交BC、BD 于点F、G,连接AC交BD于O,连接OF.求证:AB=2OF.【变式3-4】(2021春•崇川区校级月考)已知:如图,在△ABC中,中线BE,CD交于点O,F,G分别是OB,OC的中点.求证:(1)DE∥FG;(2)DG和EF互相平分.【变式3-5】(2022春•富平县期末)如图,在四边形ABCD中,对角线AC、BD相交于点O,且AC=BD,E、F分别是AB、CD的中点,E、F分别交BD、AC于点G、H,取BC边的中点M,连接EM、FM.求证:(1)△MEF是等腰三角形;(2)OG=OH.【变式3-6】(2022春•瑶海区期末)已知:如图,在△ABC中,点D、E分别是AB、AC的中点(1)若DE=2,则BC=;若∠ACB=70°,则∠AED=°;(2)连接CD和BE交于点O,求证:CO=2DO.【变式3-7】(2022春•虎丘区校级期中)如图,线段AM是∠CAB的角平分线,取BC中点N,连接AN,过点C作AM的垂线段CE垂足为E.(1)求证:EN∥AB.(2)若AC=13,AB=37,求EN的长度.【例题4】(2021春•莆田期末)如图,在四边形ABCD 中,AD =BC ,E 、F 分别是边DC 、AB 的中点,FE 的延长线分别AD 、BC 的延长线交于点H 、G ,求证:∠AHF =∠BGF .【变式4-1】(2022春•西峰区校级月考)如图,四边形ABCD 中,AD =BC ,P 是对角线BD 的中点,N 、M 分别是AB 、CD 的中点,求证:∠PMN =∠PNM .【变式4-2】(2021春•歙县期中)如图,CD 是△ABC 的角平分线,AE ⊥CD 于E ,F 是AC 的中点,(1)求证:EF ∥BC ;(2)猜想:∠B 、∠DAE 、∠EAC 三个角之间的关系,并加以证明.【变式4-3】如图,△ABC 中,D 、E 分别为AB 、AC 上的点,且BD =CE ,M 、N 分别是BE 、CD的中点.过MN的直线交AB于P,交AC于Q,求证:∠QP A=∠PQA.【变式4-4】一个对角线相等的四边形ABCD,E、F分别为AB,CD的中点,EF分别交对角线BD,AC 于M,N,求证:∠OMN=∠ONM.【变式4-5】(2022春•船营区校级月考)如图是华师版九年级上册数学教材第80页的第3题.如图①,在四边形ABCD中,AD=BC,P是对角线BD的中点,M是DC的中点,N是AB的中点.求证:∠PMN=∠PNM(1)在上边题目的条件下,延长图①中的线段AD交NM的延长线于点E,延长线段BC交NM的延长线于点F,如图②,请先完成图①的证明,再继续证明∠AEN=∠F.(2)若(1)中的∠A+∠ABC=122°,则∠F的大小为.【例题5】(2022秋•任城区期末)如图,在△ABC中,AE平分∠BAC,BE⊥AE于点E,点F是BC的中点,若AB=10,AC=6,则EF的长为()A.2B.3C.4D.5【变式5-1】(2022春•綦江区校级月考)如图,在四边形ABCD中,AC⊥BD,BD=16,AC=30,E,F 分别为AB,CD的中点,则EF=()A.15B..16C.17D.8【变式5-2】(2021春•沈北新区期末)如图,AD是△ABC的中线,E是AD的中点,F是BE延长线与AC的交点,求证:AF=12CF.【变式5-3】如图,正方形ABCD和正方形EFCG的边长分别为3和1,点F,G分别在边BC,CD上,P为AE的中点,连接PG,则PG的长为.【变式5-4】(2021•罗湖区校级模拟)如图,已知在Rt△ABC中,∠ACB=90°,点D是AC延长线上的一点,AD=24,点E是BC上一点,BE=10,连接DE,M、N分别是AB、DE的中点,则MN=.【变式5-5】(2022春•香坊区校级期中)如图所示,在四边形ABCD中,点E、F分别是AD、BC的中点,连接EF,AB=20,CD=12,∠B+∠C=120°,则EF的长为.【变式5-6】(2022秋•张店区校级期末)已知:如图,在△ABC中,点D在AB上,BD=AC,E、F、G 分别是BC、AD、CD的中点,EF、CA的延长线相交于点H.求证:(1)∠CGE=∠ACD+∠CAD;(2)AH=AF.【变式5-7】如图,在△ABC中,AE平分∠BAC,BE⊥AE于点E,点F是BC的中点.(1)如图1,BE的延长线与AC边相交于点D,求证:EF=12(AC﹣AB);(2)如图2,请直接写出线段AB、AC、EF的数量关系.【变式5-8】(1)如图1,BD、CE分别是△ABC的外角平分线,过点A作AF⊥BD,AG⊥CE,垂足分别是F、G,连接FG.求证:FG=12(AB+BC+AC).[提示:分别延长AF、AG与直线BC相交](2)如图2,若BD、CE分别是△ABC的内角平分线,过点A作AF⊥BD,AG⊥CE,垂足分别是F、G,连接FG.线段FG与△ABC的三边又有怎样的数量关系?写出你的猜想,并给予证明.【变式5-9】如图,在四边形ABCD中,AB=CD,E.F分别是BC.AD的中点,连接EF并延长,分别与BA,CD的延长线交于点M,N,则∠BME=∠CNE(不必证明)(温馨提示:在图(1)中,连接BD,取BD的中点H,连接HE.HF,根据三角形中位线定理,证明HE=HF,从而∠1=∠2,再利用平行线的性质,可证明∠BME=∠CNE)(1)如图(2),在四边形ADBC中,AB与CD相交于点O,AB=CD,E.F分别是BC.AD的中点,连接EF,分别交CD.BA于点M.N,判断△OMN的形状,请直接写出结论.(2)如图(3)中,在△ABC中,AC>AB,D点在AC上,AB=CD,E.F分别是BC.AD的中点,连接EF并延长,与BA的延长线交于点G,若∠EFC=60°,连接GD,判断△AGD形状并证明.。

备战中考数学专题练习(2021人教版)三角形的中位线卷一(含解析)

备战中考数学专题练习(2021人教版)三角形的中位线卷一(含解析)

备战中考数学专题练习(2021人教版)三角形的中位线卷一(含解析)一、单项选择题1.如图,DE是△ABC的中位线,F是DE的中点,CF的延伸线交AB于点G,假定△CEF的面积为12cm2,那么S△DGF的值为〔〕A.4cm2B.6cm2C.8cm2D.9cm22.某地需求开拓一条隧道,隧道AB长度无法直接测量。

如下图,在空中上取一点C,使点C 均可直接抵达A、B两点,测量找到AC和BC的中点D、E,测得DE的长为1100m,那么隧道AB的长度为〔〕A.3300mB.2200mC.1100mD.550m3.如图,DE是△ABC的中位线,假定BC的长为3cm,那么DE的长是〔〕A.2cmB.1.5cmC.1.2cmD.1cm4.如图,在梯形中,,中位线与对角线交于两点,假定cm, cm,那么的长等于()A.10 cmB.13 cmC.20 cmD.26 cm5.如图,在△ABC中,点D、E区分是边AB、AC的中点,DE=6cm,那么BC的长是〔〕A.3cmB.12cmC.18cmD.9cm6.如下图,A ,B两点区分位于一个池塘的两端,小聪想用绳子测量A ,B间的距离,但绳子不够长,一位同窗帮他想了一个主意:先在地上取一个可以直接抵达A ,B的点C ,找到AC ,BC的中点D , E ,并且测出DE的长为10m,那么A ,B间的距离为〔〕A.15mB.25mC.30mD.20m7.如下图,四边形ABCD,R,P区分是DC,BC上的点,E,F区分是AP,RP的中点,当点P 在BC上从点B向点C移动而点R不动时,那么以下结论成立的是〔〕A.线段EF的长逐渐增大B.线段EF的长逐渐增加C.线段EF的长不变D.线段EF 的长不能确定8.如图,长方形ABCD,R,P区分是DC,BC上的点,E,F区分是AP,RP的中点,当点P 在BC上从点B向点C移动,而点R不动时,那么以下结论成立的是〔〕A.线段EF的长逐渐增大B.线段EF的长逐渐增加C.线段EF的长不变D.线段EF的长先增大后变小二、填空题9.如图,在△ABC中,D、E区分是边AB、AC的中点,BC=8,那么DE=________.10.如图,现需测量池塘边上A、B两点间的距离,小强在池塘外选取一个点C,衔接AC与BC并找到它们中点E、F,测得EF长为45米,那么池塘的宽AB为________米.11.如图,在△ABC中,AB=8,点D,E区分是BC,CA的中点,衔接DE,那么DE=________.12.:如图,在△ABC中,点D为BC上一点,CA=CD,CF平分△ACB,交AD于点F,点E为AB的中点.假定EF=2,那么BD=________13.如图,CD是△ABC的中线,点E,F区分是AC、DC的中点,EF=2,那么BD=________14.如图,△ABC中,AC、BC上的中线交于点O,且BE△AD.假定BD=10,BO=8,那么AO的长为________15.在△ABC中,D、E区分为边AB、AC的中点,假定△ADE的周长为3cm,那么△ABC的周长为________cm.16.如图,A,B,C三点在△O上,且AB是△O的直径,半径OD△AC,垂足为F,假定△A=30°,OF=3,那么BC=________三、解答题17.如图,点O是△ABC内恣意一点,G、D、E区分为AC、OA、OB的中点,F为BC上一动点,问四边形GDEF能否为平行四边形?假定可以,指出F点位置,并给予证明.18.如图,D、E区分是不等边三角形ABC〔即AB≠BC≠AC〕的边AB、AC的中点.O是△ABC 平面上的一动点,衔接OB、OC,G、F区分是OB、OC的中点,依次衔接点D、G、F、E.〔1〕如图,当点O在△ABC内时,求证:四边形DGFE是平行四边形;〔2〕假定衔接AO,且满足AO=BC,AO△BC.问此时四边形DGFE又是什么外形?并请说明理由.19.:如图,在四边形ABCD中,对角线AC、BD相交于点O,且AC=BD,E、F区分是AB、CD的中点,EF区分交BD、AC于点G、H.求证:OG=OH.四、综合题20.在学习三角形中位线的性质时,小亮对课本给出的处置方法停止了仔细思索:课本研讨三角形中位线性质的方法:如图①,△ABC中,D,E区分是AB,AC两边中点.求证:DE△BC,DE=BC.证明:延伸DE至点F,使EF=DE,衔接FC.…那么△ADE△△CFE.△…请你应用小亮的发现处置以下效果:〔1〕如图③,AD是△ABC的中线,BE交AC于点E,交AD于点F,且AE=EF,求证:AC=BF.请你协助小亮写出辅佐线作法并完成论证进程:〔2〕处置效果:如图⑤,在△ABC中,△B=45°,AB=10,BC=8,DE是△ABC的中位线.过点D,E作DF△EG,区分交BC于点F,G,过点A作MN△BC,区分与FD,GE的延伸线交于点M,N,那么四边形MFGN周长的最小值是________.21.如图,△1+△2=180°,△3=△B.〔1〕试判别△AED与△ACB的大小关系,并说明你的理由.〔2〕假定D、E、F区分是AB、AC、CD边上的中点,S四边形ADFE=4〔平方单位〕,求S△ABC.22.如图,在四边形ABCD中,AB=DC,E、F区分是AD、BC的中点,G、H区分是对角线BD、AC的中点.〔1〕求证:四边形EGFH是菱形〔2〕假定AB=,那么当△ABC+△DCB=90°时,求四边形EGFH的面积.答案解析局部一、单项选择题1.【答案】A【考点】三角形中位线定理【解析】【解答】解:如图,取CG的中点H,衔接EH,△E是AC的中点,△EH是△ACG的中位线,△EH△AD,△△GDF=△HEF,△F是DE的中点,△DF=EF,在△DFG和△EFH中,△△DFG△△EFH〔ASA〕,△FG=FH,S△EFH=S△DGF,又△FC=FH+HC=FH+GH=FH+FG+FH=3FH,△S△CEF=3S△EFH,△S△CEF=3S△DGF,△S△DGF=×12=4〔cm2〕.应选:A.【剖析】取CG的中点H,衔接EH,依据三角形的中位线定理可得EH△AD,再依据两直线平行,内错角相等可得△GDF=△HEF,然后应用〝角边角〞证明△DFG和△EFH全等,依据全等三角形对应边相等可得FG=FH,全等三角形的面积相等可得S△EFH=S△DGF,再求出FC=3FH,再依据等高的三角形的面积比等于底边的比求出两三角形的面积的比,从而得解.2.【答案】B【考点】三角形中位线定理【解析】【解答】解:△D,E区分是AC,BC的中点,△DE是△ABC的中位线,那么DE=AB,那么AB=2DE=2200m,应选B。

三角形中位线专项训练(30道)(解析版)

三角形中位线专项训练(30道)(解析版)

三角形中位线专项训练(30道)(解析版)三角形中位线专项训练(30道)(解析版)1. 题目解析三角形中位线是指连接一个三角形的两个非邻边中点的线段。

在这个专项训练中,我们将解答30道关于三角形中位线的问题,并提供详细的解析,帮助你更好地理解和掌握相关概念和解题方法。

2. 题目设置2.1 第一类题目:中位线长度计算2.1.1 题目1:已知一个三角形的三边长度分别为a, b, c,求其中位线长度。

解析:根据中位线定义,连接三角形的两个非邻边中点可以得到一个平行四边形。

利用平行四边形的性质,可以计算出中位线长度为(c²+a²-0.5b²)/(2c)。

2.1.2 题目2:已知一个等边三角形的边长为a,求其中位线长度。

解析:等边三角形中位线长等于边长的一半,即中位线长度为a/2。

2.1.3 题目3:已知一个等腰三角形的底边长度为a,腰长为b,求其中位线长度。

解析:根据中位线定义,连接三角形的两个非邻边中点可以得到一个平行四边形。

利用平行四边形的性质,可以计算出中位线长度为(a²+b²)/(2a)。

2.2 第二类题目:中位线位置关系2.2.1 题目4:在一个等边三角形中,证明中位线与底边垂直且分割底边的比例为2:1。

解析:根据等边三角形的性质,中位线和底边垂直。

利用中位线定义和几何性质,可以证明中位线分割底边的比例为2:1。

2.2.2 题目5:已知在一个等腰三角形中,中位线长为x,底边长为y,求腰长。

解析:根据中位线定义,连接三角形的两个非邻边中点可以得到一个平行四边形。

利用平行四边形的性质,可以得到腰长为2x-y。

2.2.3 题目6:已知在一个一般三角形中,中位线等分了三角形的面积,证明这个三角形是等腰三角形。

解析:假设中位线等分了三角形的面积,利用三角形面积公式可以得到一个关于中位线和底边的方程。

通过求解这个方程,可以证明这个三角形是等腰三角形。

3. 题目变体上述题目只是针对三角形中位线的一部分问题进行了训练和解析。

三角形中位线经典测试题

三角形中位线经典测试题

三角形中位线经典测试题1、已知三角形ABC,其中AC与BD交于点O,BC边中点为E,OE=1,求AB的长。

2、已知三角形ABC,其中DE是BC边的中位线,DE=2cm,求BC的长。

3、已知三角形ABC,要测量A、B两点间的距离,取OA的中点C,OB的中点D,测得CD=30米,求AB的长。

4、顺次连结任意四边形各边中点所得到的四边形一定是平行四边形。

5、以三角形的三个顶点及三边中点为顶点的平行四边形共有4个。

6、已知四边形ABCD中,R、P分别是BC、CD上的点,E、F分别是AP、RP的中点,当点P在CD上从C向D移动而点R不动时,线段EF的长不变。

7、已知三角形三边长分别为6、8、10,则它的中位线构成的三角形的面积为24.8、已知△ABC中,AD=11/44AB,AE=AC,BC=16,求DE的长。

9、已知四边形ABCD中,M、N、P、Q分别为AB、BD、CD、AC的中点,证明四边形MNPQ是平行四边形。

10、已知四边形ABCD中,AD∥BC,BC=3AD,E、F分别是对角线AC、BD的中点,证明四边形ADEF是平行四边形。

11、已知四边形ABCD中,AB=CD,E、F分别为BC、AD的中点,BA、EF的延长线交于点M,CD、EF的延长线交于点N,证明∠AME=∠XXX。

12、已知△ABC中,P是中线AD的中点,连接BP并延长交AC于E,F为BE的中点,证明AF∥DE。

13、已知四边形ABCD中,M是OB的中点,连接AM并延长至P,使MP=AM,连接DP交AC于N,证明(1)MN∥AD;(2)S四边形MPNQ=S△XXX。

14、已知△ABC中,AD是外角平分线,CD⊥AD于D,E是BC的中点,证明(1)DE∥AB;(2)DE=1/2(AB+AC)。

15、已知等腰梯形ABCD中,AB∥CD,AB>CD,AD=BC,对角线相交于点O,∠AOB=60°,且E、F、M分别是OD、OA、BC的中点,证明△EFM是等边三角形。

三角形中位线定理专练

三角形中位线定理专练

三角形中位线定理专练1.如图,在△ ABC中,D是AB上一点,且AD=AC,AE⊥ CD,垂足是E,F 是CB的中点.求证:BD=2EF.2.如图所示,在四边形ABCD中,AD=BC,E,F,G分别是AB,CD,AC的中点.求证:△ EFG是等腰三角形.3.在△ ABC中,中线BE、CF交于点O,M、N分别是BO、CO中点,则四边形MNEF是什么特殊四边形?并说明理由.4.如图,BE,CF是△ ABC的角平分线,AN⊥ BE于N,AM⊥ CF于M,求证:MN∥ BC.5.如图,BM、CN分别平分△ABC的外角∠ ABD、∠ ACE,过A分别作BM、CN的垂线,垂足分别为M、N,交CB、BC的延长线于D、E,连结MN.求证:MN=(AB+BC+AC)6.如图,在△ABC中,点D,E,F分别是AB,BC,CA的中点,AH是边BC上的高.(1)求证:四边形ADEF是平行四边形;(2)求证:∠ DHF=∠ DEF.7.如图,在四边形ABCD中,对角线AC、BD交于点O,E、F分别是AB、CD 的中点,且AC=BD.求证:OM=ON.8.如图,M是△ ABC的边BC的中点,AN平分∠ BAC,BN⊥ AN于点N,延长BN交AC于点D,已知AB=10,BC=15,MN=3(1)求证:BN=DN;(2)求△ ABC的周长.三角形中位线定理专练参考答案与试题解析一.解答题(共8小题)1.(2014?山东模拟)如图,在△ABC中,D是AB上一点,且AD=AC,AE⊥CD,垂足是E,F是CB的中点.求证:BD=2EF.【考点】三角形中位线定理.菁优网版权所有【专题】常规题型.【分析】根据三角形的中位线定理,在三角形中准确应用,并且求证E为CD 的中点,再求证EF为△BCD的中位线.【解答】证明:在△ACD中,因为AD=AC 且AE⊥CD,所以根据等腰三角形中底边的垂线与底边的交点即中点,可以证明:E为CD的中点,又因为F是CB的中点,所以,EF∥BD,且EF为△BCD的中位线,因此EF=BD,即BD=2EF.【点评】此题主要是中位线定理在三角形中的应用,考查在三角形中位线为对应边长的的定理.2.(2015春?天津校级期中)如图所示,在四边形ABCD中,AD=BC,E,F,G分别是AB,CD,AC的中点.求证:△EFG是等腰三角形.【考点】三角形中位线定理;等腰三角形的判定.菁优网版权所有【专题】证明题.【分析】由于E,F,G分别是AB,CD,AC的中点,利用中位线定理,GF=AD,GE=BC,又因为AD=BC,所以GF=GE.【解答】证明:∵E,F,G分别是AB,CD,AC的中点.∴GF=AD,GE=BC.又∵AD=BC,∴GF=GE,即△EFG是等腰三角形.【点评】本题通过给出的中点,利用中位线定理,证得边相等,从而证明等腰三角形,是一道基础题.3.(2015秋?青岛校级月考)在△ABC中,中线BE、CF交于点O,M、N分别是BO、CO中点,则四边形MNEF是什么特殊四边形?并说明理由.【考点】三角形中位线定理;平行四边形的判定.菁优网版权所有【分析】根据三角形的中位线平行于第三边并且等于第三边的一半可得EF∥BC且EF=BC,MN∥BC且MN=BC,从而得到EF∥MN且EF=MN,再根据一组对边平行且相等的四边形是平行四边形判断.【解答】解:四边形MNEF是平行四边形.理由如下:∵BE、CF是中线,∴E、F分别是AC、AB的中点,∴EF是△ABC的中位线,∴EF∥BC且EF=BC,∵M、N分别是BO、CO中点,∴MN是△OBC的中位线,∴MN∥BC且MN=BC,∴EF∥MN且EF=MN,∴四边形MNEF是平行四边形.【点评】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,平行四边形的判定,熟记定理并准确识图是解题的关键.4.(2015春?泗洪县校级期中)如图,BE,CF是△ABC的角平分线,AN⊥BE 于N,AM⊥CF于M,求证:MN∥BC.【考点】三角形中位线定理;等腰三角形的判定与性质.菁优网版权所有【专题】证明题.【分析】延长AN、AM分别交BC于点D、G,根据BE为∠ABC的角平分线,BE⊥AG可知∠BAN=∠BGN故△ABG为等腰三角形,所以BN也为等腰三角形的中线,即AM=GN.同理AM=DM,根据三角形中位线定理即可得出结论.【解答】证明:延长AN、AM分别交BC于点D、G.∵BE为∠ABC的角平分线,BE⊥AG,∴∠BAG=∠BGA,∴△ABG为等腰三角形,∴BN也为等腰三角形的中线,即AN=GN.同理AM=DM,∴MN为△ADG的中位线,∴MN∥BC.【点评】本题考查的是三角形中位线定理,熟知三角形的中位线平行于第三边,并且等于第三边的一半是解答此题的关键.5.(2015春?富顺县校级月考)如图,BM、CN分别平分△ABC的外角∠ABD、∠ACE,过A分别作BM、CN的垂线,垂足分别为M、N,交CB、BC的延长线于D、E,连结MN.求证:MN=(AB+BC+AC)【考点】三角形中位线定理;等腰三角形的判定与性质.菁优网版权所有【专题】证明题.【分析】首先通过△ABM≌△DBM,得到AB=DB,AM=DM,同理:AN=EN,AC=CE,再根据三角形的中位线定理即可得到结果.【解答】证明:∵AM⊥BM,∴∠AMB=∠DMB=90°,∵BM平分∠ABD,∴∠ABM=∠DBM,在△ABM与△DBM中,,∴△ABM≌△DBM(asa),∴AB=DB,AM=DM,同理:AN=EN,AC=CE,∴MN=DE=(DB+BC+CE)=(AB+BC+AC).【点评】本题考查了三角形的中位线定理,全等三角形的判定与性质,证明三角形全等是解题的关键.6.(2014?宿迁)如图,在△ABC中,点D,E,F分别是AB,BC,CA的中点,AH是边BC上的高.(1)求证:四边形ADEF是平行四边形;(2)求证:∠DHF=∠DEF.【考点】三角形中位线定理;直角三角形斜边上的中线;平行四边形的判定.菁优网版权所有【专题】证明题;几何综合题.【分析】(1)根据三角形的中位线平行于第三边并且等于第三边的一半可得EF∥AB,DE∥AC,再根据平行四边形的定义证明即可;(2)根据平行四边形的对角相等可得∠DEF=∠BAC,根据直角三角形斜边上的中线等于斜边的一半可得DH=AD,FH=AF,再根据等边对等角可得∠DAH=∠DHA,∠FAH=∠FHA,然后求出∠DHF=∠BAC,等量代换即可得到∠DHF=∠DEF.【解答】证明:(1)∵点D,E,F分别是AB,BC,CA的中点,∴DE、EF都是△ABC的中位线,∴EF∥AB,DE∥AC,∴四边形ADEF是平行四边形;(2)∵四边形ADEF是平行四边形,∴∠DEF=∠BA C,∵D,F分别是AB,CA的中点,AH是边BC上的高,∴DH=AD,FH=AF,∴∠DAH=∠DHA,∠FAH=∠FHA,∵∠DAH+∠FAH=∠BAC,∠DHA+∠FHA=∠DHF,∴∠DHF=∠BAC,∴∠DHF=∠DEF.【点评】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,等腰三角形的性质,直角三角形斜边上的中线等于斜边的一半的性质,平行四边形的判定与性质,熟记各性质并准确识图是解题的关键.7.(2014?丹阳市校级模拟)如图,在四边形ABCD中,对角线AC、BD交于点O,E、F分别是AB、CD的中点,且AC=BD.求证:OM=ON.【考点】三角形中位线定理;平行线的性质;等腰三角形的判定与性质.菁优网版权所有【专题】证明题.【分析】取AD的中点G,连接EG,FG,构造三角形的中位线,根据三角形的中位线定理进行证明即可.【解答】证明:取AD的中点G,连接EG,FG,∵G、F分别为AD、CD的中点,∴GF是△ACD的中位线,∴GF=AC,同理可得,GE=BD,∵AC=BD,∴GF=GE=AC=BD.∴∠GFN=∠GEM,又∵EG∥OM,FG∥ON,∴∠OMN=∠GEM=∠GFN=∠ONM,∴OM=ON.【点评】本题考查了三角形的中位线性质定理,解题的关键是构造三角形的中位线.运用三角形的中位线的数量关系和位置关系进行分析证明.8.(2013?永州)如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN 于点N,延长BN交AC于点D,已知AB=10,BC=15,MN=3(1)求证:BN=DN;(2)求△ABC的周长.【考点】三角形中位线定理;等腰三角形的判定与性质.菁优网版权所有【分析】(1)证明△ABN≌△ADN,即可得出结论;(2)先判断MN是△BDC的中位线,从而得出CD,由(1)可得AD=AB=10,从而计算周长即可.【解答】(1)证明:在△ABN和△ADN中,∵,∴△ABN≌△ADN(ASA),∴BN=DN.(2)解:∵△ABN≌△ADN,∴AD=AB=10,又∵点M是BC中点,∴MN是△BDC的中位线,∴CD=2MN=6,故△ABC的周长=AB+BC+CD+AD=10+15+6+10=41.【点评】本题考查了三角形的中位线定理及等腰三角形的判定,注意培养自己的敏感性,一般出现高、角平分线重合的情况,都需要找到等腰三角形.。

部编数学八年级下册专题18构造三角形中位线的常用技巧(解析版)含答案

部编数学八年级下册专题18构造三角形中位线的常用技巧(解析版)含答案

专题18 构造三角形中位线的常用技巧(解析版)专题典例剖析及针对训练类型一 连接两中点构造中位线典例1如图,在△ABC 中,AB =AC =5,BC =6,D 、E 分别是AB 、AC 的中点,F 、G 为BC 上的两点,FG =3,线段DG ,EF 的交点为O ,当线段FG 在线段BC 上移动时,三角形FGO 的面积与四边ADOE 的面积之和恒为定值,则这个定值是( )A .15B .12C .9D .6思路指引:连接DE ,过A 作AH ⊥BC 于H .由于DE 是AB 、AC 的中点,利用三角形中位线定理可得DE ∥BC ,并且可知△ADE 的高等于12AH ,再结合等腰三角形三线合一性质,以及勾股定理可求AH ,那么△ADE 的面积就可求.而所求S △FOG +S 四边形ADOE =S △ADE +S △DOE +S △FOG ,又因为△DOE 和△FOG 的底相等,高之和等于AH 的一半,故它们的面积和可求,从而可以得到S △FOG +S 四边形ADOE 的面积.解:如图:连接DE ,过A 向BC 作垂线,H 为垂足,∵△ABC 中,D 、E 分别是AB 、AC 的中点,∴DE ,AH 分别是△ABC 的中位线和高,BH =CH =12BC =12×6=3,∵AB =AC =5,BC =6,由勾股定理得AH ==4,∴S △ADE =12BC •AH 2=12×3×42=3,设△DOE 的高为a ,△FOG 的高为b ,则a +b =AH 2=2,∴S △DOE +S △FOG =12DE •a +12FG •b =12×3(a +b )=12×3×2=3,∴三角形FGO 的面积与四边ADOE 的面积之和恒为定值,则这个定值是S △ADE +S △DOE +S △FOG =3+3=6.故选:D .方法点睛:本题属中等难度题目,涉及到三角形中位线定理,解答此类题目时一般只要知道中点要作中位线,已知等腰三角形要作高线,利用勾股定理解答.针对训练1.如图,△ABC 的中线BD ,CE 相交于点0,F ,G 分别是BO ,CO 的中点,求证:EF ∥DG 且EF =DG .解:连接ED ,FG .证四边形DEFG 是平行四边形,∴EF ∥DG 且EF =DG .类型二 连接第三边构造中位线典例2(2022秋•泰山区校级期末)如图,在菱形ABCD 中,E ,F 分别是边CD ,BC 上的动点,连接AE ,EF ,G ,H 分别为AE ,EF 的中点,连接GH .若∠B =45°,BC =GH 的最小值为( )ABC DGF E DC B AABDE F G思路指引:连接AF,利用三角形中位线定理,可知GH=12AF,求出AF的最小值即可解决问题.解:连接AF,如图所示:∵四边形ABCD是菱形,∴AB=BC=∵G,H分别为AE,EF的中点,∴GH是△AEF的中位线,∴GH=12 AF,当AF⊥BC时,AF最小,GH得到最小值,则∠AFB=90°,∵∠B=45°,∴△ABF是等腰直角三角形,∴AF==∴GH=即GH故选:D.方法点睛:本题考查了菱形的性质、三角形的中位线定理、等腰直角三角形的判定与性质、垂线段最短等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.针对训练1.(2021秋•孟津县期末)如图所示,已知四边形ABCD,R、P分别是DC、BC上的点,点E、F分别是AP、RP的中点,当点P在边BC上从点B向点C移动,且点R从点D向点C移动时,那么下列结论成立的是( )A .线段EF 的长逐渐增大B .线段EF 的长逐渐减少C .线段EF 的长不变D .△ABP 和△CRP 的面积和不变思路指引:连接AR ,根据三角形的中位线定理可得EF =12AR ,根据AR 的变化情况即可判断.解:连接AR ,∵E ,F 分别是AP ,RP 的中点,∴EF =12AR ,∵当点P 在BC 上从点C 向点B 移动,点R 从点D 向点C 移动时,AR 的长度逐渐增大,∴线段EF 的长逐渐增大.S △ABP +S △CRP =12BC •(AB +CR ).∵CR 随着点R 的运动而减小,∴△ABP 和△CRP 的面积和逐渐减小.观察选项,只有选项A 符合题意.故选:A .方法点睛:此题考查的是三角形中位线的性质,即三角形的中位线平行于第三边且等于第三边的一半. 典例3 如图,点B 为AC 上一点,分别以AB ,BC 为边在AC 同侧作等边△ABD 和等边△BCE ,点P ,M ,N 分别为AC ,AD ,CE 的中点.(1)求证:PM =PN ;(2)求∠MPN 的度数.思路指引:(1)连接DC和AE,AE交CD于点M,证明△ABE≌△DBC,得到AE=DC,利用中位线的性质证明PM=PN;(2)根据中位线的性质把∠MPA+∠NPC转化成∠MCA+∠MAC,根据∠DMA=∠MCA+∠MAC可知求出∠DMA度数即可.解:(1)连接DC和AE,AE交CD于点M,在△ABE和△DBC中,AB=BD∠ABE=∠DBCBE=BC∴△ABE≌△DBC(SAS).∴AE=DC.∵P为AC中点,N为EC中点,AE.∴PN=12DC.同理可得PM=12所以PM=PN.(2)∵P为AC中点,N为EC中点,∴PN∥AE.∴∠NPC=∠EAC.同理可得∠MPA=∠DCA∴∠MPA+∠NPC=∠EAC+∠DCA.又∠DQA=∠EAC+∠DCA,∴∠MPA+∠NPC=∠DQA.∵△ABE ≌△DBC ,∴∠QDB =∠BAQ .∴∠DQA =∠DBA =60°.∴∠MPA +∠NPC =60°.∴∠MPN =180°﹣60°=120°.方法点睛:本题主要考查全等三角形的判定和性质、中位线的性质、等边三角形的性质,解题的关键是找到“手拉手”全等模型.针对训练1.如图,分别以△ABC 的边AB ,AC 同时向外作等腰直角三角形,其中AB =AE ,AC =AD ,∠BAE =∠CAD =90°,点G 为BC 的中点,点F 为BE 的中点,点H 为CD 的中点.探索GF 与GH 的数量关系及位置关系,并说明理由.解:连接BD ,CE ,易证△ABD ≌△AEC ,∴BD = CE ,易证BD ⊥CE .由中位线性质可得GF =GH ,GF ⊥GH .类型三 取中点构造中位线(1)直接取一边中点典例4(2022春•武昌区期中)如图,在△ABC 中,∠A =60°,BD 为AC 边上的高,E 为BC 边的中点,点F 在AB 边上,∠EDF =60°,若AF =2,BF =103,则BC 边的长为( )HG FEDCB AAB CDEFG HA .163BCD 思路指引:过点D 作DM ⊥AB ,垂足为M ,取AB 的中点H ,连接EH ,DH ,根据已知可求出AB =163,先在Rt △ABD 中求出AD ,AH 的长,从而可得△ADH 是等边三角形,进而可得AD =DH ,∠ADH =∠AHD =60°,然后利用利用等腰三角形的三线合一性质求出AM 的长,从而求出DM ,DF 的长,最后证明手拉手模型﹣旋转型全等△ADF ≌△HDE ,从而利用全等三角形的性质可得DE =DF 进而利用直角三角形斜边上的中线,即可解答.解:过点D 作DM ⊥AB ,垂足为M ,取AB 的中点H ,连接EH ,DH ,∵AF =2,BF =103,∴AB =AF +BF =163,∵BD ⊥AC ,∴∠ADB =∠CDB =90°,∵∠A =60°,∴∠ABD =90°﹣∠A =30°,∴AD =12AB =83,∵点H 是AB 的中点,∴AH =BH =12AB =83,∴AD =AH ,∴△ADH 是等边三角形,∴AD =DH ,∠ADH =∠AHD =60°,∴AM=MH=12AH=43,∴DM=∵AF=2,∴MF=AF﹣AM=2―43=23,∴DF∵点H是AB的中点,点E是BC的中点,∴EH是△ABC的中位线,∴EH∥AC,∴∠DHE=∠ADH=60°,∴∠ADH=∠A=60°,∵∠EDF=∠ADH=60°,∴∠ADH﹣∠FDH=∠EDF﹣∠FDH,∴∠ADF=∠HDE,∴△ADF≌△HDE(ASA),∴DE=DF=∵∠CDB=90°,∴BC=2DE=故选:D.方法点睛:本题考查了等边三角形的判定与性质,直角三角形斜边上的中线,三角形的中位线定理,全等三角形的判定与性质,含30度角的直角三角形,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.针对训练1.(2022•长春一模)如图,菱形ABCD的对角线AC与BD相交于点O,AC=8,BD=12,点E是CD的中点,点F是OA的中点,连结EF,则线段EF的长为 .思路指引:取AD的中点M,连接FM,EM,构造三角形中位线,利用三角形中位线定理分别求得FM、EM的长度;然后利用勾股定理求得EF的长度.解:如图,取AD的中点M,连接FM,EM,∵点E是CD的中点,∴EM是△ACD的中位线.∴EM∥AC,EM=12AC=4.同理,FM∥BD,FM=12OD=14BD=3.在菱形ABCD中,AC⊥BD,则FM⊥ME.故在直角△EFM中,由勾股定理得到:EF5.故答案是:5.方法点睛:本题主要考查了菱形的性质和三角形中位线定理,解题过程中,巧妙地作出辅助线,利用三角形中位线定理求得直角三角形的两直角边的长度.(2)连接对角线,再取对角线中点典例5(2021秋•龙岗区校级期末)如图,四边形ABCD中,E,F分别是边AB,CD的中点,则AD,BC 和EF的关系是( )A.AD+BC>2EF B.AD+BC≥2EF C.AD+BC<2EF D.AD+BC≤2EF思路指引:连接AC,取AC的中点G,连接EF,EG,GF,根据三角形中位线定理求出EG=12BC,GF=12AD ,再利用三角形三边关系:两边之和大于第三边,即可得出AD ,BC 和EF 的关系.解:如图,取AC 的中点G ,连接EF ,EG ,GF ,∵E ,F 分别是边AB ,CD 的中点,∴EG ,GF 分别是△ABC 和△ACD 的中位线,∴EG =12BC ,GF =12AD ,在△EGF 中,由三角形三边关系得EG +GF >EF ,即12BC +12AD >EF ,∴AD +BC >2EF ,当AD ∥BC 时,点E 、F 、G 在同一条直线上,∴AD +BC =2EF ,所以四边形ABCD 中,E ,F 分别是边AB ,CD 的中点,则AD ,BC 和EF 的关系是AD +BC ≥2EF .故选:B .方法点睛:此题主要考查学生对三角形中位线定理和三角形三边关系的灵活运用,熟练掌握三角形的中位线定理是解题的关键.针对训练1.如图,在□ABCD 中,E 是CD 中点,F 是AE 的中点,FC 交BE 于点G(1)求证:GF =GC(2)求证:BG =3EG解:(1)取BE 的中点M ,∵FM =21AB ,∴FM //EC ,∴四边形 FMCE 为平行四边形,∴GF =GC(2)易证EG =MG ,∴EM =MB ,∴BG =3EG类型四 延长一边构造中位线典例6(2022秋•江北区校级期末)如图,在正方形ABCD 中,点E ,G 分别在AD ,BC 边上,且AE =3DE ,BG =CG ,连接BE 、CE ,EF 平分∠BEC ,过点C 作CF ⊥EF 于点F ,连接GF ,若正方形的边长为4,则GF 的长度是( )A B .2C D 思路指引:延长CF 交BE 于H ,利用已知条件证明△HEF ≌△CEF (ASA ),然后利用全等三角形的性质证明GF =12BH ,最后利用勾股定理即可求解.解:延长CF 交BE 于H ,∵EF 平分∠BEC ,∴∠HEF =∠CEF ,∵CF ⊥EF ,∴∠HFE =∠CFE ,在△HEF 和△CEF 中,∠HEF =∠CEF EF =EF ∠HFE =∠CFE,∴△HEF ≌△CEF (ASA ),∴HF =CF ,EH =EC ,而BG =CG ,∴GF =12BH ,∵AE =3DE ,正方形的边长为4,∴AE =3,AB =CD =4,DE =1,在Rt △ABE 中,BE =5,在Rt △CDE 中,CE =HE ==∴BH =BE ﹣HE =5―∴GF =12BH 故选:C .方法点睛:此题主要考查了全等三角形的性质与判定,也利用了正方形的性质,三角形的中位线的性质,有一定的综合性,对于学生的能力要求比较高.针对训练1.(2022•合肥一模)如图,△ABC 中,AD 平分∠BAC ,E 是BC 中点,AD ⊥BD ,AC =7,AB =4,则DE 的值为( )A .1B .2C .12D .32思路指引:延长BD 交AC 于H ,证明△ADB ≌△ADH ,根据全等三角形的性质得到AH =AB =4,BD =DH ,根据三角形中位线定理计算即可.解:延长BD 交AC 于H ,在△ADB 和△ADH 中,∠BAD =∠HAD AD =AD ∠ADB =∠ADH,∴△ADB ≌△ADH (ASA ).∴AH =AB =4,BD =DH ,∴HC =AC ﹣AH =3,∵BD =DH ,BE =EC ,∴DE =12HC =32,故选:D .方法点睛:本题考查的是三角形中位线定理、全等三角形的判定和性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.类型五 延长两边构造中位线典例7(2022秋•封丘县校级期末)如图,在△ABC 中,AE 平分∠BAC ,D 是BC 的中点AE ⊥BE ,AB =5,AC =3,则DE 的长为( )A .1B .32C .2D .52思路指引:连接BE 并延长交AC 的延长线于点F ,易证明△ABF 是等腰三角形,则得AF 的长,点E 是BF 的中点,求得CF 的长,从而DE 是中位线,即可求得DE 的长.解:连接BE 并延长交AC 的延长线于点F ,如图,∵AE ⊥BE ,∴∠AEB =∠AEF =90°,∵AE 平分∠BAC ,∴∠BAE =∠FAE ,∴∠ABE =∠AFE ,∴△ABF 是等腰三角形,∴AF =AB =5,点E 是BF 的中点,∴CF =AF ﹣AC =5﹣3=2,DE 是△BCF 的中位线,∴DE =12CF =1.故选:A .方法点睛:本题考查了等腰三角形的判定与性质,三角形中位线的性质定理,关键是作辅助线得到等腰三角形.针对训练1.如图,AD 为△ABC 的外角平分线,且AD ⊥BD 、M 为BC 的中点,若AB =12,AC =18,求MD 的长8.延长BD ,CA 交于点E ,易证AE =AB ,BD =ED ,∵BM =CM ,∴DM =21CE =21(AB +AC )=15.类型六作平行线或倍长中线先构造8字全等再构造中位线典例7(2021秋•宛城区期中)如图,在△ABC中,∠A=90°,AC>AB>4,点D、E分别在边AB、AC上,BD=4,CE=3,取DE、BC的中点M、N,线段MN的长为( )A.2.5B.3C.4D.5思路指引:如图,作CH∥AB,连接DN,延长DN交CH于H,连接EH,首先证明CH=BD,∠ECH=90°,解直角三角形求出EH,利用三角形中位线定理即可解决问题.解:作CH∥AB,连接DN并延长交CH于H,连接EH,∵BD∥CH,∴∠B=∠NCH,∠ECH+∠A=180°,∵∠A=90°,∴∠ECH=∠A=90°,在△DNB和△HNC中,∠B=∠NCHBN=CN,∠DNB=∠HNC∴△DNB≌△HNC(ASA),∴CH=BD=4,DN=NH,在Rt△CEH中,CH=4,CE=3,∴EH=5,∵DM=ME,DN=NH,EH=2.5,∴MN=12故选:A.方法点睛:本题考查全等三角形的判定和性质,三角形的中位线定理,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.针对训练:如图,AB=BC,DC=DE,∠ABC=∠CDE=90°,D、B、C在一条直线上,F为AE的中点.(1)求证:BF∥CE;(2)若AB=2,DE=5,求BF的长.思路指引:(1)延长AB交CE于G,求出△ACG是等腰直角三角形,再根据等腰直角三角形的性质求出AB=BG,然后根据三角形的中位线平行于第三边并且等于第三边的一半证明;(2)根据等腰直角三角形的性质求出CE、CG,再求出GE,然后求解即可.(1)证明:如图,延长AB交CE于G,∵AB=BC,DC=DE,∠ABC=∠CDE=90°,∴△ABC和△CDE都是等腰直角三角形,∴△ACG也是等腰直角三角形,∵∠ABC=90°,∴BC⊥AG,∴AB=BG,∵点F是AE的中点,∴BF是△AGE的中位线,∴BF∥CE;(2)解:∵AB =2,DE =5,∴CG =AC ==CE ==∴GE =CE ﹣CG ==∵BF 是△AGE 的中位线,∴BF =12GE方法点睛:本题考查了三角形的中位线平行于第三边并且等于第三边的一半,等腰直角三角形的判定与性质,熟记性质与定理并作辅助线构造出以BF 为中位线的三角形是解题的关键。

完整版三角形的中位线经典练习题及其答案

完整版三角形的中位线经典练习题及其答案

八年级三角形的中位线练习题及其答案1 •连结三角形2 •三角形的中位线于第三边,并且等于3 •一个三角形的中位线有__________ 条.4. 如图△ ABC中,D E分别是ABAC的中点,则线段CD>^ ABC的_______ ,线段。

丘是厶ABC ___________5、如图,D E、F分别是△ ABC各边的中点(1)如果EF= 4cm,那么BC= cm 如果AB= 10cm,那么DF= __________________________ cm(2) ________________________________ 中线AD与中位线EF的关系是____________________________6 .如图1所示,EF是厶ABC的中位线,若BC=8cm贝UEF=_________________________________________________cm7 .三角形的三边长分别是3cm 5cm, 6cm,则连结三边中点所围成的三角形的周长是 __________________ cm.8.在Rt △ ABC中,/ C=90°, AC=?5 ?BC=?12, ?则连结两条直角边中点的线段长为 ____________ .9 .若三角形的三条中位线长分别为2cm, 3cm, 4cm,则原三角形的周长为()A . 4.5cmB . 18cmC . 9cmD . 36cm10. 如图2所示,A, B两点分别位于一个池塘的两端,小聪想用绳子测量A, B间的距离,但绳子不够长,一位同学帮他想了一个主意:先在地上取一个可以直接到达A, B的点C,找到AC, BC的中点D, E,并且测出DE 的长为10m,则A, B间的距离为()A . 15mB . 25mC . 30mD . 20m11. 已知△ ABC的周长为1,连结△ ABC的三边中点构成第二个三角形,?再连结第二个三角形的三边中点构成第三个三角形,依此类推,第2010个三角形的周长是( )A 1 1 1 1A、 B C D、2008 2009 20082 2009212.如图3所示,已知四边形ABCD R, P分别是DC BC上的点,E,F分别是AP, RP的中点,当点P在BC上从点B向点C移动而点R不动时,那么下列结论成立的是()A .线段EF的长逐渐增大B .线段EF的长逐渐减少C .线段EF的长不变D .线段EF的长不能确定13.如图4,在厶ABC中, E, D, F分别是AB, BC CA的中点,AB=6, AC=4,则四边形AEDF?勺周长是()A . 10B . 20C . 30D . 40A__________ D的线段叫做三角形的中位线.14. 如图所示,口ABCD的对角线AC, BD相交于点O, AE=EB求证:OE// BC.15. 已知矩形ABCD中,AB=4cm, AD=10cm,点P在边BC上移动,点E、F、G、H 分别是AB、AP、DP、DC的中点.求证:EF+GH=5cm;16 .如图所示,在△ ABC中,点D在BC上且CD=CA CF平分/ ACB AE=EB求证:EF=1BD.217.如图所示,已知在口ABCD中, E, F分别是AD, BC的中点,求证:MN/ BC.18.已知:如图,四边形ABCD中,E、F、G、H分别是AB、BC、arc CD、DA的中点.求证:四边形EFGH是平行四边形.19.如图,点E, F, G, H分别是CD, BC, AB , DA的中点。

三角形中位线专项训练(30道)(解析版)

三角形中位线专项训练(30道)(解析版)

专题9.7 三角形中位线专项训练(30道)【苏科版】1.(2021秋•淅川县期末)如图,四边形ABCD中,∠A=90°,AB=12,AD=5,点M、N分别为线段BC、AB上的动点(含端点,但点M不与点B重合),点E、F分别为DM、MN的中点,则EF长度的可能为()A.2B.5C.7D.9【分析】根据三角形的中位线定理得出EF=12DN,从而可知DN最大时,EF最大,因为N与B重合时DN最大,N与A重合时,DN最小,从而求得EF的最大值为6.5,最小值是2.5,可解答.【解答】解:连接DN,∵ED=EM,MF=FN,∴EF=12DN,∴DN最大时,EF最大,DN最小时,EF最小,∵N与B重合时DN最大,此时DN=DB=√AD2+BD2=√52+122=13,∴EF的最大值为6.5.∵∠A=90°,AD=5,∴DN≥5,∴EF≥2.5,∴EF长度的可能为5;故选:B.2.(2021秋•渝中区校级期末)如图,在△ABC中,AB=CB=6,BD⊥AC于点D,F在BC上且BF=2,连接AF,E为AF的中点,连接DE,则DE的长为()A.1B.2C.3D.4【分析】根据等腰三角形的性质得到AD=DC,根据三角形中位线定理解答即可.【解答】解:∵CB=6,BF=2,∴FC=6﹣2=4,∵BA=BC,BD⊥AC,∴AD=DC,∵AE=EF,∴DE是△AFC的中位线,∴DE=12FC=12×4=2,故选:B.3.(2021秋•龙岗区校级期末)如图,四边形ABCD中,E,F分别是边AB,CD的中点,则AD,BC和EF的关系是()A.AD+BC>2EF B.AD+BC≥2EF C.AD+BC<2EF D.AD+BC≤2EF【分析】取AC的中点G,连接EF,EG,GF,根据三角形中位线定理求出EG=12BC,GF=12AD,再利用三角形三边关系:两边之和大于第三边,即可得出AD,BC和EF的关系.【解答】解:如图,取AC的中点G,连接EF,EG,GF,∵E,F分别是边AB,CD的中点,∴EG,GF分别是△ABC和△ACD的中位线,∴EG=12BC,GF=12AD,在△EGF中,由三角形三边关系得EG+GF>EF,即12BC+12AD>EF,∴AD +BC >2EF ,当AD ∥BC 时,点E 、F 、G 在同一条直线上,∴AD +BC =2EF ,所以四边形ABCD 中,E ,F 分别是边AB ,CD 的中点,则AD ,BC 和EF 的关系是AD +BC ≥2EF .故选:B .4.(2021秋•荆门期末)如图,△ABC 的周长为20,点D ,E 在边BC 上,∠ABC 的平分线垂直于AE ,垂足为N ,∠ACB 的平分线垂直于AD ,垂足为M ,若BC =8,则MN 的长度为( )A .32B .2C .52 D .3【分析】证明△BNA ≌△BNE ,得到BE =BA ,AN =NE ,同理得到CD =CA ,AM =MD ,求出DE ,根据三角形中位线定理计算即可.【解答】解:在△BNA 和△BNE 中,{∠NBA =∠NBE BN =BN ∠BNA =∠BNE,∴△BNA ≌△BNE (ASA )∴BE =BA ,AN =NE ,同理,CD =CA ,AM =MD ,∴DE =BE +CD ﹣BC =BA +CA ﹣BC =20﹣8﹣8=4,∵AN =NE ,AM =MD ,∴MN =12DE =2,故选:B .5.(2021秋•宛城区期中)如图,在△ABC 中,∠A =90°,AC >AB >4,点D 、E 分别在边AB 、AC 上,BD =4,CE =3,取DE 、BC 的中点M 、N ,线段MN 的长为( )A .2.5B .3C .4D .5【分析】如图,作CH ∥AB ,连接DN ,延长DN 交CH 于H ,连接EH ,首先证明CH =BD ,∠ECH =90°,解直角三角形求出EH ,利用三角形中位线定理即可解决问题.【解答】解:作CH ∥AB ,连接DN 并延长交CH 于H ,连接EH ,∵BD ∥CH ,∴∠B =∠NCH ,∠ECH +∠A =180°,∵∠A =90°,∴∠ECH =∠A =90°,在△DNB 和△HNC 中,{∠B =∠NCH BN =CN ∠DNB =∠HNC,∴△DNB ≌△HNC (ASA ),∴CH =BD =4,DN =NH ,在Rt △CEH 中,CH =4,CE =3,∴EH =√CH 2+CE 2=√42+32=5,∵DM =ME ,DN =NH ,∴MN =12EH =2.5,故选:A .6.(2021•丹东模拟)如图,在△ABC 中,CE 是中线,CD 是角平分线,AF ⊥CD 交CD延长线于点F ,AC =7,BC =4,则EF 的长为( )A .1.5B .2C .2.5D .3【分析】延长AF 、BC 交于点G ,证明△ACF ≌△GCF ,根据全等三角形的性质得到CG =AC =7,AF =FG ,求出BG ,根据三角形中位线定理解答即可.【解答】解:延长AF 、BC 交于点G ,∵CD 是△ABC 的角平分线,∴∠ACF =∠BCF ,在△ACF 和△GCF 中,{∠ACF =∠GCF CF =CF ∠AFC =∠GFC =90°,∴△ACF ≌△GCF (ASA ),∴CG =AC =7,AF =FG ,∴BG =CG ﹣CB =3,∵AE =EB ,AF =FG ,∴EF =12BG =1.5,故选:A .7.(2021•碑林区校级模拟)如图,AD 为△ABC 的角平分线,BE ⊥AD 于E ,F 为BC 中点,连接EF ,若∠BAC =80°,∠EBD =20°,则∠EFD =( )A .26°B .28°C .30°D .32°【分析】延长BE 交AC 于G ,证△ABE ≌△AGE (ASA ),得BE =GE ,再由三角形中位线定理得EF ∥GC ,则∠EFD =∠C ,然后求出∠ABC =∠ABE +∠EBD =70°,即可解决问题.【解答】解:延长BE 交AC 于G ,如图所示:∵AD 平分∠BAC ,∠BAC =80°,∴∠BAE =∠GAE =12∠BAC =40°,∵BE ⊥AD ,∴∠BEA =∠GEA =90°,∵AE =AE ,∴△ABE ≌△AGE (ASA ),∴BE =GE ,∵F 为BC 的中点,∴EF 是△BCG 的中位线,∴EF ∥GC ,∴∠EFD =∠C ,∵∠BEA =90°,∴∠ABE =90°﹣∠BAE =90°﹣40°=50°,∴∠ABC =∠ABE +∠EBD =50°+20°=70°,∴∠EFD =∠C =180°﹣∠BAC ﹣∠ABC =180°﹣80°﹣70°=30°,故选:C .8.(2021秋•广饶县期末)如图,AD 是△ABC 的中线,E 是AD 的中点,F 是BE 延长线与AC 的交点,若AC =4,则AF =( )A .85 B .43 C .1 D .23 【分析】取EF 的中点H ,连接DH ,根据三角形中位线定理得到DH =12FC ,DH ∥AC ,证明△AEF ≌△DEH ,根据全等三角形的性质得到AF =DH ,计算即可.【解答】解:取EF 的中点H ,连接DH , ∵BD =DC ,BH =HF ,∴DH =12FC ,DH ∥AC ,∴∠HDE =∠F AE ,在△AEF 和△DEH 中,{∠AEF =∠DEH AE =DE ∠EAF =∠EDH,∴△AEF ≌△DEH (ASA ), ∴AF =DH ,∴AF =12FC , ∵AC =4,∴AF =43,故选:B .9.(2021春•平邑县期末)如图,在△ABC 中,AB =8,AC =6,AD 、AE 分别是其角平分线和中线,过点C 作CG ⊥AD 于F ,交AB 于G ,连接EF ,则线段EF 的长为( )A .1B .2C .32D .12【分析】证明△AFG ≌△AFC ,得到GF =FC ,根据三角形中位线定理计算即可.【解答】解:∵AD 是∠BAC 的角平分线,∴∠GAF =∠CAF ,∵CG ⊥AD ,∴∠AFG =∠AFC =90°,在△AFG 和△AFC 中,{∠AFG =∠AFC AF =AF ∠FAG =∠FAC,∴△AFG≌△AFC(ASA),∴GF=FC,AG=AC=6,∴GB=AB﹣AG=2,∵GF=FC,BE=EC,∴EF=12GB=1,故选:A.10.(2021春•宽城县期末)如图,E,F是四边形ABCD两边AB,CD的中点,G,H是对角线AC,BD的中点,若EH=6,则以下结论不正确的是()A.BC=12B.GF=6C.AD=12D.EH∥GF【分析】先判定EH为△ABD的中位线,GF为△ADC的中位线,然后根据三角形中位线性质对各选项进行判断.【解答】解:∵点E为AB的中点,点H为BD的中点,∴EH为△ABD的中位线,∴EH=12AD,EH∥AD,∵点F为CD的中点,点G为AC的中点,∴GF为△ADC的中位线,∴GF=12AD,GF∥AD,∴GF=EH=6,AD=2EH=12,EH∥GF,所以A选项符合题意,B选项、C选项和D 选项不符合题意.故选:A.二.填空题(共10小题)11.(2021秋•莱阳市期末)如图,D、E分别为△ABC的边AB、AC的中点.连接DE,过点B作BF平分∠ABC,交DE于点F.若EF=4,AD=7,则BC的长为22.【分析】根据三角形中位线定理得到DE ∥BC ,DE =12BC ,BD =AD =7,根据平行线的性质、角平分线的定义得到∠DBF =∠FBC ,根据等腰三角形的判定定理得到DF =BD =7,计算即可.【解答】解:∵D 、E 分别为△ABC 的边AB 、AC 的中点,∴DE ∥BC ,DE =12BC ,BD =AD =7,∴∠DFB =∠FBC ,∵BF 平分∠ABC ,∴∠DFB =∠DBF ,∴∠DBF =∠FBC ,∴DF =BD =7,∴DE =DF +EF =11,∴BC =2DE =22,故答案为:22.12.(2021秋•让胡路区校级期末)如图,△ABC 的周长为64,E 、F 、G 分别为AB 、AC 、BC 的中点,A ′、B ′、C ′分别为EF 、EG 、GF 的中点,△A ′B ′C ′的周长为 16 .如果△ABC 、△EFG 、△A ′B ′C ′分别为第1个、第2个、第3个三角形,按照上述方法继续作三角形,那么第n 个三角形的周长是 27﹣n .【分析】根据E 、F 、G 分别为AB 、AC 、BC 的中点,可以判断EF 、FG 、EG 为三角形中位线,利用中位线定理求出EF 、FG 、EG 与BC 、AB 、CA 的长度关系即可求得△EFG 的周长是△ABC 周长的一半,△A ′B ′C ′的周长是△EFG 的周长的一半,以此类推,可以求得第n 个三角形的周长.【解答】解:∵如图,△ABC 的周长为64,E 、F 、G 分别为AB 、AC 、BC 的中点, ∴EF 、FG 、EG 为三角形中位线,∴EF =12BC ,EG =12AC ,FG =12AB ,∴EF +FG +EG =12(BC +AC +AB ),即△EFG 的周长是△ABC 周长的一半.同理,△A ′B ′C ′的周长是△EFG 的周长的一半,即△A ′B ′C ′的周长为14×64=16.以此类推,第n 个小三角形的周长是第一个三角形周长的64×(12)n ﹣1=27﹣n故答案是:27﹣n .13.(2021春•安徽月考)如图,在四边形ABCD 中,AD =BC ,∠DAB =50°,∠CBA =70°,P 、M 、N 分别是AB 、AC 、BD 的中点,若BC =6,则△PMN 的周长是 9 .【分析】根据三角形中位线定理得到PM ∥BC ,PM =12BC =3,PN ∥AD ,PN =12AD =3,根据等边三角形的判定和性质定理解答即可.【解答】解:∵P 、M 分别是AB 、AC 的中点,∴PM ∥BC ,PM =12BC =3,∴∠APM =∠CBA =70°,同理可得:PN ∥AD ,PN =12AD =3,∴∠BPN =∠DAB =50°,∴PM =PN =3,∠MPN =180°﹣50°﹣70°=60°,∴△PMN 为等边三角形,∴△PMN 的周长为9,故答案为:9.14.(2021秋•长春期中)如图所示,在△ABC 中,BC >AC ,点D 在BC 上,DC =AC =10,且AD BD =32,作∠ACB 的平分线CF 交AD 于点F ,CF =8,E 是AB 的中点,连接EF ,则EF 的长为 4 .【分析】根据等腰三角形的性质得到F 为AD 的中点,CF ⊥AD ,根据勾股定理得到DF =√CD 2−CF 2=6,根据三角形的中位线定理即可得到结论.【解答】解:∵DC =AC =10,∠ACB 的平分线CF 交AD 于F ,∴F 为AD 的中点,CF ⊥AD ,∴∠CFD =90°,∵DC =10,CF =8,∴DF =√CD 2−CF 2=6,∴AD =2DF =12,∵AD BD =32,∴BD =8,∵点E 是AB 的中点, ∴EF 为△ABD 的中位线,∴EF =12BD =4,故答案为:4.15.(2021•商丘四模)如图,四边形ABCD 中,点E 、F 分别为AD 、BC 的中点,延长FE交CD 延长线于点G ,交BA 延长线于点H ,若∠BHF 与∠CGF 互余,AB =4,CD =6,则EF 的长为 √13 .【分析】根据三角形的中位线定理和勾股定理解答即可.【解答】解:连接BD ,取BD 的中点M ,连接EM ,FM ,∵E 、F 分别为AD 、BC 的中点,M 为BD 的中点,∴EM ,MF 分别为△ADB 、△BCD 的中位线,∴EM ∥AB ,MF ∥DC ,EM =12AB =2,MF =12DC =3,∵MF ∥DC ,∴∠FGC =∠EFM ,∵EM ∥AB ,∴∠FEM =∠FHB ,∵∠BHF 与∠CGF 互余,∴∠CGF +∠BHF =∠EFM +∠FEM =90°,∴∠EMF =180°﹣∠EFM ﹣∠FEM =90°,∴△EMF 是直角三角形,∴EF=√EM2+FM2=√22+32=√13,故答案为:√13.16.(2021•香坊区校级开学)如图,在△ABC中,E是AB的中点,D是AC上一点,连接DE,BH⊥AC于H,若2∠ADE=90°﹣∠HBC,AD:BC=4:3,CD=2,则BC的长为6.【分析】如图,延长AC至N,使CN=BC,连接BN,由等腰三角形的性质可得∠ADE =∠N,可证DE∥BN,由三角形中位线定理可得AD=DN,即可求解.【解答】解:如图,延长AC至N,使CN=BC,连接BN,∵2∠ADE=90°﹣∠HBC,∠BCA=90°﹣∠HBC,∴∠BCA=2∠ADE,∵CN=BC,∴∠N=∠CBN,∴∠BCA=∠N+∠CBN=2∠N,∴∠ADE=∠N,∴DE∥BN,又∵E是AB的中点,∴DE是△ABN的中位线,∴AD=DN,∵AD:BC=4:3,∴设AD=DN=4x,BC=CN=3x,∴CD=DN﹣CN=x=2,∴BC=6,故答案为6.17.(2021春•牡丹区期末)如图,△ABC中,AD是中线,AE是角平分线,CF⊥AE于F,AB=13,AC=8,则DF的长为 2.5.【分析】延长CF交AB于点G,判断出AF垂直平分CG,得到AC=AG,根据三角形中位线定理解答.【解答】解:延长CF交AB于点G,∵AE平分∠BAC,∴∠GAF=∠CAF,∴AF垂直平分CG,∴AC=AG,GF=CF,又∵点D是BC中点,∴DF是△CBG的中位线,∴DF=12BG=12(AB﹣AG)=12(AB﹣AC)=2.5,故答案为:2.5.18.(2021春•洛阳期末)如图,D是△ABC的边BC的中点,AE平分∠BAC,BE⊥AE于点E,且AB=10cm,DE=2cm,则AC的长为6cm.【分析】延长AC 、BE 交于点F ,证明△AEB ≌△AEF ,根据全等三角形的性质得到AF =AB =10cm ,BE =EF ,根据三角形中位线定理计算即可.【解答】解:延长AC 、BE 交于点F ,∵AE 平分∠BAC ,∴∠BAE =∠CAE ,在△AEB 和△AEF 中,{∠BAE =∠FAE AE =AE ∠AEB =∠AEF =90°,∴△AEB ≌△AEF (ASA ),∴AF =AB =10(cm ),BE =EF ,∵BD =DC ,DE =2cm ,∴CF =2DE =4(cm ),∴AC =AF ﹣CF =6(cm ),故答案为:6.19.(2021春•盐湖区校级期末)如图,在四边形ABCD 中,AB =CD ,M 、N 、P 分别是AD 、BC 、BD 的中点,若∠MPN =130°,则∠NMP 的度数为 25° .【分析】根据中位线定理和已知,易证明△PMN 是等腰三角形,根据等腰三角形的性质和三角形内角和定理即可求出∠PMN 的度数.【解答】解:在四边形ABCD 中,M 、N 、P 分别是AD 、BC 、BD 的中点,∴PN ,PM 分别是△CDB 与△DAB 的中位线,∴PM =12AB ,PN =12DC ,PM ∥AB ,PN ∥DC ,∵AB =CD , ∴PM =PN ,∴△PMN 是等腰三角形,∵∠MPN=130°,∴∠PMN=180°−130°2=25°.故答案为:25°.20.(2021春•虹口区校级期末)如图,在△ABC中,BM、CN平分∠ABC和∠ACB的外角,AM⊥BM于M,AN⊥CN于N,AB=10,BC=13,AC=6,则MN= 4.5.【分析】延长AM交BC于点G,根据BM为∠ABC的平分线,AM⊥BM得出∠BAM=∠G,故△ABG为等腰三角形,所以AM=GM.同理AN=DN,根据三角形中位线定理即可求得MN.【解答】解:延长AM交BC于点G,延长AN交BC延长线于点D,∵BM为∠ABC的平分线,∴∠CBM=∠ABM,∵BM⊥AG,∴∠ABM+∠BAM=90°,∠MGB+∠CBM=90°,∴∠BAM=∠MGB,∴△ABG为等腰三角形,∴AM=GM.BG=AB=10,同理AN=DN,CD=AC=6,∴MN为△ADG的中位线,∴MN=12DG=12(BC﹣BG+CD)=12(BC﹣AB+AC)=12(13﹣10+6)=4.5.故答案为:4.5.三.解答题(共10小题)21.(2019春•岐山县期末)△ABC的中线BD,CE相交于O,F,G分别是BO,CO的中点,求证:EF∥DG,且EF=DG.【分析】连接DE,FG,由BD与CE为中位线,利用中位线定理得到ED与BC平行,FG与BC平行,且都等于BC的一半,等量代换得到ED与FG平行且相等,进而得到四边形EFGD为平行四边形,利用平行四边形的性质即可得证.【解答】证明:连接DE,FG,∵BD,CE是△ABC的中线,∴D,E是AB,AC的中点,∴DE∥BC,DE=12BC,同理:FG∥BC,FG=12BC,∴DE∥FG,DE=FG,∴四边形DEFG是平行四边形,∴EF∥DG,EF=DG.22.(2021秋•桓台县期末)如图,在四边形ABCD中,E,F分别是AD,BC的中点.(1)若AB=6,CD=8,∠ABD=30°,∠BDC=120°,求EF的长;(2)若∠BDC﹣∠ABD=90°,求证:AB2+CD2=4EF2.【分析】(1)取BD的中点P,利用三角形中位线定理可以求得EP、FP的长度,然后利用勾股定理来求EF的长度;(2)如图,取BD的中点P,连接EP、FP.用三角形中位线定理可以求得EP、FP的长度,然后利用勾股定理即可得到结论.【解答】(1)解:如图,取BD的中点P,连接EP、FP.∵E,F分别是AD、BC的中点,AB=6,CD=8,∴PE ∥AB ,且PE =12AB =3,PF ∥CD 且PF =12CD =4.又∵∠ABD =30°,∠BDC =120°,∴∠EPD =∠ABD =30°,∠DPF =180°﹣∠BDC =60°,∴∠EPF =∠EPD +∠DPF =90°,在直角△EPF 中,由勾股定理得到:EF =√EP 2+PF 2=√32+42=5,即EF =5;(2)证明:如图,取BD 的中点P ,连接EP 、FP .∵E ,F 分别是AD 、BC 的中点,∴PE ∥AB ,且PE =12AB ,PF ∥CD 且PF =12CD .∴∠EPD =∠ABD ,∠BPF =∠BDC ,∴∠DPF =180°﹣∠BPF =180°﹣∠BDC ,∵∠BDC ﹣∠ABD =90°,∴∠BDC =90°+∠ABD ,∴∠EPF =∠EPD +∠DPF =∠ABD +180°﹣∠BDC =∠ABD +180°﹣(90°+∠ABD )=90°,∴PE 2+PF 2=(12AB )2+(12CD )2=EF 2,∴AB 2+CD 2=4EF 2.23.(2021秋•莱州市期末)已知:如图,在四边形ABCD 中,对角线AC 、BD 相交于点O ,且AC =BD ,E 、F 分别是AB 、CD 的中点,EF 分别交BD 、AC 于点G 、H .求证:OG =OH .【分析】取BC 边的中点M ,连接EM ,FM ,则根据三角形的中位线定理,即可证得△EMF 是等腰三角形,根据等边对等角,即可证得∠MEF =∠MFE ,然后根据平行线的性质证得∠OGH =∠OHG ,根据等角对等边即可证得.【解答】解:取BC边的中点M,连接EM,FM,∵M、F分别是BC、CD的中点,∴MF∥BD,MF=12BD,同理:ME∥AC,ME=12AC,∵AC=BD∴ME=MF∴∠MEF=∠MFE,∵MF∥BD,∴∠MFE=∠OGH,同理,∠MEF=∠OHG,∴∠OGH=∠OHG∴OG=OH.24.(2021春•抚州期末)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AE平分∠CAB,CE⊥AE于点E,延长CE交AB于点D.(1)求证:CE=DE;(2)若点F为BC的中点,求EF的长.【分析】(1)根据ASA证明△AEC和△AED全等,进而利用全等三角形的性质解答即可;(2)根据勾股定理得出AB,进而利用三角形中位线定理解答即可.【解答】(1)证明:∵AE平分∠CAB,∴∠CAE=∠BAE,∵CE⊥AE,∴∠AEC =∠AED =90°,在△AEC 和△AED 中,{∠CAE =∠DAE AE =AE ∠AEC =∠AED,∴△AEC ≌△AED (ASA ),∴CE =DE ;(2)在Rt △ABC 中,∵AC =6,BC =8,∴AB =√AC 2+BC 2=√62+82=10,∵△AEC ≌△AED ,∴AD =AC =6,∴BD =AB ﹣AD =4,∵点E 为CD 中点,点F 为BC 中点,∴EF =12BD =2.25.(2021春•秦都区期末)如图,在△ABC 中,AB =AC ,点D 、E 分别是边AB 、AC 上的点,连接BE 、DE ,∠ADE =∠AED ,点F 、G 、H 分别为BE 、DE 、BC 的中点.求证:FG =FH .【分析】根据等腰三角形的判定定理得到AD =AE ,根据线段的和差得到BD =CE ,根据三角形的中位线定理即可得到结论.【解答】证明:∵∠ADE =∠AED ,∴AD =AE ,∵AB =AC ,∴AB ﹣AD =AC ﹣AE ,即BD =CE ,∵点F 、G 、H 分别为BE 、DE 、BC 的中点,∴FG 是△EDB 的中位线,FH 是△BCE 的中位线,∴FG =12BD ,FH =12CE ,∴FG =FH .26.(2021春•泰兴市月考)如图,在四边形ABCD 中,AB =CD ,E 、F 分别是BC 、AD的中点,连接EF并延长,分别与BA,CD的延长线交于点M、N,证明:∠BME=∠CNE.【分析】连接BD,取BD的中点H,连接HE,HF,根据三角形的中位线的性质得到FH∥BM,FH=12AB,EH∥CN,EH=12CD,根据平行线的性质得到∠BME=∠HFE,∠CNE=∠HEF,根据等腰三角形的性质得到∠HFE=∠HEF,等量代换即可得到结论.【解答】证明:连接BD,取BD的中点H,连接HE,HF,∵E、F分别是BC、AD的中点,∴FH∥BM,FH=12AB,EH∥CN,EH=12CD,∴∠BME=∠HFE,∠CNE=∠HEF,∵AB=CD,∴FH=EH,∴∠HFE=∠HEF,∴∠BME=∠CNE.27.(2021春•沈北新区期末)如图,AD是△ABC的中线,E是AD的中点,F是BE延长线与AC的交点,求证:AF=12CF.【分析】过D 作DG ∥AC ,可证明△AEF ≌△DEG ,可得AF =DG ,由三角形中位线定理可得DG =12CF ,可证得结论.【解答】证明:如图,过D 作DG ∥AC ,则∠EAF =∠EDG ,∵AD 是△ABC 的中线,∴D 为BC 中点, ∴G 为BF 中点,∴DG =12CF ,∵E 为AD 中点,∴AE =DE ,在△AEF 和△DEG 中,{∠EAF =∠EDG AE =DE ∠AEF =∠DEG,∴△AEF ≌△DEG (ASA ), ∴DG =AF ,∴AF =12CF .28.(2021春•莆田期末)如图,已知四边形ABCD 的对角线AC 与BD 相交于点O ,且AC=BD ,M 、N 分别是AB 、CD 的中点,MN 分别交BD 、AC 于点E 、F .你能说出OE 与OF 的大小关系并加以证明吗?【分析】此题要构造三角形的中位线,根据三角形的中位线定理进行证明.【解答】解:相等.理由如下:取AD 的中点G ,连接MG ,NG ,∵G 、N 分别为AD 、CD 的中点, ∴GN 是△ACD 的中位线,∴GN =12AC ,同理可得,GM=12BD,∵AC=BD,∴GN=GM=12AC=12BD.∴∠GMN=∠GNM,又∵MG∥OE,NG∥OF,∴∠OEF=∠GMN=∠GNM=∠OFE,∴OE=OF.29.(2021春•城固县期末)如图,在四边形ABCD中,对角线AC=BD,E,F为AB、CD 的中点,连接EF交BD、AC于P、Q,取BC中点G,连EG、FG,求证:OP=OQ.【分析】根据三角形中位线定理得到EG=12AC,EG∥AC,FG=12BD,FG∥BD,根据平行线的性质、等腰三角形的性质和判定定理证明结论.【解答】证明:∵E,G为AB、BC中点,∴EG=12AC,EG∥AC,∴∠FEG=∠OQP,同理,FG=12BD,FG∥BD,∴∠EFG=∠OPQ,∵AC=BD,∴EG=FG,∴∠FEG=∠EFG,∴∠OPQ=∠OQP,∴OP=OQ.30.(2021春•三水区期末)如图,在△ABC中,AB=AC,点D,E分别是边AB,AC的中点,连接DE、BE,点F,G,H分别为BE,DE,BC的中点.(1)求证:FG=FH;(2)若∠A=90°,求证:FG⊥FH;(3)若∠A=80°,求∠GFH的度数.【分析】(1)由中点性质及AB=AC,得到BD=EC,再由中位线性质证明FG∥BD,GF=12BD,FH∥EC,FH=12EC,从而得到FG=FH;(2)由(1)FG∥BD,FH∥EC,再由∠A=90°,可证FG⊥FH;(3)由(1)FG∥BD,∠A=80°,可求得∠FKC,再由FH∥EC,可求得∠GFH的度数.【解答】(1)证明:∵AB=AC,点D,E分别是边AB,AC的中点∴BD=EC∵点F,G,H分别为BE,DE,BC的中点∴FG∥BD,GF=12 BDFH∥EC,FH=12 EC∴FG=FH;(2)证明:由(1)FG∥BD又∵∠A=90°∴FG⊥AC∵FH∥EC∴FG⊥FH;(3)解:延长FG交AC于点K,∵FG∥BD,∠A=80°∴∠FKC=∠A=80°∵FH∥EC∴∠GFH=180°﹣∠FKC=100°。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角形中位线知识点D . 801 . (2013?昆明)如图,在△ ABC中,点D , E分别是AB , AC的中点,/ A=50 ° / ADE=60 °则/ C702 . (2014 ?牡丹江一模)如图,O O的半径为5,弦AB=8 ,点C在弦AB上,且AC=6 ,过点C作CD丄AB3 . (2014 ?福州模拟)如图,△ ABC的中线BD、CE交于点O ,连接OA,点G、F分别为OC、OB的2.5中点,BC=4 , AO=3,则四边形DEFG的周长为()A . 6 B. 7 C. 8 D . 12△ ABC 中,D , E 分别是边 AB , AC 的中点.若 DE=2则 BC=( ) A . 2 B . 3 C . 4 D . 58 . ( 2014 ?泸州)如图,等边 △ ABC 中,点D 、E 分别为边AB 、AC 的中点,则/DEC 的度数为( )4 . ( 2014 ?梅列区质检)如图,在 △ ABC 中,/ ABC 和/ ACB 的平分线相交于点 O ,过点O 作EF // BC交AB 于E ,交AC 于F ,过点O 作OD 丄AC 于D .下列四个结论:① / BOC=90/ A ;3② 以E 为圆心、BE 为半径的圆与以 F 为圆心、CF 为半径的圆外切;③ EF 是厶ABC 的中位线;④ 设 OD=m , AE+AF=n ,贝U S A AEF = mn .2其中正确的结论是( )A .①②③B .①③④C .②③④D .①②④A . 30 °B . 60 °C . 120 °D . 150A. . (2014 ?北海)如图△ ABC中,D、E分别是边AB、AC的中点,已知DE=5则BC的长为(D . 11AB 的距离,取点 C ,连接AC 、BC ,再取它A.7.5 B . 15 C . 22.5 D . 30 10 .(2014 ?台州)如图,跷跷板AB 的支柱0D 经过它的中点0,且垂直于地面 BC,垂足为D ,OD=50cm 当它的一端B 着地时,另一端 A 离地面的高度 AC 为( )8 . (2014 ?宜昌)如图,A , B 两地被池塘隔开,小明通过下列方法测出了 A 、B 间的距离:先在 AB 夕卜 选一点C ,然后测出AC , BC 的中点M , N ,并测量出MN 的长为12m ,由此他就知道了 A 、B 间的距 离.有关他这次探究活动的描述错误的是( )A. AB=24m B . MN // AB C . △ CMN s △ CAB D . CM : MA=1 : 29 . (2014 ?湘潭)如图,AB 是池塘两端,设计一方法测量 们的中点D 、E ,测得DE=15米,则AB=()米.10 C20 25cm •50cm △75cm 8 100cm11 . (2014 ?碑林区二模)如图, △ ABC 中,AB=AC , AD 平分/ BAC, DE // AC 交AB 于E,贝U S A EBD:A . 1 : 2B . 1 : 4 C. 1 : 3 D . 2 : 312 . (2014 ?常德一模)若△ ABC的面积是8cm 2,则它的三条中位线围成的三角形的面积是()S A ABC=( )A . 2cm 2B . 4cm 2C . 6cm 2D .无法确定13 . (2014 ?本溪模拟)如图,△ ABC的周长为16 , G、H分别为AB、AC的中点,分别以AB、AC为斜边向外作Rt △ ADB和Rt △ AEC,连接DG、GH、EH,贝U DG+GH+EH 的值为()A . 6B . 7C . 8D . 914 . (2014 ?博白县模拟)如图,在平行四边形ABCD中,对角线AC , BD相交于点0,点E, F分别是边AD , AB的中点,EF交AC于点H,则雲的值为()15 . (2014 ?泰安) 如图, 18. (2014 ?本溪一模)如图,在四边形 ACB=90 ° D 为AB 的中点,连接 DC 并延长到E ,使CE=?CD ,过点B16 .( 2014 ?枣庄)如图,△ ABC 中,AB=4,AC=3 , AD 、AE 分别是其角平分线和中线, 过点C 作CG 丄AD于F ,交AB 于G ,连接EF ,则线段EF 的长为(17 . (2014 ?漳州模拟)△ ABC 的三边长分别为a 、b 、c ,三条中位线组成第一个中点三角形,第一个中点三角形的三条中位线又组成第二个中点三角形,以此类推,求第 2009中点三角形的周长为() 3 (a+b+c)Q 2O09ABCD 中,E , F 分别为DC 、AB 的中点,G 是AC 的中点,则F .若AB=6D . 7A . 2EF=AD+BCB . 2EF> AD+BC C . 2EF V AD+BCD .不确定19.(2014?邢台二模)如图,四边形ABCD的两条对角线AC、BD互相垂直,A1B1C1D1是四边形ABCD的中点四边形,如果AC=8,BD=10,那么四边形A1B1C1D1的面积为()A. 20B. 40C. 36D. 1020 . (2014 ?天桥区三模)如图,小红作出了边长为1的第1个正△ A1B1C1 ,算出了正△ A1B1C1的面积, 然后分别取△ A1B1C1三边的中点A2 , B2 , C2,作出了第2个正△ A2B2C2,算出了正△ A2B2C2的面积, 用同样的方法,作出了第3个正△ A3B3C3,算出了正△ A3B3C3的面积…,由此可得,第2014个正二.填空题 (共 10小题)21 .(2014 ?郴州)如图,在厶ABC 中,若E 是AB 的中点,F 是AC 的中点,/ B=50 °则/ AEF=C △ A 2014 B 2014 C 2014 的面积是( ).选择题 (共 20小题)22 . (2014 ?鞍山)如图,H是厶ABC的边BC的中点,AG平分/ BAC,点D是AC上一点,且AG丄BD于点G .已知AB=12 , BC=15 , GH=5,则△ ABC的周长为23 .(2014 ?怀化)如图,D、E分别是△ ABC的边AB、AC上的中点,贝U S^ADE : S^ABC =24 . (2014 ?成都)如图,为估计池塘岸边A, B两点间的距离,在池塘的一侧选取点O,分别取OA , OB的中点M , N,测得MN=32m ,贝U A, B两点间的距离是________________________________ m.o X B25 .(2014 ?岳阳)如图,在厶ABC中,点E, F分别是AB ,AC的中点且EF=1,则BC= _____________________26 (2014 ?大连)如图,△ ABC中,D、E分别是AB、AC的中点,若BC=4cm ,则DE= _________________________ cm .27 . (2014 ?汕头)如图,在△ ABC中,D , E分别是边AB , AC的中点,若BC=6,贝U DE=28 . (2014 ?盐城)如图,A、B两地间有一池塘阻隔,为测量A、B两地的距离,在地面上选一点C,连接CA、CB的中点D、E.若DE的长度为30m,则A、B两地的距离为____________________________________m .29 . (2014 ?镇江)如图,CD是厶ABC的中线,点E、F分别是AC、DC的中点,EF=1 ,则BD=30 . (2014 ?六盘水)在△ ABC中,点D是AB边的中点,点E是AC边的中点,连接DE,若BC=4,贝U DE= _______________三角形中位线专题训练参考答案与试题解析.选择题(共20小题)B. 60C. 70 °D. 801. (2013?昆明)如图,在△ ABC中,点D,E分别是AB,AC的中点,/ A=50 ° / ADE=60 °则/ C考点:三角形中位线定理;平行线的性质;三角形内角和定理.在厶ADE中利分析:用内角和定理求出/ AED ,然后判断DE // BC,利用平行线的性质可得出/ C.解答:解:由题意得,/ AED=180。

-/ A -/ADE=70 °,•••点D , E分别是AB ,AC 的中点,••• DE >△ ABC的中位线,•D E // BC,=70 °.故选C .点评:本题考查了三角形的中位线定理,解答本题的关键是掌握三角形中位线定理的内容:三角形的中位线平行于第三边, 并且等于第三边的一半.2 . (2014 ?牡丹江一如图,O O的半径为5,弦AB=8,点C在弦AB上,且AC=6 ,过点C作CD丄AB 模)C. 1.5 考点:三角形中位线定理;勾股定理;垂径定理.分析:首先利用垂径定理得出EA=BE=4 ,再利用勾股定理得出BO的长,进而求出且CD 是厶解答: 解:过点0作位线,则CD二丄E0进而2求出即可.0E丄AB 于点E,•/ 0E 丄AB , B=4 ,•/ B0=5 , ••• E0=3,•/ AC=6 , •BC=EC=2 , •/ CD 丄BE, 0E 丄AB,• CD // E0 , 且CD是厶BE0的中位线,C . 8了三角形中位 线定理以及垂 径定理和勾股 定理等知识,得 出CD 是厶BEO的中位线是解题关键.3 . (2014 ?福州模拟)如图, △ ABC 的中线BD 、CE 交于点 O ,连接OA ,点G 、F 分别为OC 、OB 的中 考点: 三角形中位线 定理.点评:故选:c .B . 7 DEFG 的周长为(A . 6分析:根据平行四边形的判定以及三角形中位线的运用,由中位线定理,可得EF // AO ,FG // BC,且都等于边长BC的一半,由此可得问题答案.解:••• BD, CE解答:是厶ABC的中线,••• ED // BC 且ED—BC ,•/ F是BO的中点,G是CO的中占1 八\、:•F G // BC 且FG'BC ,•E D=FG= —BC=2 ,同理GD=EF==1.5 ,•••四边形DEFG的周长为1.5+1.5+2+2=7 .故选:B.点评:本题考查了平行四边形的判定和三角形的中位线定理,三角形的中位线的性质定理,为证明线段相等和平行提供了依据.4 . (2014 ?梅列区质检)如图,在△ ABC中,/ ABC和/ ACB的平分线相交于点0 ,过点0作EF// BC 交AB于E,交AC于F,过点0作0D丄AC于D .下列四个结论:①/ BOC=90 °+-|/ A ;②以E为圆心、BE为半径的圆与以F为圆心、CF为半径的圆外切;③ EF 是厶ABC 的中位线; ④ 设 OD=m , AE+AF=n ,贝U S A AEF = mn .考点: 三角形中位线定理;等腰三角形的判定与性 质;圆与圆的位 护¥方^置^关糸. 其中正确的结论是( ) A . B . C .②③④ D .①②④分析:由在△ ABC中,/ ABC 和/ ACB的平分线相交于点O, 根据角平分线的定义与三角形内角和定理,即可求得① / BOC=90 °+丄/ A正确;2由角平分线定理与三角形面积的求解方法,即可求得④设OD=m ,AE+AF=n ,则S A AEF^ — mn 正::确;又由在△ABC 中,/ ABC 和/ ACB的平分线相交于点0, 过点0作EF // BC 交AB 于E,可判定△BE0 与△CF0是等腰三角形,根据两圆位置关系与圆心距d,两圆半径R, r 的数解答: 量关系间的联系,即可求得② 正确,根据三角形的中位线即可判断③•解:•••在△ ABC 中,/ ABC和/ ACB的平分A OBC4 / ABC ,/ 0CB= / A2 CB,/ ACB=180 °••• / 0BC+ / 0CB=90 °-线相交于点0,• / BOC=180(/ OBC+ / OCB)=90 °+丄/ A;2故①正确;过点O作OM丄AB于M , 作ON丄BC于N,连接OA ,•••在△ ABC 中,/ ABC 和 / ACB的平分线相交于点O,•••ON=OD=OM=m , •- S A AEF=S △ AOE+S△ AOF==AE?OM+ 二AF?O2D=易。

相关文档
最新文档