化工原理课程设计冷凝器的设计
煤油冷凝器的设计_化工原理课程设计

《化工原理》课程设计说明书设计题目:煤油冷凝器的设计专业:高分子材料与工程指导老师:赵海鹏设计者:韩明扬学号: 1024121222015年1月设计任务书设计题目:煤油冷却器的设计设计任务处理能力:27000吨/年煤油操作条件①煤油:入口温度150℃,出口温度40℃②冷却介质:自来水,入口温度20℃,出口温度50℃③允许压强降:不大于100 kPa④每年按330天计,每天24小时连续运行设计内容①设计方案简介:对确定的工艺流程及换热器型式进行简要论述。
②换热器的工艺计算:物料与热量衡算,传热面积,主要设备尺寸计算③换热器的主要结构尺寸设计。
④主要辅助设备选型。
⑤主要设备的材料选择目录绪论 (1)一.列管式换热器及设计方案简介 (2)1.1列管式换热器1.2.设计方案的拟定二.热量计算 (4)2.1.初选换热器的类型2.2.管程安排(流动空间的选择)及流速确定2.3.确定物性数据2.4.计算总传热系数2.5.计算传热面积三.工艺结构设计 (8)3.1.管径和管内流速3.2.管程数和传热管数3.3.平均传热温差校正及壳程数3.4.传热管排列和分程方法3.5.壳程内径及换热管选型汇总3.6.折流板3.7.接管四.换热器核算 (12)4.1.热量核算4.2.压力降核算五.辅助设备的计算和选择 (16)5.1.水泵的选择5.2.油泵的选择六.设计结果表汇 (18)七.心得体会 (19)八.参考文献..………………………………………………………....…..……… ..20 附图:(主体设备设计图,工艺流程简图)绪论换热器是化工,炼油工业中普遍应用的典型的工艺设备。
在化工厂,换热器的费用约占总费用的10%~20%,在炼油厂约占总费用35%~40%。
换热器在其他部门,如动力、原子能、冶金、食品、交通、环保、家电等也有着广泛的应用。
因此,设计和选择得到使用、高效的换热器对降低设备的造价和操作费用具有十分重要的意义。
冷凝器课程设计

THANK YOU
汇报人:
蒸发式冷凝器: 通过蒸发冷却进 行冷却,冷却效 果好,但结构复 杂,成本高
冷凝器的特点: 冷却效果好,结 构简单,成本低, 但冷却效果一般
冷凝器的工作原理
冷凝器是一种换热器,用于将制冷剂从气态冷凝成液态
工作原理:制冷剂在冷凝器中吸收热量,温度降低,冷凝成液态
冷凝器中的制冷剂通过管道进入蒸发器,蒸发器吸收热量,制冷剂蒸发成气态 冷凝器中的制冷剂通过管道进入压缩机,压缩机压缩制冷剂,提高制冷剂的压力 和温度 冷凝器中的制冷剂通过管道进入冷凝器,冷凝器吸收热量,制冷剂冷凝成液态, 完成一个循环
考虑冷凝器的安装和维护, 包括便于拆卸、易于清洗 等
验证冷凝器的设计,包括 计算、模拟和实验等
优化冷凝器的成本,包括 材料、制造和维护等
冷凝器材料选择
材料类型:铜、铝、不锈钢等
材料性能:耐腐蚀、耐高温、 耐高压等
材料成本:考虑经济性和性价 比
材料加工:易于加工和安装, 降低制造成本
冷凝器制造工艺
制造流程和工艺要求
材料选择:根据冷凝器的用途和性能要求选择合适的材料 设计制造:根据设计图纸进行冷凝器的制造,包括切割、焊接、组装等步骤 质量控制:在制造过程中进行质量控制,确保冷凝器的性能和质量符合要求 测试验收:对制造完成的冷凝器进行测试和验收,确保其性能和质量符合要求
制造材料和设备选择
材料选择:根据冷凝器的工作条件和要求,选择合适的材料,如不锈钢、 铜、铝等 设备选择:根据冷凝器的制造工艺和生产规模,选择合适的设备,如冲压 机、焊接机、切割机等
冷凝器应用和维护
冷凝器在制冷系统中的应用
冷凝器是制冷系统中的重要部件,用于将制冷剂从气态冷凝成液态 冷凝器在制冷系统中的作用是提高制冷效率,降低能耗 冷凝器在制冷系统中的安装位置和方式会影响制冷效果 冷凝器的维护和保养对制冷系统的正常运行至关重要
化工原理课程设计纯苯冷凝器的设计

化工原理课程设计设计题目:纯苯蒸汽冷凝器的设计指导老师:***系别:环境与安全工程系专业:安全工程班级学号:*********姓名:***目录一、设计任务: (2)1、处理能力:常压下5950kg/h的纯苯蒸汽 (2)2、设备型式:立式列管式冷凝器 (2)二、操作条件 (2)三、设计内容 (2)1、确定设计方案 (2)2、确定流体的流动空间 (2)3、计算流体的定性温度,确定流体的物性参数 (2)4、计算热负荷 (3)5、计算平均有效温度差 (3)6、选取经验传热系数k值 (3)7、估算传热面积 (3)8、结构尺寸设计 (3)(1)换热管规格、管子数、管长、管壳数的确定 (3)(2)传热管排列和分程方法 (4)(3)壳体内径内内径 (4)(4)折流板 (4)四、换热器核算 (5)1、换热器面积校核 (5)2、换热器内压降的核算 (7)五、换热器主要结构尺寸和计算结果一、设计任务:处理能力:1、常压下5950kg/h 的纯苯蒸汽 2、设备型式:立式列管式冷凝器二、操作条件1、常压下苯蒸气的冷凝温度为80.1℃,冷凝液在饱和温度下排出。
2、冷却介质:采用20℃自来水。
3、允许管程压降不大于50KPa 。
三、设计内容本设计的工艺计算如下:此为一侧流体恒温的列管式换热器的设计 1、确定设计方案 两流体的温度变化情况热流体(饱和苯蒸气)入口温度 80.1℃,(冷凝液)出口温度 80.1℃ 冷流体 水 入口温度 20℃,出口温度 40℃ 2、确定流体的流动空间冷却水走管程,苯走壳程,有利于苯的散热和冷凝。
3、计算流体的定性温度,确定流体的物性参数苯液体在定温度(80.1摄氏度)下的物性参数(查化工原理附录) ρ=815kg/,μ=3.09×Pa.s,=1.880KJ/kg.k ,ƛ=0.1255W/m.K, r=394.2kJ/kg 。
自来水的定性温度:入口温度:=20℃, 出口温度 =40℃则水的定性温度为:=(+)/2=(20+40)/2=30℃3m 410 PC 1t 2t m t 1t 2t根据热量衡算方程:=(-)得=/(-)=1.65×394.2/4.173(40-20)=7.79kg/s(式中=1.65kg/s )两流体在定性温度下的物性参数如下表计算热负荷ƍ==1.65×394.2=651.52kw 5、计算平均有效温度差 逆流温差=℃温差>50℃故选择固定管板式换热器需加补偿圈 6、选取经验传热系数k 值查《化工原理课程及设计》附录8,查的K 取430~850,暂取K=8507、估算传热面积==15.51m q 1r 2m q 2p c 2t 1t 2m q 1m q 1r 2p c 2t 1t 1m q 1r 1m q 逆m △t 43.4940)]-/(80.120)-(80.1[㏑40-80.1-20-1.80=)()(逆m t K Q S △=49.43×85010×52.65132m8、结构尺寸设计(1)换热管规格、管子数、管长、管壳数的确定选传热管,内径,外径,材料为碳钢。
化工原理课程设计-标准系列管壳式立式冷凝器的设计

化工原理课程设计标准系列管壳式立式冷凝器的设计姓名:学号:专业:应用化学班级设计时间:目录一、设计题目二、设计条件三、设计内容3.1概述3.2 换热3.3 换热设备设计步骤四、设计说明4.1选择换热器的类型4.2流动空间的确定五、传热过程工艺计算5.1计算液体的定性温度,确定流体的物性数据5.1.1正戊烷流体在定性温度(51.7℃)下的物性数据5.1.2水的定性温度5.2估算传热面积5.2.1换热器热负荷计算5.2.2平均传热温差5.2.3估算传热面积5.2.4初选换热器规格5.2.5立式固定管板式换热器的规格5.2.6计算面积裕度H及该换热器所要求的总传热系数K05.2.7折流板5.2.8换热器核算5.3核算壁温与冷凝液流型5.3.1核算壁温5.3.2核算流型5.4计算接口直径5.4.1计算壳程接口直径5.5计算管程接口直径5.6计算压强降5.6.1计算管程压降5.6.2计算壳程压降六、其他七、计算结果八、化工课程设计心得九、参考文献一.设计题目标准系列管壳式立式冷凝器的设计二.设计条件生产能力:正戊烷23760t/a,冷凝水流量70000Kg/h操作压力:常压正戊烷的冷凝温度51.7℃,冷凝水入口温度32℃每年按330天计,每天24小时连续生产要求冷凝器允许压降100000Pa三、设计内容3.1概述换热器在石油、化工生产中应用非常广泛。
在炼油厂中,原油常减压蒸馏装置中换热器的投资占总投资的20%;在化工厂中,换热器约占总投资的11%以上。
由于在工业生产中所用换热器的目的和要求不同,所以换热器的种类也多种多样。
列管式换热器在石油化工生产中应用最为广泛,而且技术上比较成熟。
在不同温度的流体间传递热能的装置称为热交换器,简称为换热器。
在换热器中至少要有两种温度不同的流体,一种流体温度较高,放出热量;另一种流体则温度较低,吸收热量。
35%~40%。
随着我国工业的不断发展,对能源利用、开发和节约的要求不断提高,因而对换热器的要求也日益加强。
化工原理课程设计甲醇冷凝冷却器的设计

化工原理课程设计--甲醇冷凝冷却器的设计化工原理课程设计题目甲醇冷凝冷却器的设计学院名称化学化工学院指导教师职称副教授2013年 12 月 27 日1、课程设计任务书1.1、设计题目甲醇冷凝冷却器的设计1.2、设计任务及操作条件(1)处理能力13700kg/h甲醇。
(2)设备形式列管式换热器。
(3)操作条件①甲醇:入口温度:64 ℃,出口温度50 ℃,压力为常压。
②冷却介质:循环水,入口温度30 ℃,出口温度40 ℃,压力为0.3 MPa。
③允许压降:不大于105 Pa。
④每年按330天计,每天24小时连续运行。
1.3、设计要求选择适宜的列管式换热器并进行核算。
南华大学化工原理课程设计【摘要】化工单元操作课程设计是综合运用化工原理课程的基本知识,进行融会贯通的独立思考,并在规定的时间内完成指定的化工设计任务,从而得到化工工程设计的初步训练。
本设计任务是利用循环水给甲醇降温。
利用热传递过程中对流传热原则,对换热器进行选型和核算,以供生产需要。
此次课程设计的主要内容是通过对甲醇和循环水的分析,以及对换热器进行换热量和压降的核算,然后在我国已制定的管壳式换热器系列标准中选择最佳换热器并用CAD制图等一系列过程。
其中换热器的选择、热量核算是一个反复试算的过程,一般需要反复试算2~3次。
所以,换热器的选择计算实际上带有试差的性质。
确定设计方案应遵循的主要原则为:满足工艺和操作的要求,经济效益好,确保生产安全。
【关键词】换热器,选型,核算,制图南华大学化工原理课程设计3994kg/m =i ρC) W/(m 0.19190︒⋅=λs Pa 0.000390⋅=μC)kJ/(kg 4.08 c pi ︒⋅=C) W/(m 0.626 i ︒⋅=λkg/m 755.7730=ρC)kJ/(kg 2.629c p0︒⋅=1、方案设计1.1、确定设计方案1.1.1、选择换热器的类型两流体温度变化情况:热流体进口温度64℃,出口温度50℃。
化工原理课程设计-乙醇-水精馏塔顶全凝器设计

课程设计说明书课程名称:化工原理课程设计题目:乙醇-水精馏塔顶全凝器设计学生姓名:学号: 20082171030系别:专业班级:指导老师:2010年12月换热器设计任务书班级姓名学号20082171030一、设计题目乙醇——水精馏塔顶全凝器的设计二、设计任务及操作条件1、处理能力28800吨/年2.、单位产量4000kg/h3、设备型式列管式换热器4、操作条件(1)乙醇蒸汽:入口温度75℃,出口温度65℃。
(2)冷却介质:循环水,入口温度25 ℃,出口温度45 ℃。
(3)允许压降:不大于101.3kpa。
(4)进料液中含乙醇70%;塔顶产品中乙醇的含量不低于99.6%;塔底产品中乙醇的含量不高于0.01%;(5)乙醇蒸汽定性温度下的物性数据:=754.2kg/m3ρh=0.523mPa·Sμhc=2.64KJ/(Kg·℃)pcλ=0.46w/(m·℃)(5)每年按300天计,每天24小时连续运行。
三、完成设备图一张。
(A3,CAD)目录1.设计方案简介 (4)1.1确定设计方案 (4)1.1.1换热器的选型 (4)1.1.2流动空间安排、管径及流速的确定 (4)1.2确定流体的定性温度、物性数据 (4)2.工艺流程草图及其说明 (6)3.工艺计算及主体设备设计 (6)3.1计算总传热系数 (6)3.1.1计算热负荷Q (6)3.1.2平均传热温差先按纯逆流算 (7)3.1.3 冷却水用量 (7)3.1.4 计算总传热系数K (7)3.2计算传热面积 (8)3.3工艺结构尺寸 (8)3.3.1管程数和传热管数 (8)3.3.2传热管排列和分程方法 (9)3.3.3壳体内径 (9)3.3.4折流板 (9)3.4换热器核算 (9)3.4.1热量核算 (9)3.4.2计算流动阻力 (11)4.辅助设备的计算及选型 (13)接管 (13)5.换热器主要结构尺寸和计算结果 (13)表3换热器主要结构尺寸和计算结果 (14)6. CAD绘制设备附属图(见附图) (15)结论 (16)符号说明 (17)参考文献 (18)1.设计方案简介1.1确定设计方案1.1.1换热器的选型两流体温度变化情况:塔顶热流体(乙醇蒸汽)进口温度75o C,出口温度65o C。
化工原理课程设计二次蒸汽冷凝器

换热器是实现传热过程的基本设备。而此设备是比较典型的传热设备�它在
工业中的应用十分广泛。例如�在炼油厂中作为加热或冷却用的换热器、蒸馏操
作中蒸馏釜和冷凝器、化工厂蒸发设备的加热室等。 三、 工艺流程示意图
饱和水蒸气应从换热器壳程上方进入�冷凝水由壳程下方排出�冷却水从换
课程设计技术说明 一、 接管表 二、技术特性表
设计结果总汇设计评论
本人经过一周的学习�对于课程设计有了初步的认识�对于化工生产中的
传热问题有了一定的认识。本课程的设计步骤可以作为以后毕业论文设计的指
导。
这项试验设计综合性比较强�设计的进行实在兼顾技术上先进行、可行性�
经济合理性的条件下进行的。此次设计涉及的工艺计算和结构设计比较全面�从
其中 R=D=400mm;r=0.15D=60mm;S=b=10mm;H=0.25D=100mm;
h=3S=30mm 图见附页图-4 �六�封头或管箱的法兰与垫片 法兰是压力容器用的法兰。压力容器法兰分为平焊法兰和对称法兰两类�平焊法 兰又分为甲型和乙型两种。甲型平焊法兰适用于公称压强�MPa�Pg0.25、0.6、 1.0、1.6 四个压强等级的较小范围。乙型平焊法兰适用公称压强 Pg2.5�4.0 两 个压强等级的较小范围�其最高工作温度 为 350 。 本设计选用甲型平焊法兰�图见附页图-5、图-6
A3F
�二�管板的材质及管板的结构
1、在选用管板的材料时�当换热介质无腐蚀有轻微腐蚀时�可按规定采用低碳
钢或普通低合金�处理腐蚀性介质时�应采用优质的耐腐蚀材料。本设计可采
用低碳钢。
�23�
2、管板与壳体的连接
管板尺寸�根据 Dg=400 mm 查表�S-P109 页表 2-10�得管板尺寸�
08环工01 化工原理课程设计之冷凝器课程设计

目录课程设计任务 (3)第一章前言 (4)第二章概述 (5)2.1冷凝的目的 (5)2.2冷凝器的类型 (5)2.2.1立式壳管式冷凝器 (5)2.2.2卧式壳管式冷凝器 (5)2.3设计方案的确定 (6)第三章设计计算 (8)3.1初选结构 (8)3.1.1 物性参数 (8)3.1.2设Ko 初选设备 (9)3.2传热计算 (10)3.2.1管程换热系数α2 (10)3.2.2 壳程传热热系数α1 (11)3.2.3污垢热阻与传导热阻 (11)3.2.4 校核传热 (11)3.3 压降计算 (12)3.3.1管程压降计算 (12)3.3.2壳程压降计算 (12)第四章结构设计 (13)4.1 冷凝器的安装与组合 (13)4.2管子设计 (13)4.3 管间距(S)的设计 (14)4.3.1管子在管板上的固定 (14)4.3.2管间距 (14)4.4管板设计 (14)4.5 壳体的厚度计算 (15)4.6 封头设计 (15)4.7 管程进出口管设计 (15)4.7.1进出口管径设计 (15)4.7.2位置设计 (15)4.8 壳程进出口管设计 (15)4.8.1出口管径(冷凝液) (15)4.8.2蒸汽入口管径的设计 (15)4.8.3位置设计 (16)4.9法兰 (16)4.10支座 (16)4.11其它 (16)第五章设计小结 (17)致谢 (18)参考文献 (18)课程设计任务:设计题目:乙醇=水精馏塔塔顶产品全凝器设计条件:处理量: 6 万吨/年产品浓度:含乙醇 95%操作压力:常压冷却介质:水压力: P= 303.9kPa水进口温度: 30o C水出口温度: 40o C第一章前言课程设计是化工原理课程教学中综合性和实际性较强的教学环节。
它要求学生利用课程理论知识,进行融会贯通的独立思考,在规定时间内完成指定的化工设计任务,是使学生体察工程实际问题复杂性的初次尝试,培养了学生分析和解决工程实际问题的能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
化工原理课程设计设计题目:6000t乙醇水分离精馏塔冷凝器的设计指导教师:***设计者:韦柳敏学号:**********班级:食品本111班专业:食品科学与工程设计时间:2014年6月15日目录1.设计任务书及操作条件 (2)设计任务 (2)设计要求 (2)设计步骤 (2)设计原则 (2)2.设计方案简介 (3)3.工艺设计及计算 (4)确定设计方案 (4)确定定性温度、物性数据并选择列管式换热器形式 (4)计算总传热系数 (4)工艺结构尺寸 (6)4.换热器的核算 (9)热量核算 (9)传热面积 (9)换热器流体的流动阻力 (10)设计结果一览表 (11)5.主要符号说明 (12)6.设计的评述 (13)1.设计任务书及操作条件设计任务:1)生产能力:833.33kg/h2)乙醇从78.23℃降到40℃3)冷却水进口:30℃4)冷却水出口:40℃设计要求:1)设计一个固定管板式换热器2)设计容要包含a)热力设计b)流动设计c)结构设计d)强度设计设计步骤1)根据换热任务和有关要求确定设计方案2)初步确定换热器的结构和尺寸3)核算换热器的传热面积和流体阻力4)确定换热器的工艺结构设计原则1)传热系数较小的一个,应流动空间较大,使传热面两侧的传热系数接近2)换热器减少热损失3)管、壳程的决定应做到便于除垢和修理,以保证运行的可靠性4)应减小管子和壳体因受热不同而产生的热应力。
从这个角度来讲,顺流式就优于逆流式5)对于有毒的介质,必使其不泄露,应特别注意其密封性,密封不仅要可靠,而且应要求方便及简洁6)应尽量避免采用贵金属,以降低成本2.设计方案简介根据任务书给定的的冷热流体的温度,来选择设计一个合适的列管式换热器;再依据冷热流体的性质,判断其是否易结垢,来选择管程走什么,壳程走什么。
从手册中查得冷热流体的物性数据,计算出总传热系数,再计算出传热面积。
根据管径管流速,确定传热管数,算出传热管程,传热管总根数等等。
然后校正传热温差以及壳程数,确定传热管排列方式和分程方法。
根据设计步骤计算出壳体径,选择折流板,确定板间距,折流板数等,再设计壳程和管程的径。
分别对换热的流量,管程对流系数,传热系数,传热面积进行核算,再计算出面积域度,使其在设计围就能完成任务。
3.工艺设计及计算 确定设计方案1.列管换热器的选择由于两流体温差小于50℃且壳方流体不易结垢,因此选择固定管板式换热器。
选用φ25mm ×2.5mm 的碳钢管,管流速取u = 0.5m/s .2.流体流动通道的选择酒精走壳程,冷却水走管程。
冷却水易结垢,走管程易清洗,且冷却水走管程可减少热量损失;酒精走壳程可利用壳体对外散热,利于冷却,同时酒精粘度比较大,当装有折流板时,走管程可在较低的雷诺数能达到湍流,有利于提高壳程一侧的对流传热系数。
确定定性温度、物性数据并选择列管式换热器形式定性温度:可取流体进口温度的平均值。
管程冷却水的定性温度:3524030=+=T ℃ 壳程乙醇的定性温度为:62.6124523.78=+=t ℃根据定性温度,分别查取壳程和管程流体的有关物性数据。
计算总传热系数1.热流量(热量损失3%):()()W T T C q Q P m 42111004.24023.7830.2360033.833⨯=-⨯⨯=-= 热量损失:610.62W %Q 30== Q2.平均传热温差()()05.2130404023.78ln 30404023.78ln2121=-----=∆∆∆-∆=∆t t t t t m ℃3.冷却水用量()()s kg t T C Q Q w P c /47.03040417462.6101004.241220=-⨯-⨯=--=4.估算总传热系数K ’1) 管程传热系数661033.11095.57.7925.002.0⨯=⨯⨯⨯==iii i ei u d R μρ ()()Cm W C d o iiP i ii •=⎪⎪⎭⎫⎝⎛⨯⨯⨯⨯⨯⨯⨯=⎪⎪⎭⎫⎝⎛=-23.0638.063.08.0/31.3434156.010595.01030.21033,102.0156.0023.0Re 023.0λμλα2)壳程传热系数假设壳程的传热系数0α=300)℃m W ⋅2/( 3) 污垢热阻200.00017197/R m W=⋅℃20.00034394/i R m W =⋅℃4) 管壁的导热系数λ=45)℃m W ⋅2/(()Cm W R d bd d d R d d K O i i i i i •=+⨯+⨯⨯+⨯⨯+⨯=++++=--24400000'/27.2323001107197.1025.045025.0025.002.0025.0104394.302.031.3434025.0111αλα 5.热负荷()()Wt t C w Q P c 4122'1098.130-40174.447.0⨯=⨯⨯=-=6.传热面积2405.405.2127.2321098.1'''m t K Q A m =⨯⨯=∆⋅=考虑15%到25%的安全系数,设计的实际需要面积:()()206.5~65.405.425.1~15.1'25,1~15.1m A A =⨯=⨯=取A=5m 2。
工艺结构尺寸1.管径和管流速选用φ25×2.5传热管(碳管),取管流速0.5m/s 。
2.管程数和传热管数1) 依据传热管径和流速确定单程传热管数 301.35.002.04.99447.0422≈=⨯⨯==ππud qVn i s 根2) 传热管长度 m nd A L 22.21025.035=⨯⨯==ππ 3) 按单管程设计,传热管过长,宜采用多管程结构。
现取传热管长 l =3.0m ,则该换 热器管程数为807.7322.21≈===l L N P 管程 传热管总根数: 2483=⨯=N 根3.平均传热温差校正及壳程数 平均传热温差校正系数 82.330404023.782121=--=--=t t T T R21.03023.7830401121=--=--=t T t t P按单壳程,双管程结构,温差校正系数查《化工原理(上册)》第二版图4-20得: 97.0=∆t ϕ 平均传热温差:42.2005.2197.0=⨯=∆m t ℃4.传热管排列和分程方法采用正三角形排列,取管心距t=1.250d ,则 mm t 3225.312525.1≈=⨯= 隔板中心到离其最近一排管中心距离为mm tS 2262=+=各程相邻管的管心距:44mm 横过管束中心线管数:58.52419.119.1≈===N n c 根。
5.壳体径1) 采用多管程结构,取管板利用率η=0.7, 则壳体径为 mm NtD 1967.0243205.105.1=⨯⨯==η圆整可取D=219mm 6.折流板采用弓形折流板,取弓形折流板圆缺高度为壳体径的25%,则切去的圆缺高度为mm h 75.5421925.0=⨯=,可h 取为60mm 。
取折流板间距B = 0.3D ,则mm B 7.652193.0=⨯=,可取B 为70mm 7.计算壳程流通面积及流速1) 流通面积683.52419.119.1≈===N n c()()230010015.3045.0025.06219.0m B d n D A c -⨯=⨯⨯-=-=2) 冷却水流速()()()()sm t t C A T T q C A q u P c c m P m C /16.03040174.410105.30.99436004023.7833.83330.23600360031222111020=-⨯⨯⨯⨯⨯-⨯⨯=--==-ρρ3) 壳程流体进出口接管:取接管乙醇流速为s m u /16.0=,则接管径为 mm u V D S 21.3816.07,792360033.83344011=⨯⨯⨯==ππ4) 当量直径m d d t d 027.0025.0025.04032.0444220202=⨯⎪⎭⎫ ⎝⎛⨯-⨯=⎪⎭⎫⎝⎛⨯-=ππππε67001090.510274.799416.0027.0Re ⨯=⨯⨯⨯==-cce u d μρ670001047.510274.799416.0025.0'Re ⨯=⨯⨯⨯==-ccu d μρ 8、计算管程流通面积及流速1) 流通截面积: 242021042.982402.044m N N d A ii -⨯=⨯⨯==ππ2) 冷却水流速: s m A q u i m i /31.01042.97.792360033.833360041=⨯⨯⨯==-ρ3) 雷诺数: 661026.810596.07.79231.002.0Re ⨯=⨯⨯⨯==-μρi i i u d4.换热器的核算 热量核算1) 壳程对流传热系数 对圆缺形折流板,可采用克恩公式14.003155.000Pr Re 36.0⎪⎪⎭⎫ ⎝⎛=w d μμλαε其中,普朗特常数:3371084.4627.010174.410274.7Pr --⨯=⨯⨯⨯==λμP C 黏度校正:05.114.00≈⎪⎪⎭⎫⎝⎛w μμ,则()()62.727805.11084.41090.5027.0627.036.014.031355.060=⨯⨯⨯⨯⨯⨯=-αW/(m 2.℃)2) 对流传热系数46101026.8Re >⨯=i普朗特常数:3361077.8156.01030.210595.0Pr --⨯=⨯⨯⨯==λμp C ()()52.148011077.81026.802.0156.0023.0Pr Re 023.03.038.063.08,00=⨯⨯⨯⨯⨯==-ii d λαW/(m 2.℃)传热面积24017.442.2027.2321098.1'm t K Q A =⨯⨯=∆=实际传热面积:2065.5243025.0m LN d A p =⨯⨯⨯⨯==ππ 面积裕度:%6.3517.417.465.500=-=-=A A A H P换热器流体的流动阻力 (1)管程流动阻力()p s t i N N F p p p 21∆+∆=∑∆ 其中5.1=t F ,1=s N ,4=p N 。
由61026.8Re ⨯=,传热管相对粗糙度01.0202.0===de ε,根据《化工原理(第二版)》上册图1-27得:054.0=λ。
则有:Pa u d l p p i h 177.1710231.0994302.03054.023221=⨯⨯⎪⎭⎫ ⎝⎛+⨯=⎪⎭⎫ ⎝⎛+=∆+∆ρλ 即:kPa p i 301003.1415.1177.17104<⨯=⨯⨯⨯=∑∆管程流动阻力在允许的围。