大学物理 第5章 刚体力学基础习题课ppt课件
合集下载
2020年大学物理 刚体力学

2l
1 2 2g (sin sin ) 3g ( 3 1)
2 3l 3 6 4l
2019/12/10
第五章 刚体力学基础 动量矩
5
§5-2 力矩 刚体绕定轴转动微分方程
一、 力矩
•力
•
改变质点的运动状态 改变刚体的转动状态
质点获得加速度 刚体获得角加速度
力F 对o点的力矩:
空间:
M d ?
时间: F dt m m0
时间: M dt ?
2019/12/10
第五章 刚体力学基础 动量矩
24
§5-3 绕定轴转动刚体的动能 动能定理
一. 转动动能
z
设系统包括有 N 个质量元
取 mi,其动能为
Eki
1 2
miv
i
2
1 2
mi
M z Jzz ——刚体定轴转动定律
2019/12/10
第五章 刚体力学基础 动量矩
13
Mz Jzz
刚体在总外力矩Mz的作用下,获得的角加速度β与总外力 矩的大小成正比,与J成反比。
讨论
(1) 刚体定轴转动动力学中的基本方程,是力矩 的瞬时作用规律
(2) M、J、β必须对同一转轴定义
(3) M 正比于 ,力矩越大,刚体的 越大
M z r1 F1 r2 F2 r F合外力
F
z
F F外 0 Mz 0 F
重力矩等于全部质量集中 在重心时的重力矩
z
F外 0
Mz 0
F
Mz rG mg
2019/12/10
第五章 刚体力学基础 动量矩
8
1 2 2g (sin sin ) 3g ( 3 1)
2 3l 3 6 4l
2019/12/10
第五章 刚体力学基础 动量矩
5
§5-2 力矩 刚体绕定轴转动微分方程
一、 力矩
•力
•
改变质点的运动状态 改变刚体的转动状态
质点获得加速度 刚体获得角加速度
力F 对o点的力矩:
空间:
M d ?
时间: F dt m m0
时间: M dt ?
2019/12/10
第五章 刚体力学基础 动量矩
24
§5-3 绕定轴转动刚体的动能 动能定理
一. 转动动能
z
设系统包括有 N 个质量元
取 mi,其动能为
Eki
1 2
miv
i
2
1 2
mi
M z Jzz ——刚体定轴转动定律
2019/12/10
第五章 刚体力学基础 动量矩
13
Mz Jzz
刚体在总外力矩Mz的作用下,获得的角加速度β与总外力 矩的大小成正比,与J成反比。
讨论
(1) 刚体定轴转动动力学中的基本方程,是力矩 的瞬时作用规律
(2) M、J、β必须对同一转轴定义
(3) M 正比于 ,力矩越大,刚体的 越大
M z r1 F1 r2 F2 r F合外力
F
z
F F外 0 Mz 0 F
重力矩等于全部质量集中 在重心时的重力矩
z
F外 0
Mz 0
F
Mz rG mg
2019/12/10
第五章 刚体力学基础 动量矩
8
大学物理 第5章 刚体力学基础习题课ppt课件

t 利用定轴转动中的转动定律
M Jβ
1 0
2 0 M 2 2 5 ( k g m ) J 0 .8 β
2018/11/8
13
补充: 刚体在平面力系作用下静止平衡 A 的条件: 作用于刚体平面力系的 矢量和为0,对与力作用平面⊥的 任意轴的力矩的代数和为0.
2018/11/8
5. (P29 47) 一长为l、重W的均匀梯子,靠墙放置,如图, 梯子下端连一倔强系数为k 的弹簧。当梯子靠墙竖直放置 时,弹簧处于自然长度,墙和地面都是光滑的。当梯子 依墙而与地面成θ角且处于平衡状态时, (1)地面对梯子的作用力的大小为 。 B (2)墙对梯子的作用力的大小为 。 (3)W、k、l、θ应满足的关系式为 。 l
大学物理 第5 章 刚体力学基 础习题课
刚体力学基础
一、基本概念 1.刚体及其平动、转动、定轴转动 理想化的力学模型 特性:特殊的质点系(牛顿力学) 2.转动惯量
J mr
i
刚体对定轴的转动惯量等于刚体中每个质点的质量 与这一质点到转轴的垂直距离的平方的乘积的总和。
2 i i
J r dm
3.(p29. 45 ) 半径为20cm 的主动轮,通过皮带拖动半径 为50cm的被动轮转动。主动轮从静止开始作匀角加速转 动,在4s内,被动轮的角速度达到8πrad.s-1,则主动轮在 这段时间内转过了_____圈。
1 0 t t 解:t = 4s 时, 1 1 1 1 1则 1 t1 两轮边缘上点的线速度大小相等: r r 1 1 2 2
θ
1B
l
F 0 N F kl co 无平动: F 0 N W
i i x B
i i y A
M Jβ
1 0
2 0 M 2 2 5 ( k g m ) J 0 .8 β
2018/11/8
13
补充: 刚体在平面力系作用下静止平衡 A 的条件: 作用于刚体平面力系的 矢量和为0,对与力作用平面⊥的 任意轴的力矩的代数和为0.
2018/11/8
5. (P29 47) 一长为l、重W的均匀梯子,靠墙放置,如图, 梯子下端连一倔强系数为k 的弹簧。当梯子靠墙竖直放置 时,弹簧处于自然长度,墙和地面都是光滑的。当梯子 依墙而与地面成θ角且处于平衡状态时, (1)地面对梯子的作用力的大小为 。 B (2)墙对梯子的作用力的大小为 。 (3)W、k、l、θ应满足的关系式为 。 l
大学物理 第5 章 刚体力学基 础习题课
刚体力学基础
一、基本概念 1.刚体及其平动、转动、定轴转动 理想化的力学模型 特性:特殊的质点系(牛顿力学) 2.转动惯量
J mr
i
刚体对定轴的转动惯量等于刚体中每个质点的质量 与这一质点到转轴的垂直距离的平方的乘积的总和。
2 i i
J r dm
3.(p29. 45 ) 半径为20cm 的主动轮,通过皮带拖动半径 为50cm的被动轮转动。主动轮从静止开始作匀角加速转 动,在4s内,被动轮的角速度达到8πrad.s-1,则主动轮在 这段时间内转过了_____圈。
1 0 t t 解:t = 4s 时, 1 1 1 1 1则 1 t1 两轮边缘上点的线速度大小相等: r r 1 1 2 2
θ
1B
l
F 0 N F kl co 无平动: F 0 N W
i i x B
i i y A
大学物理学——刚体的转动PPT课件

mg
2 3
L cos
Mg
1 2
L cos
arccos(1 3v02 ) 64gL
[思考]
上式对v0值有何限制?
例5-12
圆盘质量M,半径R,J=MR2/2,转轴光滑,人的质量m,开始时,两者静止. 求:人在盘上沿边缘走过一周时,盘对地面转过的角度.
解:
在走动过程中,人-盘系统 L=Const.
解:
d d(at bt 3 ct 4 )
dt
dt
a 3bt 2 4ct 3
d d (a 3bt 2 4ct 3 )
dt dt
6bt 12ct 2
Note:
角速度的矢量表示法:
大小:
方向://转轴, 符合右手螺旋
r v Or
线速度:
v
r
验证:
大小:
r 方向:
4
F1
an at
F1
4
法向:
F2
mg
sin man 5mg sin
3mg sin
2
F2
2
F
F12 F22
mg 4
99 sin 2 1 (方向?)
§5.5 转动中的功和能 (Rotational Work and Energy)
1.力矩的功
F
Ft
d
dr r
(垂直于转轴的截面)
O
mv
①这里v是质点速度在垂直于转轴的平面内的分量值.
②L有正负,取决于转动正方向的选取.
2.刚体对固定轴的角动量
ri
mi vi
3.定轴转动的角动量定理
L miviri miri2
J
⑴微分形式:
大学物理刚体力学习题课ppt课件

0 3g/ L
(2)弹性碰撞过程,角动量守恒 m
J0 JmvL
机械能守恒
12J02
1J21mv2
22
.
v 1 3gL 2
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
2 23 2 3g
l
.
6. 如图所示的阿特伍德机装置中,滑轮和绳子间没
有滑动且绳子不可以伸长,轴与轮间有阻力矩,求
滑轮两边绳子的张力。已知m1=20 kg, m2=10 kg。
滑轮质量为m3=5 kg。滑轮半径为r=0.2 m。滑轮可视
为均匀圆盘,阻力矩Mf=6.6 Nm,圆盘对过其中心且
与盘面垂直的轴的转动惯量为
解:由于摩擦力矩恒定,因此轮子做匀角加速转动, 轮子上的各点做匀变速圆周运动
0t
t1, 0.80
0.20
t2,00.40
当轮子静止时 = 0
2022
2 0
2
02 0.40
2.50
.N 2 .5 0/2 5 0/4
4. 在恒力矩M=12 Nm作用下,转动惯量为4 kgm2 的圆盘从静止开始转动。当转过一周时,圆盘的转 动角速度为 2 3 rad/s。
与O点的距离为3l/4,求:(1)棒开始运动时的角速度;
(2)棒的最大偏转角。
o
解:对题中非弹性碰撞,角动量守恒,
mv 3 l J
4
J
m(3l)2 4
1 3Ml2
36ml
(27m16M)l
3
l 4
l
A
上摆过程, 机械能守恒
1J 2M l(1 g c o) sm3lg (1 c o)s
2
大学物理上册课件:第五章刚体力学基础

所以,刚体定轴转动用角量描述比较方便。
5.1.2、刚体定轴转动的角量描述 定轴转动只有两个转动方向。 规定 ox 轴逆时针转动为正方向,反之为负方向。
角位置: (t) 刚体定轴转动的运动学方程。
角位移: 2 1
平均角速度: =
t
角速度: (矢量)
=d
dt
y
rP•
•P
A
O S A
x
角加速度: (矢量)
z
o
ri
i 1
mi
则:
Ek转
1 2
J 2
o
注意:转动动能实质与平动动能相同,表达式不
Ek转
1 2
m vc2
1 2
J 2
5.2.2、转动惯量的计算:描述刚体转动惯性大小的物理量。
1、定义:刚体对转轴的转动惯量:
n
J miri 2 i 1
J r 2 d m V
SI单位:kg . m
大 小 :M Z rF sin Fd Ft r
d=rsinθ 称为力F 对转轴的力臂。
方向: 由右手螺旋定则确定。
Mr FZ有o两个方向,可用正o负表Fr示。
MZ 0
MZ 0
MZ
z
o rp
F
d
•
o
z
r
Ft P
F
d
•
Fn
2、F不在转轴平面内
把F 分解为径向Fr 、横向Ft ①Fr 对转轴的力矩为零;
5.2定轴转动刚体的功和能
5.2.1、刚体的动能
平动动能 : Ek平 转动动能 : Ek转
i i
1 2
mi v i2
1 2
mi
v
i
5.1.2、刚体定轴转动的角量描述 定轴转动只有两个转动方向。 规定 ox 轴逆时针转动为正方向,反之为负方向。
角位置: (t) 刚体定轴转动的运动学方程。
角位移: 2 1
平均角速度: =
t
角速度: (矢量)
=d
dt
y
rP•
•P
A
O S A
x
角加速度: (矢量)
z
o
ri
i 1
mi
则:
Ek转
1 2
J 2
o
注意:转动动能实质与平动动能相同,表达式不
Ek转
1 2
m vc2
1 2
J 2
5.2.2、转动惯量的计算:描述刚体转动惯性大小的物理量。
1、定义:刚体对转轴的转动惯量:
n
J miri 2 i 1
J r 2 d m V
SI单位:kg . m
大 小 :M Z rF sin Fd Ft r
d=rsinθ 称为力F 对转轴的力臂。
方向: 由右手螺旋定则确定。
Mr FZ有o两个方向,可用正o负表Fr示。
MZ 0
MZ 0
MZ
z
o rp
F
d
•
o
z
r
Ft P
F
d
•
Fn
2、F不在转轴平面内
把F 分解为径向Fr 、横向Ft ①Fr 对转轴的力矩为零;
5.2定轴转动刚体的功和能
5.2.1、刚体的动能
平动动能 : Ek平 转动动能 : Ek转
i i
1 2
mi v i2
1 2
mi
v
i
大学物理第05章-刚体的转动PPT课件

球质量为m。现将单摆拉到水平位置后由静止释放,
摆球在 A 处与直杆作完全弹性碰撞后恰好静止。试
求:⑴ 细直杆的质量M;⑵碰撞后细直杆摆动的最
大角度。(忽略一切阻力)
解 ⑴ 按角动量守恒定律
JmmJMM
O
l
m
系统的1.动写能出刚守体恒角解动题量思守路恒表达式;
2. 由动能不变列出表达式;
1 1 3. 确定质2量;
c o
B
(1) o 0
Mmg6l 3g
J0 m2l 9 2l
.
18
(2)
M J d
dt
m6 lc go s 9 1m 2d d l t9 1m 2 ld d
d3gcosd
2l
0d0232glcosd
A
c
123gsin23g
o
B
2 2l 0 2l
3g l
0
.
19
例7. 一半径为R,质量为m的均匀圆盘平放在粗糙的
.
1
平动和转动
平动: 刚体在运动过程中,其上任意两点的连线 始终保持平行。
注: 可以用质点动力学 的方法来处理刚体 的平动问题。
.
2
转动: 刚体上所有质点都绕同一直线作圆
周运动。这种运动称为刚体的转动。这 条直线称为转轴。
定轴转动:
转轴固定不动的转动。
.
3
ω
v
P
•
r
r 刚体
基点O ×
刚体绕O的转动其转轴是 可以改变的,反映顺时轴
Jc
1 2
mR2
Jz
Jc
R
Jz
1mR2 mR2 2
3 2
mR
2
高校大学物理第五章刚体运动学课件
解 (1)转速3000r/min和1200r/min相应的角速 度分别为
2
2π 3000 60
100π
rad/s
1
2π 1200 60
40π
rad/s
19
当t = 12s时
2 1 100π 40 π 15.7rad s2
t
12
(2)飞轮 12 s 内转过的角位移
0
0t
1 t 2
设 ct
由定义, 得 d ct
dt
d ctdt
16
t
两边积分 d c td t
0
0
由题意 在t 300s时
1 ct 2
2
18000r min1
18000 2π 600πrads-1 60
所以
c
2
t2
2 600π 3002
π rad s3 75
17
任意时刻的角速度
第5章 刚体运动学
1
第5章 刚体运动学
5.1 刚体和自由度的概念 5.2 刚体的平动 5.3 刚体绕定轴转动
2
§5.1 刚体和自由度的概念
一. 特刚殊体的质点系,形状和体积不变化 —— 理想化模型
在力作用下,组成物体的所有质点间的距离始终保持不变
二. 自由度
确定物体的位置所需要的独立坐标数 —— 物体的自由度数
s O
i=1
z
z
(x,y,z)
O
yO
y
x
i=2
i=3
x i = 3+2+1= 6
当刚体受到某些限制 ——自由度减少 3
§ 5.2 刚体的平动
1. 刚体的平动 刚体运动时,在刚体内所作的任一条直线都
大学物理:第 05 章 刚体力学基础
j
i
设作用在质元Dmi上的外力
位于转动平面内。
z
合外力对刚体做的元功: P
力矩的功:
功率:
三、刚体定轴转动的动能定理
合外力矩对刚体所作的功等于刚体转动动能的增量。
四、刚体的重力势能
以地面为势能零点,刚体和地球 系统的重力势能:
z
i O
五、 刚体定轴转动的功能原理
将重力矩作的功用重力势能差表示:
如:直立旋转陀螺不倒。
o
此时,即使撤去轴承的支撑作用, 刚体仍将作 定轴转动——定向回转仪—— 可以作定向装置。
二、非刚体( J 可变)的角动量守恒
当 J 增大, 就减小,当 J 减小, 就增大。
如:芭蕾舞,花样滑冰中的转动, 恒星塌缩 (R0,0) (R,) 中子星 的形成等。
[例5-11] 水平转台(m1 、 R ) 可绕竖直的中心轴转动,初角 速度0,一人(m2 )立在台中心,相对转台以恒定速度u沿 半径向边缘走去,计算经时间 t,台转过了多少角度。 解:人与转台组成的系统对竖直 轴的角动量守恒:
(2)
(3) (4)
[例5-16] 细杆A : (m , L)可绕轴转动,水平处静止释放, 在竖直位置与静止物块B : (m) 发生弹性碰撞,求碰后: (1)物块B的速度 vB ,(2)细杆A 的角速度2 , (3)细杆A 转过的最大角度 θmax 。 解: B
A
碰后反方向转动。
A
B
[例5-17] 圆锥体R,h,J,表面有浅槽,令以ω0转动, 小滑块m 由静止从顶端下滑,不计摩擦,求滑到底部滑 块相对圆锥体的速度、圆锥体角速度。
是关于刚体定轴转动的动力学方程。 (与 F = ma 比较) 推广到 J 可变情形: ——刚体定轴转动的角动量定理
刚体力学基础 ppt课件
PPT课件
14
(2)用质量不计的细杆连接的五个质点, 如图55所示。转轴垂直于质点所在平面且通过o点, 转动 惯量为
JO=m.02 +2m(2l2) +3m(2l)2 +4ml2 +5m(2l2) =30ml2
2m
l
ml
l 3m
o
4m
l
5m
图5-5
PPT课件
15
例题5-2 质量连续分布刚体: J r 2dm
d( J )
dt
(5-3)
(Lz=J)
上式称为物体定轴转动方程。
对定轴转动的刚体, J为常量, d /dt=, 故式(6-16)
又可写成
M=J
(5-4)
这就是刚体定轴转动定理。
PPT课件
9
M=J
(5-4)
(5-4)表明, 刚体所受的合外力矩等于刚体的转动 惯量与刚体角加速度的乘积。
(5-6)
式中: r为刚体上的质元dm到转轴的距离。
PPT课件
12
三.平行轴定理
Jo=Jc+Md2
(5-7)
Jc 通过刚体质心的轴的转动 惯量;
M 刚体系统的总质量; d 两平行轴(o,c)间的距离。
Jo d Jc
o
C M
图5-3
PPT课件
13
例题5-1 质量离散分布刚体: J=Δmi ri2
fij ) 0
i
j( i j )
得
i
d ri Fi dt
i
( ri mii )
PPT课件
7
i
d ri Fi dt
i
《物理刚体力学》课件
体质量乘以角速 度乘以旋转半径。
角动量守恒的条 件:刚体在运动 过程中,不受外 力矩作用,或者 外力矩的矢量和 为零。
角动量守恒的应用: 在物理学、工程学 等领域,角动量守 恒定律被广泛应用 于分析刚体的运动 状态和设计机械设 备。
刚体的振动与波 动
体育器材:篮球架、足球 门、单杠等体育器材的结 构和支撑
医疗设备:手术床、轮椅、 担架等医疗设备的支撑和 连接
电子产品:手机、电脑、 电视等电子产品的外壳和 框架
刚体在体育运动中的应用
篮球:篮球架、篮球板等设备都是 刚体,它们需要承受运动员的撞击 和冲击。
田径:田径运动中的起跑器、跳高 杆等设备也是刚体,它们需要承受 运动员的撞击和冲击。
刚体在工程中的应用:设计、制造和维护各种机械设备,如汽车、飞机、桥梁等
刚体在生物力学中的应用:研究人体骨骼、肌肉等组织的力学性能,为医疗、康复等领域提 供科学依据
感谢您的观看
汇报人:PPT
添加标题
添加标题
添加标题
添加标题
转动惯量:刚体转动时,其转动惯 量与质量、形状、转动轴的位置有 关。
转动定律的局限性:转动定律只适 用于刚体,不适用于非刚体。
刚体的转动惯量
定义:刚体转动惯量是刚体转动时,其角动量与角速度的比值 公式:I=mr^2,其中m是刚体质量,r是刚体到转轴的距离 应用:刚体的转动惯量在物理学、工程学等领域有广泛应用 影响因素:刚体的形状、质量分布、转轴位置等因素都会影响其转动惯量
消失
基本假设:物体 在受到外力作用 时,其运动状态 保持不变,即物 体在受到外力作 用时,其速度、 加速度和位置保
持不变
局限性:刚体 力学只适用于 刚体,不适用 于流体、弹性 体等非刚体物
角动量守恒的条 件:刚体在运动 过程中,不受外 力矩作用,或者 外力矩的矢量和 为零。
角动量守恒的应用: 在物理学、工程学 等领域,角动量守 恒定律被广泛应用 于分析刚体的运动 状态和设计机械设 备。
刚体的振动与波 动
体育器材:篮球架、足球 门、单杠等体育器材的结 构和支撑
医疗设备:手术床、轮椅、 担架等医疗设备的支撑和 连接
电子产品:手机、电脑、 电视等电子产品的外壳和 框架
刚体在体育运动中的应用
篮球:篮球架、篮球板等设备都是 刚体,它们需要承受运动员的撞击 和冲击。
田径:田径运动中的起跑器、跳高 杆等设备也是刚体,它们需要承受 运动员的撞击和冲击。
刚体在工程中的应用:设计、制造和维护各种机械设备,如汽车、飞机、桥梁等
刚体在生物力学中的应用:研究人体骨骼、肌肉等组织的力学性能,为医疗、康复等领域提 供科学依据
感谢您的观看
汇报人:PPT
添加标题
添加标题
添加标题
添加标题
转动惯量:刚体转动时,其转动惯 量与质量、形状、转动轴的位置有 关。
转动定律的局限性:转动定律只适 用于刚体,不适用于非刚体。
刚体的转动惯量
定义:刚体转动惯量是刚体转动时,其角动量与角速度的比值 公式:I=mr^2,其中m是刚体质量,r是刚体到转轴的距离 应用:刚体的转动惯量在物理学、工程学等领域有广泛应用 影响因素:刚体的形状、质量分布、转轴位置等因素都会影响其转动惯量
消失
基本假设:物体 在受到外力作用 时,其运动状态 保持不变,即物 体在受到外力作 用时,其速度、 加速度和位置保
持不变
局限性:刚体 力学只适用于 刚体,不适用 于流体、弹性 体等非刚体物
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.冲量矩和动量矩
(1) 冲量矩(力矩对时间的积累效应)
元冲量矩:Mv d t 力矩乘以力矩所作用的时间。
力矩在t1→t2内总冲量矩:
t
t
1
2
v M
d
t
(2) 角动量(动量矩)
刚体对固定转动轴的角动量,等于它对该轴的转动惯
量和角速度的乘积。 L vJv
2020/5/6
.
4
二、基本规律
1. 刚体定轴转动的转动定律
四、典型习题分析与讲解
2020/5/6
.
9
1(为.(r P沿24Z3 1轴i7ˆ)正. 4 一方ˆj刚 向5 体)kˆ。以, 设其每某单分时位钟刻为6刚0“转体10绕上-2m一z ”轴点,做P若的匀以位速“置转10矢动-2m量•s-1”
为速度单位,则该时刻P点的速度为:
( A ) v v 9 4 . 2 i ˆ 1 2 5 . 6 ˆ j 1 5 7 . 0 k ˆ
(A) ω mR2 ,(V顺) 时针;
JR (B) ω mR2 ,(V逆) 时针;
JR
(C) mR2 ,(顺V时) 针;
J mR2 R
分析:
选逆时针为正
JRmV0
JmR2(V) 0
(D) mR2 ,(逆V时) 针。
J mR2 R
R mR2 (V )
∴选(A ) 2020/5/6
[
.
]
同课本p120.5-14
定轴
2020/5/6
.
7
(2)平行轴定理
若有任一轴与过质心的轴平行,相距为d,刚体
对其转动惯量为J,则有 J=JC+m d 2。
3.定轴转动的动力学问题
rr
解法:利用定轴转动中的转动定律 M J
步骤:
(1)审题,确定研究对象;
(2)建立坐标系;
(3)对研究对象进行受力分析和受力矩分析,并按
坐标系的正方向写出外力矩的表达式及规律方程(注:
12
E 2 m v 2020/5/6 ki
i. i
Ek
1 J2
2
2
4.力矩及其功和功率
(1)对M v转轴rv的力F v矩M vz rviF vi i
(2)力矩的功(力矩的空间积累效应)
元功: dAMd
总功:A 2 Md 1
(3)功率:
N d A M d M
dt
dt
2020/5/6
.
3
转动惯量J=
。
解:初角速度为: ω0=0
末角速度为: ω=8(rad/s)
角加速度为:β ω ω0 800.8(rad/s2)
t
10
利用定轴转动中的转动定律 M Jβ
J M 20 25(kgm2) β 0.8
2020/5/6
.
13
5. (P29 47) 一长为l、重W的均匀梯子,靠墙放置,如图, 梯子下端连一倔强系数为k 的弹簧。当梯子靠墙竖直放置
v
微分形式: v
dL
M 外 dt
积分形式:
t2 t1
v vv v M dtL2L1L
4. 角动量守恒定律
如果刚体所受的对于某一固定轴的合外力矩为零,
则它对于这一固定轴的角动量保持不变。
M外 z 0,则 Jzωcon. st
ቤተ መጻሕፍቲ ባይዱ
5. 机械能守恒
对于包括刚体的系统,功能原理和机械能守恒定律
仍成2020立/5/6 。
时,弹簧处于自然长度,墙和地面都是光滑的。当梯子
依墙而与地面成θ角且处于平衡状态时,
(B )v v 2 5 .1 iˆ1 8 .8ˆ j
(C )v v 2 5 .1 iˆ 1 8 .8ˆ j
(D)vv31.4kˆ
∴选(B )
分析:ωω=v60r2eπ v/mkˆin=1rev/s=2πrad/s
该∴时P刻点rvP在点转3的动iˆ速平4度面ˆj为内:5对kˆvv圆心ω vo′R 的v矢2径πkˆ为:(3iˆR v4ˆj3)iˆ4ˆj
受力分析和受力矩须取隔离体),并用线角量关系将
F=ma与M=J 联系起来;
(4)计算对轴的转动惯量;
(2502)0/5/6解方程,求未. 知,并对结果进行必要的讨论。8
4.定轴转动中的功能问题 解法:利用动能定理和机械能守恒定律
5.角动量原理及角动量守恒定律 6.混合题型
解法:
应用运动学公式、转动定律和角动量守恒定律。
刚体力学基 础
习题课
2020/5/6
.
1
刚体力学基础
一、基本概念
1.刚体及其平动、转动、定轴转动
理想化的力学模型 特性:特殊的质点系(牛顿力学)
2.转动惯量
刚体对定轴的转动惯量等于刚体中每个质点的质量
与这一质点到转轴的垂直距离的平方的乘积的总和。
J miri2 J r 2dm
i
m
3.转动动能 (刚体中各质元的总动能)
6πˆj 8πiˆ 25.1iˆ18.8ˆj
2020/5/6
.
10
2.(P24 18) .质量为m的小孩站在半径为R 的水平平台边缘 上,平台可以绕通过其中心的竖直光滑固定轴自由转动,
转动惯量为 J 。平台和小孩开始时均静止。当小孩突然
以相对于地面为V 的速率在台边沿逆时针转向走动时,
则此平台相对地面旋转的角速度和旋转方向分别为
刚体所受的对于某一固定转动轴的合外力矩等于刚 体对此转轴的转动惯量与刚体在此合外力矩作用下所获
得的角加速度M r的外 乘积J。rJddtr
2.刚体定轴转动的动能定理
合外力矩对一个绕固定轴转动的刚体所做的功等
于刚体的转动动能的增量。
A1 2J221 2J12E k2E k1
2020/5/6
.
5
3. 刚体的角动量定理
t
1 1
主动轮在4s内的角位移
n1 1 2 0t11 1 241 1t1 rr21 2 1 2 2t1 1t1 4 2 1 125 2rr81242t12(0re)v
2020/5/6
.
12
4. (P29 46) 一可绕定轴转动的飞轮,在20N·m的总力矩作 用下,在10s内转速由零均匀地增加到8 rad/s,飞轮的
JR
11
3.(p29. 45 ) 半径为20cm 的主动轮,通过皮带拖动半径 为50cm的被动轮转动。主动轮从静止开始作匀角加速转
动,在4s内,被动轮的角速度达到8πrad.s-1,则主动轮在
这段时间内转过了_____圈。
解:t = 4s 时,101t11t1则 1 两轮边缘上点的线速度大小相等:1r1 2r2
.
6
三、习题基本类型
1.定轴转动的运动学问题
解法:利用定轴转动的运动学描述关系
2 0dd0 02 t 02 tt(12ddtt20dd)2tvr2 ω ravatrnrrrrz ω2 v
2.转动惯量的计算
•P
解法(:1)定义法:J Δmiri2
Or
i
J r2dm r2ρdV