2015年秋八年级数学期中考试试卷
人教版八年级上册数学期中考试试卷及答案

人教版数学八年级上册期中考试试题一.选择题(本题共6题,每小题3分,总共18分)1.下列图形是轴对称图形的有()A.2个B.3个C.4个D.5个2.如果一个三角形的两边长分别为2和4,则第三边长可能是()A.2 B.4 C.6 D.83.如图,在四边形ABCD中,AB=AD,CB=CD,若连接AC、BD相交于点O,则图中全等三角形共有()A.1对B.2对C.3对D.4对4.如图,AC=CE,∠ACE=90°,AB⊥BD,ED⊥BD,AB=6cm,DE=2cm,则BD等于()A.6cm B.8cm C.10cm D.4cm5.如图:△ABC的周长为30cm,把△ABC的边AC对折,使顶点C和点A重合,折痕交BC边于点D,交AC边与点E,连接AD,若AE=4cm,则△ABD的周长是()A.22cm B.20cm C.18cm D.15cm6.如图,在△ABC中,已知点D、E、F分别是BC、AD、CE的中点,且S△ABC=4,S△BEF=()A.2 B.1 C.D.二.填空题(本题共6题,每小题3分,总共18分)7.若点P(m,m﹣1)在x轴上,点P关于y轴对称的点坐标为.8.一个多边形的每一个外角都等于36°,则该多边形的内角和等于度.9.如图:在△ABC和△FED中,AD=FC,AB=FE,当添加条件时,就可得到△ABC≌△FED.(只需填写一个即可)10.如图,等腰三角形ABC中AB=AC,∠A=20°,线段AB的垂直平分线交AB于点D,交AC于点E,连接BE,则∠CBE= .11.如图所示,点P为∠AOB内一点,分别作出P点关于OA、OB的对称点P1,P 2,连接P1P2交OA于M,交OB于N,P1P2=15,则△PMN的周长为.12.用一条长16厘米的细绳围成一个等腰三角形,其中一边长为6厘米,则另外两边的长分别为.三、13.(6分)一个多边形的内角和比它的外角的和的2倍还大180°,求这个多边形的边数.14.(6分)如图所示,在△ABC中,∠A=90°,DE⊥BC,BD平分∠ABC,AD=6cm,BC=15cm,求:△BDC的面积.15.(6分)如图,点D、E在△ABC的BC边上,AB=AC,AD=AE.求证:BD=CE.16.(6分)如图:△ABC和△ADE是等边三角形,AD是BC边上的中线.求证:BE=BD.17.(6分)图(a)、图(b)是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1.请在图(a)、图(b)中,分别画出符合要求的图形,所画图形各顶点必须与方格纸中的小正方形顶点重合.具体要求如下:(1)画一个底边长为4,面积为8的等腰三角形;(2)画一个面积为16的等腰直角三角形.四、18.(8分)已知:如图,AB=CD,DE⊥AC,BF⊥AC,E,F是垂足,DE=BF.求证:(1)AF=CE;(2)AB∥CD.19.(8分)如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连结AE、DE、DC.①求证:△ABE≌△CBD;②若∠CAE=30°,求∠BDC的度数.20.(8分)如图,点M、N分别是正五边形ABCDE的边BC、CD上的点,且BM=CN,AM交BN于点P.(1)求证:△ABM≌△BCN;(2)求∠APN的度数.21.(8分)如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且DE ∥AB,过点E作EF⊥DE,交BC的延长线于点F.(1)求∠F的度数;(2)若CD=2,求DF的长.五、(本题10分)22.(10分)如图1,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q.(1)求证:△AEP≌△BAG;(2)试探究EP与FQ之间的数量关系,并证明你的结论;(3)如图2,若连接EF交GA的延长线于H,由(2)中的结论你能判断EH与FH的大小关系吗?并说明理由;六、(本题12分)23.(12分)如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.(1)如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1s后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC 的哪条边上相遇?参考答案与试题解析一.选择题(本题共6题,每小题3分,总共18分)1.下列图形是轴对称图形的有()A.2个B.3个C.4个D.5个【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断.【解答】解:图(1)有一条对称轴,是轴对称图形,符合题意;图(2)不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;图(3)有二条对称轴,是轴对称图形,符合题意;图(3)有五条对称轴,是轴对称图形,符合题意;图(3)有一条对称轴,是轴对称图形,符合题意.故轴对称图形有4个.故选C.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.如果一个三角形的两边长分别为2和4,则第三边长可能是()A.2 B.4 C.6 D.8【考点】三角形三边关系.【分析】已知三角形的两边长分别为2和4,根据在三角形中任意两边之和>第三边,任意两边之差<第三边;即可求第三边长的范围.【解答】解:设第三边长为x,则由三角形三边关系定理得4﹣2<x<4+2,即2<x<6.因此,本题的第三边应满足2<x<6,把各项代入不等式符合的即为答案.2,6,8都不符合不等式2<x<6,只有4符合不等式.故选B.【点评】本题考查了三角形三边关系,此题实际上就是根据三角形三边关系定理列出不等式,然后解不等式即可.3.如图,在四边形ABCD中,AB=AD,CB=CD,若连接AC、BD相交于点O ,则图中全等三角形共有()A.1对B.2对C.3对D.4对【考点】全等三角形的判定.【分析】首先证明△ABC≌△ADC,根据全等三角形的性质可得∠BAC=∠DAC,∠BCA=∠DCA,再证明△ABO≌△ADO,△BOC≌△DOC.【解答】解:∵在△ABC和△ADC中,∴△ABC≌△ADC(SSS),∴∠BAC=∠DAC,∠BCA=∠DCA,∵在△ABO和△ADO中,∴△ABO≌△ADO(SAS),∵在△BOC和△DOC中,∴△BOC≌△DOC(SAS),故选:C.【点评】考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.4.如图,AC=CE,∠ACE=90°,AB⊥BD,ED⊥BD,AB=6cm,DE=2cm,则BD 等于()A.6cm B.8cm C.10cm D.4cm 【考点】全等三角形的判定与性质.【分析】由题中条件求出∠BAC=∠DCE,可得直角三角形ABC与CDE全等,进而得出对应边相等,即可得出结论.【解答】解:∵AB⊥BD,ED⊥BD,∴∠B=∠D=∠ACE=90°,∴∠BAC+∠ACB=90°,∠ACB+∠ECD=90°,∴∠BAC=∠ECD,∵在Rt△ABC与Rt△CDE中,,∴Rt△ABC≌Rt△CDE(AAS),∴BC=DE=2cm,CD=AB=6cm,∴BD=BC+CD=2+6=8cm,故选B.【点评】本题主要考查了全等三角形的判定及性质,应熟练掌握.5.如图:△ABC的周长为30cm ,把△ABC的边AC对折,使顶点C和点A重合,折痕交BC边于点D,交AC边与点E,连接AD,若AE=4cm,则△ABD的周长是()A.22cm B.20cm C.18cm D.15cm【考点】翻折变换(折叠问题).【分析】由图形和题意可知AD=DC,AE=CE=4,AB+BC=22,△ABD的周长=AB+AD+BD=AB+CD+BC﹣CD=AB+BC,即可求出周长为22.【解答】解:∵AE=4cm,∴AC=8,∵△ABC的周长为30cm,∴AB+BC=22,∵△ABD的周长=AB+AD+BD,AD=DC,∴△ABD的周长=AB+AD+BD=AB+CD+BC ﹣CD=AB+BC=22故选择A.【点评】本题主要考查翻折变换的性质、三角形的周长,关键在于求出AB+BC的长度.6.如图,在△ABC中,已知点D、E、F分别是BC、AD、CE的中点,且S△ABC=4,S△BEF =()A.2 B.1 C.D.【考点】三角形的面积.【分析】根据三角形的中线把三角形分成两个面积相等的三角形可得S△ABD=S△ABC,S△ACD=S△ABC,S△BDE=S△ABD,S△CDE=S△ACD,然后求出S△BCE=S△ABC,再根据S△BEF=S△BCE列式求解即可.【解答】解:∵点D是BC的中点,∴S△ABD=S△ABC,S△ACD=S△ABC,∵点E是AD的中点,∴S△BDE=S△ABD,S△CDE=S△ACD,∴S△BCE=S△BDE+S△CDE=(S△ABD+S△ACD)=S△ABC,∵点F是CE的中点,∴S△BEF=S△BCE=×S△ABC,=××4,=1.故选B.【点评】本题考查了三角形的面积,主要利用了三角形的中线把三角形分成两个面积相等的三角形,需熟记.二.填空题(本题共6题,每小题3分,总共18分)7.若点P(m,m﹣1)在x轴上,点P 关于y轴对称的点坐标为(﹣1,0).【考点】关于x轴、y轴对称的点的坐标.【分析】直接利用x轴上点的坐标性质得出m的值,进而利用关于y轴对称的点坐标性质得出答案.【解答】解:∵点P(m,m﹣1)在x 轴上,∴m﹣1=0,则m=1,故P(1,0),则点P关于y轴对称的点坐标为:(﹣1,0).故答案为:(﹣1,0).【点评】此题主要考查了x轴上点的坐标性质以及关于y轴对称的点坐标性质,得出m的值是解题关键.8.一个多边形的每一个外角都等于36°,则该多边形的内角和等于1440 度.【考点】多边形内角与外角.【分析】任何多边形的外角和等于360°,可求得这个多边形的边数.再根据多边形的内角和等于(n﹣2)•180°即可求得内角和.【解答】解:∵任何多边形的外角和等于360°,∴多边形的边数为360°÷36°=10,∴多边形的内角和为(10﹣2)•180°=1440°.故答案为:1440.【点评】本题需仔细分析题意,利用多边形的外角和求出边数,从而解决问题.9.如图:在△ABC和△FED中,AD=FC,AB=FE,当添加条件BC=ED或∠A=∠F 或AB∥EF 时,就可得到△ABC≌△FED.(只需填写一个即可)【考点】全等三角形的判定.【分析】要得到△ABC≌△FED,现有条件为两边分别对应相等,找到全等已经具备的条件,根据全等的判定方法选择另一条件即可得等答案.【解答】解:AD=FC⇒AC=FD,又AB=EF,加BC=DE就可以用SSS判定△ABC≌△FED;加∠A=∠F或AB∥EF就可以用SAS判定△ABC≌△FED.故答案为:BC=ED或∠A=∠F或AB∥EF.【点评】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.10.如图,等腰三角形ABC中AB=AC,∠A=20°,线段AB的垂直平分线交AB 于点D,交AC于点E,连接BE,则∠CBE= 60°.【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】由DE是线段AB的垂直平分线,根据线段垂直平分线的性质,可求得AAE=BE,然后由等边对等角,可求得∠ABE的度数,又由等腰三角形ABC中AB=AC,∠A=20°,即可求得∠ABC的度数,继而求得答案.【解答】解:∵DE是线段AB的垂直平分线,∴AE=BE,∴∠ABE=∠A=20°,∵等腰三角形ABC中,AB=AC,∠A=20°,∴∠ABC=∠C==80°,∴∠CBE=∠ABC﹣∠ABE=80°﹣20°=60°.故答案为:60°.【点评】此题考查了线段垂直平分线的性质与等腰三角形的性质.此题难度不大,注意掌握数形结合思想的应用.11.如图所示,点P为∠AOB内一点,分别作出P点关于OA、OB的对称点P1,P2,连接P1P2交OA于M,交OB于N,P1P2=15,则△PMN的周长为15 .【考点】轴对称的性质.【分析】P点关于OA的对称是点P1,P点关于OB的对称点P2,故有PM=P1M,PN=P2N.【解答】解:∵P点关于OA的对称是点P1,P点关于OB的对称点P2,∴PM=P1M,PN=P2N.∴△PMN的周长为PM+PN+MN=MN+P1M+P2N=P1P2=15.故答案为:15【点评】本题考查轴对称的性质.对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等.12.用一条长16厘米的细绳围成一个等腰三角形,其中一边长为6厘米,则另外两边的长分别为4cm,6cm或5cm,5cm .【考点】等腰三角形的判定;三角形三边关系.【分析】分已知边6cm是腰长和底边两种情况讨论求解.【解答】解:6cm是腰长时,底边为16﹣6×2=4,∵6+4=10,∴4cm、6cm、6cm能组成三角形;6cm是底边时,腰长为(16﹣6)=5cm,5cm、5cm、6cm能够组成三角形;综上所述,另外两边的长分别为4cm,6cm或5cm,5cm,故答案为:4cm,6cm或5cm,5cm【点评】本题考查了等腰三角形的性质,难点在于分情况讨论并利用三角形的三边关系判断是否能组成三角形.三、13.一个多边形的内角和比它的外角的和的2倍还大180°,求这个多边形的边数.【考点】多边形内角与外角.【分析】设这个多边形的边数为n,根据多边形的内角和公式(n﹣2)•180°与外角和定理列出方程,求解即可.【解答】解:设这个多边形的边数为n,根据题意,得(n﹣2)×180°=2×360°+180°,解得n=7.故这个多边形的边数是7.【点评】本题考查了多边形的内角和与外角和定理,任意多边形的外角和都是360°,与边数无关.14.如图所示,在△ABC中,∠A=90°,DE⊥BC,BD平分∠ABC,AD=6cm,BC=15cm,求:△BDC的面积.【考点】角平分线的性质.【分析】根据角平分线的性质得到DE=AD=6cm,根据三角形的面积公式计算即可.【解答】解:∵BD平分∠ABC,∠A=90°,DE⊥BC,∴DE=AD=6cm,∴△BDC的面积=×BC×DE=×15×6=45cm2.【点评】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.15.如图,点D、E在△ABC的BC边上,AB=AC,AD=AE.求证:BD=CE.【考点】等腰三角形的性质.【分析】要证明线段相等,只要过点A 作BC的垂线,利用三线合一得到P为DE及BC的中点,线段相减即可得证.【解答】证明:如图,过点A作AP⊥BC于P.∵AB=AC,∴BP=PC;∵AD=AE,∴DP=PE,∴BP﹣DP=PC﹣PE,∴BD=CE.【点评】本题考查了等腰三角形的性质;做题时,两次用到三线合一的性质,由等量减去等量得到差相等是解答本题的关键;16.如图:△ABC和△ADE是等边三角形,AD是BC边上的中线.求证:BE=BD.【考点】等边三角形的性质;全等三角形的判定与性质.【分析】根据等边三角形三线合一的性质可得AD为∠BAC的角平分线,根据等边三角形各内角为60°即可求得∠BAE=∠BAD=30°,进而证明△ABE≌△ABD,得BE=BD.【解答】证明:∵△ABC和△ADE是等边三角形,AD为BC边上的中线,∴AE=AD,AD为∠BAC的角平分线,即∠CAD=∠BAD=30°,∴∠BAE=∠BAD=30°,在△ABE和△ABD中,,∴△ABE≌△ABD(SAS),∴BE=BD.【点评】本题考查了全等三角形的证明和全等三角形对应边相等的性质,考查了等边三角形各边长、各内角为60°的性质,本题中求证△ABE≌△ABD是解题的关键.17.图(a)、图(b)是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1.请在图(a)、图(b)中,分别画出符合要求的图形,所画图形各顶点必须与方格纸中的小正方形顶点重合.具体要求如下:(1)画一个底边长为4,面积为8的等腰三角形;(2)画一个面积为16的等腰直角三角形.【考点】作图—应用与设计作图;等腰直角三角形.【分析】(1)利用三角形面积求法以及等腰三角形的性质画出底边长为4,高为4的等腰三角形即可;(2)利用三角形面积求法以及等腰三角形的性质画出直角边长为4的等腰直角三角形即可.【解答】解:(1)如图(a)所示:(2)如图(b)所示【点评】此题主要考查了等腰三角形的性质、等腰直角三角形的性质以及作图;熟练掌握等腰三角形的性质是关键.四、18.已知:如图,AB=CD,DE⊥AC,BF⊥AC,E,F是垂足,DE=BF.求证:(1)AF=CE;(2)AB∥CD.【考点】全等三角形的判定与性质.【分析】由HL可得Rt△DCE≌Rt△BAF,进而得出对应线段、对应角相等,即可得出(1)、(2)两个结论.【解答】证明:(1)∵DE⊥AC,BF⊥AC,∴在Rt△DCE和Rt△BAF中,AB=CD,DE=BF,∴Rt△DCE≌Rt△BAF(HL),∴AF=CE;(2)由(1)中Rt△DCE≌Rt△BAF,可得∠C=∠A,∴AB∥CD.【点评】本题主要考查了全等三角形的判定及性质问题,能够熟练掌握.19.如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连结AE、DE、DC.①求证:△ABE≌△CBD;②若∠CAE=30°,求∠BDC的度数.【考点】全等三角形的判定与性质;三角形的外角性质.【分析】①利用SAS即可得证;②由全等三角形对应角相等得到∠AEB=∠CDB,利用外角的性质求出∠AEB的度数,即可确定出∠BDC的度数.【解答】①证明:在△ABE和△CBD中,,∴△ABE≌△CBD(SAS);②解:∵在△ABC中,AB=CB,∠ABC=90°,∴∠BAC=∠ACB=45°,∵△ABE≌△CBD,∴∠AEB=∠BDC,∵∠AEB为△AEC的外角,∴∠AEB=∠ACB+∠CAE=30°+45°=75°,则∠BDC=75°.【点评】此题考查了全等三角形的判定与性质,以及三角形的外角性质,熟练掌握全等三角形的判定与性质是解本题的关键.20.如图,点M、N分别是正五边形ABCDE 的边BC、CD上的点,且BM=CN,AM交BN于点P.(1)求证:△ABM≌△BCN;(2)求∠APN的度数.【考点】全等三角形的判定与性质;多边形内角与外角.【分析】(1)利用正五边形的性质得出AB=BC,∠ABM=∠C,再利用全等三角形的判定得出即可;(2)利用全等三角形的性质得出∠BAM+∠ABP=∠APN,进而得出∠CBN+∠ABP=∠APN=∠ABC即可得出答案.【解答】(1)证明:∵正五边形ABCDE,∴AB=BC,∠ABM=∠C,∴在△ABM和△BCN中,∴△ABM≌△BCN(SAS);(2)解:∵△ABM≌△BCN,∴∠BAM=∠CBN,∵∠BAM+∠ABP=∠APN,∴∠CBN+∠ABP=∠APN=∠ABC==108°.即∠APN的度数为108°.【点评】此题主要考查了全等三角形的判定与性质以及正五边形的性质等知识,熟练掌握全等三角形的判定方法是解题关键.21.如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.(1)求∠F的度数;(2)若CD=2,求DF的长.【考点】等边三角形的判定与性质;含30度角的直角三角形.【分析】(1)根据平行线的性质可得∠EDC=∠B=60°,根据三角形内角和定理即可求解;(2)易证△EDC是等边三角形,再根据直角三角形的性质即可求解.【解答】解:(1)∵△ABC 是等边三角形,∴∠B=60°,∵DE∥AB,∴∠EDC=∠B=60°,∵EF⊥DE,∴∠DEF=90°,∴∠F=90°﹣∠EDC=30°;(2)∵∠ACB=60°,∠EDC=60°,∴△EDC是等边三角形.∴ED=DC=2,∵∠DEF=90°,∠F=30°,∴DF=2DE=4.【点评】本题考查了等边三角形的判定与性质,以及直角三角形的性质,30度的锐角所对的直角边等于斜边的一半.五、(本题10分)22.(10分)(2016秋•赣县期中)如图1,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q.(1)求证:△AEP≌△BAG;(2)试探究EP与FQ之间的数量关系,并证明你的结论;(3)如图2,若连接EF交GA的延长线于H,由(2)中的结论你能判断EH 与FH的大小关系吗?并说明理由;【考点】三角形综合题;全等三角形的判定与性质;等腰直角三角形.【分析】(1)根据等腰Rt△ABE的性质,求出∠EPA=∠EAB=∠AGB=90°,∠PEA=∠BAG,根据AAS推出△EPA≌△AGB;(2)根据全等三角形的性质推出EP=AG,同理可得△FQA≌△AGC,即可得出AG=FQ,最后等量代换即可得出答案;(3)求出∠EPH=∠FQH=90°,根据AAS 推出△EPH≌△FQH,即可得出EH与FH 的大小关系;【解答】解:(1)如图1,∵∠EAB=90°,EP⊥AG,AG⊥BC,∴∠EPA=∠EAB=∠AGB=90°,∴∠PEA+∠EAP=90°,∠EAP+∠BAG=90°,∴∠PEA=∠BAG,在△EPA和△AGB中,,∴△EPA≌△AGB(AAS),(2)EP=FQ,证明:由(1)可得,△EPA≌△AGB,∴EP=AG,同理可得,△FQA≌△AGC,∴AG=FQ,∴EP=FQ;(3)EH=FH,理由:如图,∵EP⊥AG,FQ⊥AG,∴∠EPH=∠FQH=90°,在△EPH和△FQH中,,∴△EPH≌△FQH(AAS),∴EH=FH.【点评】本题属于三角形综合题,主要考查了全等三角形的性质和判定以及等腰直角三角形的性质的综合应用,解题时注意:全等三角形的对应边相等,对应角相等.等腰直角三角形是一种特殊的三角形,具有所有三角形的性质,还具备等腰三角形和直角三角形的所有性质.六、(本题12分)23.(12分)(2009•包头)如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.(1)如果点P在线段BC上以3cm/s 的速度由B点向C点运动,同时,点Q 在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1s后,△BPD与△CQP 是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以②中的运动速度从点C 出发,点P以原来的运动速度从点B 同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?【考点】全等三角形的判定与性质;一元一次方程的应用.【分析】(1)①根据时间和速度分别求得两个三角形中的边的长,根据SAS 判定两个三角形全等.②根据全等三角形应满足的条件探求边之间的关系,再根据路程=速度×时间公式,先求得点P运动的时间,再求得点Q的运动速度;(2)根据题意结合图形分析发现:由于点Q的速度快,且在点P的前边,所以要想第一次相遇,则应该比点P 多走等腰三角形的两个腰长.【解答】解:(1)①∵t=1s,∴BP=CQ=3×1=3cm,∵AB=10cm,点D为AB的中点,∴BD=5cm.又∵PC=BC﹣BP,BC=8cm,∴PC=8﹣3=5cm,∴PC=BD.又∵AB=AC,∴∠B=∠C,在△BPD和△CQP中,∴△BPD≌△CQP(SAS).②∵vP ≠vQ,∴BP≠CQ,若△BPD≌△CPQ,∠B=∠C,则BP=PC=4cm,CQ=BD=5cm,∴点P,点Q运动的时间s,∴cm/s;(2)设经过x秒后点P与点Q第一次相遇,由题意,得x=3x+2×10,解得.∴点P共运动了×3=80cm.△ABC周长为:10+10+8=28cm,若是运动了三圈即为:28×3=84cm,∵84﹣80=4cm<AB的长度,∴点P、点Q在AB边上相遇,∴经过s点P与点Q第一次在边AB 上相遇.【点评】此题主要是运用了路程=速度×时间的公式.熟练运用全等三角形的判定和性质,能够分析出追及相遇的问题中的路程关系.人教版数学八年级上册期中考试试题一.选择题(本题共6题,每小题3分,总共18分)1.下列图形是轴对称图形的有()A.2个B.3个C.4个D.5个2.如果一个三角形的两边长分别为2和4,则第三边长可能是()A.2 B.4 C.6 D.83.如图,在四边形ABCD中,AB=AD,CB=CD,若连接AC、BD相交于点O,则图中全等三角形共有()A.1对B.2对C.3对D.4对4.如图,AC=CE,∠ACE=90°,AB⊥BD,ED⊥BD,AB=6cm,DE=2cm,则BD 等于()A.6cm B.8cm C.10cm D.4cm 5.如图:△ABC的周长为30cm,把△ABC的边AC对折,使顶点C和点A重合,折痕交BC边于点D,交AC边与点E,连接AD,若AE=4cm,则△ABD的周长是()A.22cm B.20cm C.18cm D.15cm6.如图,在△ABC中,已知点D、E、F分别是BC、AD、CE的中点,且S△ABC=4,S△BEF=()A.2 B.1 C.D.二.填空题(本题共6题,每小题3分,总共18分)7.若点P(m,m﹣1)在x轴上,点P 关于y轴对称的点坐标为.8.一个多边形的每一个外角都等于36°,则该多边形的内角和等于度.9.如图:在△ABC和△FED中,AD=FC,AB=FE,当添加条件时,就可得到△ABC≌△FED.(只需填写一个即可)10.如图,等腰三角形ABC中AB=AC,∠A=20°,线段AB的垂直平分线交AB 于点D,交AC于点E,连接BE,则∠CBE= .11.如图所示,点P为∠AOB内一点,分别作出P点关于OA、OB的对称点P1,P 2,连接P1P2交OA于M,交OB于N,P 1P2=15,则△PMN的周长为.12.用一条长16厘米的细绳围成一个等腰三角形,其中一边长为6厘米,则另外两边的长分别为.三、13.(6分)一个多边形的内角和比它的外角的和的2倍还大180°,求这个多边形的边数.14.(6分)如图所示,在△ABC中,∠A=90°,DE⊥BC,BD平分∠ABC,AD=6cm,BC=15cm,求:△BDC的面积.15.(6分)如图,点D、E在△ABC 的BC边上,AB=AC,AD=AE.求证:BD=CE.16.(6分)如图:△ABC和△ADE是等边三角形,AD是BC边上的中线.求证:BE=BD.17.(6分)图(a)、图(b)是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1.请在图(a)、图(b)中,分别画出符合要求的图形,所画图形各顶点必须与方格纸中的小正方形顶点重合.具体要求如下:(1)画一个底边长为4,面积为8的等腰三角形;(2)画一个面积为16的等腰直角三角形.四、18.(8分)已知:如图,AB=CD,DE ⊥AC,BF⊥AC,E,F是垂足,DE=BF.求证:(1)AF=CE;(2)AB∥CD.19.(8分)如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连结AE、DE、DC.①求证:△ABE≌△CBD;②若∠CAE=30°,求∠BDC的度数.20.(8分)如图,点M、N分别是正五边形ABCDE的边BC、CD上的点,且BM=CN,AM交BN于点P.(1)求证:△ABM≌△BCN;(2)求∠APN的度数.21.(8分)如图,在等边三角形ABC 中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.(1)求∠F的度数;(2)若CD=2,求DF的长.五、(本题10分)22.(10分)如图1,△ABC中,AG ⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC作等腰Rt△ABE和等腰Rt△ACF,过点E、F 作射线GA的垂线,垂足分别为P、Q.(1)求证:△AEP≌△BAG;(2)试探究EP与FQ之间的数量关系,并证明你的结论;(3)如图2,若连接EF交GA的延长线于H,由(2)中的结论你能判断EH与FH的大小关系吗?并说明理由;六、(本题12分)23.(12分)如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.(1)如果点P在线段BC上以3cm/s 的速度由B点向C点运动,同时,点Q 在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1s后,△BPD与△CQP 是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以②中的运动速度从点C 出发,点P以原来的运动速度从点B 同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?。
【三套打包】沈阳市八年级下学期期中数学试题含答案(3)

人教版数学八年级下册期中考试试题(含答案)人教版八年级下学期期中数学试卷数学试卷一.选择题(本大题共12小题,每小题 3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.在直角三角形中,若勾为3,股为4,则弦为 (A)5 (B)5 (C) 7 (D) 82.若3-x 在实数范围内有意义,则x 的取值范围是 (A)X ≤3 (B)X<3 (C)X ≥3 (D)X>33.下列计算正确的是(A)2+3=5 (B)532=⋅ (C)2223-=1 (D)212÷=2 4.下列二次根式中,是最简二次根式的是 (A)24 (B)73(C) 3-x (D)b a 25.在矩形ABCD 中,对角线AC ,BD 相交于点O ,若∠AOB=100°,则∠OAB 的度数是 (A)100° (B)80°(C) 50°(D) 40°6.如图,在Rt △ABC 中,∠C=90°,∠A=30°,AC=1,则BC 的长等于 (A)21(B)33 (C)3 (D)27.以下各组线段为边,能组成直角三角形的是 (A)6cm,12cm,13cm (B)45cm,1cm,32cm (C)8cm,6cm,9cm (D)1.5cm,2cm,2.5cm 8.下列条件不能判断四边形为正方形的是(A)对角线互相垂直且相等的平行四边形 (B)对角线互相垂直的矩形 (C)对角线互相垂直且相等的四边形 (D)对角线相等的菱形9.我们把顺次连接任意一个四边形各边中点所得的四边形叫做中点四边形,任意平行四边形的中点四边形是(A)平行四边形 (B)矩形 (C)菱形 (D)正方形10.如图,四边形ABCD ,∠D=∠C=90°,CD=2,点E 在边AB ,且AD=AE,BE=BC,则AE •BE 的值为(A)2 (B)1 (C)22 (D)2111. 如图,正方形ABCD 的边长为4,点E 对角线BD 上,且∠BAE=22.5°,EF ⊥AB ,垂足为点F ,则EF 的长为(A)1 (B)4-22 (C)22 (D)23-412. 如图,在菱形ABCD 中,∠BAD=120°,点E ,F 分别在边AB ,BC上,将菱形沿EF 折叠,点B 恰好落在AD 边上的点G 处,且EG ⊥AC ,若CD=8,则FG 的长为(A)6 (B)34 (C) 8 (D) 26二.填空题(本大题共6小题,每小题3分,共18分) 13. 计算:(25)(=__________;252)(=_______________; 494⨯=___________;14. 计算:224c ba =________;a28=___________;xy x 313⋅=_________; 15. 如图,在平行四边形ABCD 中,添加一个条件________使平行四边形ABCD 是菱形.16. 观察下列各式:311+=231,412+=413,513+=514,…请你将猜想到的规律用含自然数n (n ≥1)的代数式表示出来是____________.17. 如图,四边形AOBC 是正方形,OA=4,动点P 从点O 出发,沿折线OACB 方向以 1个单位/秒的速度匀速运动, 另一个点Q 从O 出发,沿折线OBCA 方向以 2个单位/秒的速度匀速运动,运动时间为t 秒,当它们相遇时停止运动,当以A 、P 、B 、Q 四点为顶点的四边形为平行四边形时, t 的值为__________。
北师大版八年级下册数学期中测试卷及答案

北师大版八年级下册数学期中测试卷及答案北师大版八年级下册期中测试卷数学考试时间:100分钟试卷满分:120分一、选择题(共10小题,每小题3分,满分30分)1.如果有意义,那么x的取值范围是()A。
x>1B。
x≥1C。
x≤1D。
x<12.下列各组数中,能构成直角三角形的是()A。
4,5,6C。
6,8,11D。
5,12,233.平行四边形,矩形,菱形,等边三角形,正方形中是轴对称图形的有()A。
1个B。
2个C。
3个D。
4个4.下列根式中属最简二次根式的是()A。
B。
C。
D。
5.若。
则a与3的大小关系是()A。
a<3B。
a≤3C。
a>3D。
a≥36.等边三角形的边长为2,则该三角形的面积为()A。
4B。
C。
2D。
37.能判定四边形ABCD为平行四边形的条件是()A。
AB∥CD,AD=BCC。
AB∥CD,∠C=∠ADD。
AB=AD,CB=CD8.适合下列条件的△ABC中,直角三角形的个数为()①a=,b=,c=;②a=6,∠A=45°;③∠A=32°,∠B=58°;④a=7,b=24,c=25.A。
2个B。
3个C。
4个D。
5个9.若O是四边形ABCD对角线的交点且OA=OB=OC=OD,则四边形ABCD是()A。
平行四边形B。
矩形C。
正方形D。
菱形10.四边形的四边顺次为a、b、c、d,且满足a2+b2+c2+d2=2(ab+cd),则这个四边形一定是()A。
平行四边形B。
两组对角分别相等的四边形C。
对角线互相垂直的四边形D。
对角线长相等的四边形二、填空题(共6小题,每小题3分,满分18分)11.若。
则=。
12.菱形的两条对角线分别是6cm和8cm,则这个菱形的面积是cm2.13.如图,在等边△XXX的外侧作正方形ABDE,AD与CE交于F,则∠ABF的度数为。
14.平行四边形ABCD的周长为20cm,对角线AC、BD相交于点O,若△BOC的周长比△AOB的周长大2cm,则CD=cm。
2015-2016年江苏省南通中学八年级上学期数学期中模拟试卷与答案

赠送初中数学几何模型【模型三】双垂型:图形特征:60°运用举例:1.在Rt△ABC中,∠ACB=90°,以斜边AB为底边向外作等腰三角形PAB,连接PC. (1)如图,当∠APB=90°时,若AC=5,PC=62,求BC的长;(2)当∠APB=90°时,若AB=45APBC的面积是36,求△ACB的周长.P 2.已知:如图,B、C、E三点在一条直线上,AB=AD,BC=CD.(1)若∠B=90°,AB=6,BC=23,求∠A的值;(2)若∠BAD+∠BCD=180°,cos∠DCE=35,求ABBC的值.3.如图,在四边形ABCD中,AB=AD,∠DAB=∠BCD=90°,(1)若AB=3,BC+CD=5,求四边形ABCD的面积(2)若p= BC+CD,四边形ABCD的面积为S,试探究S与p之间的关系。
DBC2015-2016学年江苏省南通中学八年级(上)期中数学模拟试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.(3分)小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一些块带去,就能配一块与原来一样大小的三角形?应该带()A.第1块B.第2块C.第3块D.第4块2.(3分)如图,把长方形ABCD沿EF对折后使两部分重合,若∠AEF=110°,则∠1=()A.30°B.35°C.40°D.50°3.(3分)如图,△ABN≌△ACM,AB=AC,BN=CM,∠B=50°,∠ANC=120°,则∠MAC的度数等于()A.120°B.70°C.60°D.50°4.(3分)若(3x+a)(3x+b)的结果中不含有x项,则a、b的关系是()A.ab=1 B.ab=0 C.a﹣b=0 D.a+b=05.(3分)多项式9x2﹣9因式分解的结果是()A.(3x+3)(3x﹣3)B.9(x2﹣1)C.9x(x﹣1)D.9(x+1)((x﹣1)6.(3分)如图,三条公路把A、B、C三个村庄连成一个三角形区域,某地区决定在这个三角形区域内修建一个集贸市场,要使集贸市场到三个条公路的距离相等,则这个集贸市场应建在()A.在AC、BC两边高线的交点处B.在AC、BC两边中线的交点处C.在∠A、∠B两内角平分线的交点处D.在AC、BC两边垂直平分线的交点处7.(3分)AD是△BAC的角平分线,过D向AB、AC两边作垂线,垂足为E、F,则下列错误的是()A.DE=DF B.AE=AF C.BD=CD D.∠ADE=∠ADF8.(3分)如果9x2+kx+25是一个完全平方式,那么k的值是()A.30 B.±30 C.15 D.±159.(3分)平面内点A(﹣1,2)和点B(﹣1,﹣2)的对称轴是()A.x轴 B.y轴 C.直线y=4 D.直线x=﹣110.(3分)如图,点P为∠AOB内一点,分别作点P关于OA,OB的对称点P1,P2,连接P1,P2交OA于M,交OB于N,若P1P2=6,则△PMN周长为()A.4 B.5 C.6 D.7二、填空题(本大题共8小题,每小题2分,共16分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)11.(2分)如图,在△ABC中,∠A=55°,∠B=60°,则外角∠ACD=度.12.(2分)已知△ABC中,AB=AC=4,∠A=60度,则△ABC的周长为.13.(2分)如图,已知∠1=∠2,请你添加一个条件:,使△ABD≌△ACD.14.(2分)三角形的一个外角小于与它相邻的内角,这个三角形是三角形.15.(2分)如图△ABC中,∠C=90°,AD为角平分线,若BC=5,BD=3,则点D 到边AB的距离为.16.(2分)如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=°.17.(2分)若9x2+mx+16是一个完全平方式,那么m的值是.18.(2分)(3+1)(32+1)(34+1)(38+1)=.三、解答题(本大题共9小题,共54分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(6分)计算(1)(2b+2)2﹣(2b+2)(2b﹣2)(2)(x+3)(x+4)﹣(x﹣1)2.20.(6分)因式分解(1)(m2+1)2﹣4m2(2)3(x﹣2y)2﹣3x+6y.21.(6分)在△AFD和△BEC中,点A、E、F、C在同一直线上,有下面四个论断:(1)AD=CB;(2)AE=CF;(3)∠B=∠D;(4)AD∥BC.请用其中三个作为条件,余下一个作为结论,编一道数学问题,并写出证明过程.22.(6分)如图,在四边形ABCD中,∠B=90°,DE∥AB交BC于E、交AC于F,∠CDE=∠ACB=30°,BC=DE.(1)求证:△FCD是等腰三角形;(2)若AB=4,求CD的长.23.(6分)如图,按规定,一块模板中AB、CD的延长线应相交成85°角.因交点不在板上,不便测量,工人师傅连接AC,测得∠BAC=32°,∠DCA=65°,此时AB、CD的延长线相交所成的角是不是符合规定?为什么?24.(6分)如图,已知AB=DC,AC=DB.求证:∠1=∠2.25.(6分)如图,在△ABC中,∠B=50°,∠C=70°,AD是高,AE是角平分线,(1)∠BAC=,∠DAC=.(填度数)(2)求∠EAD的度数.26.(6分)如图,△ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB于E,D 为垂足,连结EC.(1)求∠ECD的度数;(2)若CE=12,求BC长.27.(6分)如图,已知△ABC中,∠B=90°,AB=16cm,BC=12cm,P、Q是△ABC 边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C→A方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒.(1)出发2秒后,求PQ的长;(2)当点Q在边BC上运动时,出发几秒钟后,△PQB能形成等腰三角形?(3)当点Q在边CA上运动时,求能使△BCQ成为等腰三角形的运动时间.2015-2016学年江苏省南通中学八年级(上)期中数学模拟试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.(3分)小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一些块带去,就能配一块与原来一样大小的三角形?应该带()A.第1块B.第2块C.第3块D.第4块【解答】解:1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去,只有第2块有完整的两角及夹边,符合ASA,满足题目要求的条件,是符合题意的.故选:B.2.(3分)如图,把长方形ABCD沿EF对折后使两部分重合,若∠AEF=110°,则∠1=()A.30°B.35°C.40°D.50°【解答】解:∵AD∥BC,∠AEF=110°,∴BFE=180°﹣∠AEF=180°﹣110°=70°,∵长方形ABCD沿EF对折后使两部分重合,∴∠EFG=∠BFE=70°,∴∠1=180°﹣∠BFE﹣∠EFG=180°﹣70°﹣70°=40°.故选:C.3.(3分)如图,△ABN≌△ACM,AB=AC,BN=CM,∠B=50°,∠ANC=120°,则∠MAC的度数等于()A.120°B.70°C.60°D.50°【解答】解:∵∠ANC=120°,∴∠ANB=180°﹣120°=60°,∵∠B=50°,∴∠BAN=180°﹣60°﹣50°=70°,∵△ABN≌△ACM,∴∠BAN=∠MAC=70°.故选:B.4.(3分)若(3x+a)(3x+b)的结果中不含有x项,则a、b的关系是()A.ab=1 B.ab=0 C.a﹣b=0 D.a+b=0【解答】解:(3x+a)(3x+b)=9x2+3bx+3ax+ab=9x2+3(a+b)x+ab,∵(3x+a)(3x+b)的结果中不含有x项,∴a+b=0,∴a、b的关系是a+b=0;故选:D.5.(3分)多项式9x2﹣9因式分解的结果是()A.(3x+3)(3x﹣3)B.9(x2﹣1)C.9x(x﹣1)D.9(x+1)((x﹣1)【解答】解:9x2﹣9=9(x2﹣1)=9(x+1)(x﹣1).故选:D.6.(3分)如图,三条公路把A、B、C三个村庄连成一个三角形区域,某地区决定在这个三角形区域内修建一个集贸市场,要使集贸市场到三个条公路的距离相等,则这个集贸市场应建在()A.在AC、BC两边高线的交点处B.在AC、BC两边中线的交点处C.在∠A、∠B两内角平分线的交点处D.在AC、BC两边垂直平分线的交点处【解答】解:根据角平分线的性质,集贸市场应建在∠A、∠B两内角平分线的交点处.故选:C.7.(3分)AD是△BAC的角平分线,过D向AB、AC两边作垂线,垂足为E、F,则下列错误的是()A.DE=DF B.AE=AF C.BD=CD D.∠ADE=∠ADF【解答】解:如图,∵AD是∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,∴DE=DF,故A选项错误,在Rt△ADE和Rt△ADF中,,∴Rt△ADE≌Rt△ADF(HL),∴AE=AF,∠ADE=∠ADF,故B、D选项错误,只有△ABC是等腰三角形时,BD=CD,故C选项正确.故选:C.8.(3分)如果9x2+kx+25是一个完全平方式,那么k的值是()A.30 B.±30 C.15 D.±15【解答】解:∵(3x±5)2=9x2±30x+25,∴在9x2+kx+25中,k=±30.故选:B.9.(3分)平面内点A(﹣1,2)和点B(﹣1,﹣2)的对称轴是()A.x轴 B.y轴 C.直线y=4 D.直线x=﹣1【解答】解:∵点A(﹣1,2)和点B(﹣1,﹣2)对称,∴AB平行与y轴,∴对称轴是直线y=(﹣2+2)=0.故选:A.10.(3分)如图,点P为∠AOB内一点,分别作点P关于OA,OB的对称点P1,P2,连接P1,P2交OA于M,交OB于N,若P1P2=6,则△PMN周长为()A.4 B.5 C.6 D.7【解答】解:∵P与P1关于OA对称,∴OA为PP1的垂直平分线,∴MP=MP1,P与P2关于OB对称,∴OB为PP2的垂直平分线,∴NP=NP2,于是△PMN周长为MN+MP+NP=MN+MP1+NP2=P1P2=6.故选:C.二、填空题(本大题共8小题,每小题2分,共16分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)11.(2分)如图,在△ABC中,∠A=55°,∠B=60°,则外角∠ACD=115度.【解答】解:∵∠A=55°,∠B=60°,∴∠ACD=∠A+∠B=55°+60°=115°.故答案为:115.12.(2分)已知△ABC中,AB=AC=4,∠A=60度,则△ABC的周长为12.【解答】解:∵AB=AC=4,∠A=60°,∴△ABC是等边三角形,∴BC=AB=AC=4,∴△ABC的周长为12.故答案为12.13.(2分)如图,已知∠1=∠2,请你添加一个条件:∠B=∠C或∠BAD=∠CAD 或BD=CD,使△ABD≌△ACD.【解答】解:添加∠B=∠C,可用AAS判定两个三角形全等;添加∠BAD=∠CAD,可用ASA判定两个三角形全等;添加BD=CD,可用SAS判定两个三角形全等.故填∠B=∠C或∠BAD=∠CAD或BD=CD.14.(2分)三角形的一个外角小于与它相邻的内角,这个三角形是钝角三角形.【解答】解:因为三角形的一个外角与它相邻的内角和为180°,而题中说这个外角小于它相邻的内角,所以可知与它相邻的这个内角是一个大于90°的角即钝角,则这个三角形就是一个钝角三角形.15.(2分)如图△ABC中,∠C=90°,AD为角平分线,若BC=5,BD=3,则点D 到边AB的距离为2.【解答】解:过点D作DE⊥AB于E,∵△ABC中,∠C=90°,∴AC⊥CD,又∵AD为角平分线,AC⊥CD,DE⊥AB,∴DC=DE,∵BC=5,BD=3,∴CD=BC﹣BD=2.∴点D到边AB的距离为2.故答案为:2.16.(2分)如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=135°.【解答】解:观察图形可知:△ABC≌△BDE,∴∠1=∠DBE,又∵∠DBE+∠3=90°,∴∠1+∠3=90°.∵∠2=45°,∴∠1+∠2+∠3=∠1+∠3+∠2=90°+45°=135°.故填135.17.(2分)若9x2+mx+16是一个完全平方式,那么m的值是±24.【解答】解:∵9x2+mx+16是一个完全平方式,∴m=±24.故答案为:±2418.(2分)(3+1)(32+1)(34+1)(38+1)=×(316﹣1).【解答】解:(3+1)(32+1)(34+1)(38+1)=×(3﹣1)(3+1)(32+1)(34+1)(38+1)=×(32﹣1)(32+1)(34+1)(38+1)=(34﹣1)(34+1)(38+1)=×(316﹣1).故答案为:×(316﹣1).三、解答题(本大题共9小题,共54分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(6分)计算(1)(2b+2)2﹣(2b+2)(2b﹣2)(2)(x+3)(x+4)﹣(x﹣1)2.【解答】解:(1)(2b+2)2﹣(2b+2)(2b﹣2)=4b2+8b+4﹣4b2+4=8b+8;(2)(x+3)(x+4)﹣(x﹣1)2=x2+4x+3x+12﹣x2+2x﹣1=9x+11.20.(6分)因式分解(1)(m2+1)2﹣4m2(2)3(x﹣2y)2﹣3x+6y.【解答】解:(1)原式=(m2+1+2m)(m2+1﹣2m)=(m+1)2(m﹣1)2;(2)原式=3(x﹣2y)2﹣3(x﹣2y)=3(x﹣2y)(x﹣2y﹣1).21.(6分)在△AFD和△BEC中,点A、E、F、C在同一直线上,有下面四个论断:(1)AD=CB;(2)AE=CF;(3)∠B=∠D;(4)AD∥BC.请用其中三个作为条件,余下一个作为结论,编一道数学问题,并写出证明过程.【解答】解:以(1)、(2)、(4)为条件,(3)为结论.证明:∵AE=CF,∴AF=CE,∵AD∥BC,∴∠A=∠C,又AD=BC,∴△ADF≌△CBE(SAS),∴∠B=∠D.22.(6分)如图,在四边形ABCD中,∠B=90°,DE∥AB交BC于E、交AC于F,∠CDE=∠ACB=30°,BC=DE.(1)求证:△FCD是等腰三角形;(2)若AB=4,求CD的长.【解答】解:(1)∵DE∥AB,∴∠DEC=∠B.在△ABC和△CED中,∴△ABC≌△CED(ASA)∴∠CDE=∠ACB=30°,∴∠DCE=30°,∴∠DCF=∠DCE﹣∠ACB=30°,∴∠DCF=∠CDF,∴△FCD是等腰三角形;(2)∵∠B=90°,∠ACB=30°,∴AC=2AB.∵AB=4,∴AC=8,∴CD=8.答:CD=8.23.(6分)如图,按规定,一块模板中AB、CD的延长线应相交成85°角.因交点不在板上,不便测量,工人师傅连接AC,测得∠BAC=32°,∠DCA=65°,此时AB、CD的延长线相交所成的角是不是符合规定?为什么?【解答】解:不符合规定.延长AB、CD交于点O,∵△AOC中,∠BAC=32°,∠DCA=65°,∴∠AOC=180°﹣∠BAC﹣∠DCA=180°﹣32°﹣65°=83°<80°,∴模板不符合规定.24.(6分)如图,已知AB=DC,AC=DB.求证:∠1=∠2.【解答】证明:在△ABC和△DCB中∵,∴△ABC≌△DCB.∴∠A=∠D.又∵∠AOB=∠DOC,∴∠1=∠2.25.(6分)如图,在△ABC中,∠B=50°,∠C=70°,AD是高,AE是角平分线,(1)∠BAC=60°,∠DAC=20°.(填度数)(2)求∠EAD的度数.【解答】解:(1)∠BAC=60°,∠DAC=20°,在△ABC中∠B=50°,∠C=70°,∠BAC=180°﹣∠B﹣∠C=60°,∵AD是高,∠C=70°,∴∠DAC=90°﹣70°=20°,故答案为:60°;20°;(2)∵AE是角平分线,∴∠EAC=∠BAC=30°又∵AD是高,∴∠DAC+∠C=90°,∠DAC=90°﹣70°=20°,∴∠EAD=∠EAC﹣∠DAC=10°.26.(6分)如图,△ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB于E,D 为垂足,连结EC.(1)求∠ECD的度数;(2)若CE=12,求BC长.【解答】(1)解:∵DE垂直平分AC,∴CE=AE,∴∠ECD=∠A=36°.(2)解:∵AB=AC,∠A=36°,∴∠B=∠ACB=72°,∵∠ECD=36°,∴∠BCE=∠ACB﹣∠ECD=36°,∠BEC=72°=∠B,∴BC=EC=12.27.(6分)如图,已知△ABC中,∠B=90°,AB=16cm,BC=12cm,P、Q是△ABC 边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C→A方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒.(1)出发2秒后,求PQ的长;(2)当点Q在边BC上运动时,出发几秒钟后,△PQB能形成等腰三角形?(3)当点Q在边CA上运动时,求能使△BCQ成为等腰三角形的运动时间.【解答】解:(1)∵BQ=2×2=4(cm),BP=AB﹣AP=16﹣2×1=14(cm ),∠B=90°,∴PQ===(cm);(2)BQ=2t,BP=16﹣t,根据题意得:2t=16﹣t,解得:t=,即出发秒钟后,△PQB能形成等腰三角形;(3)①当CQ=BQ时,如图1所示,则∠C=∠CBQ,∵∠ABC=90°,∴∠CBQ+∠ABQ=90°.∠A+∠C=90°,∴∠A=∠ABQ,∴BQ=AQ,∴CQ=AQ=10,∴BC+CQ=22,∴t=22÷2=11秒.②当CQ=BC时,如图2所示,则BC+CQ=24,∴t=24÷2=12秒.③当BC=BQ时,如图3所示,过B点作BE⊥AC于点E,则BE==,∴CE=,∴CQ=2CE=14.4,∴BC+CQ=26.4,∴t=26.4÷2=13.2秒.综上所述:当t为11秒或12秒或13.2秒时,△BCQ为等腰三角形.第21页(共21页)。
新湘教版八年级期中考试数学试卷(下)

长乐中学八年级第二学期期中考试数学试卷(时量:90分钟满分:120分)姓名班级一、选择题(每小题3分,满分24分)1、下列几组数中,能作为直角三角形三边长度的是 ( )A. 4,5,6B.3,4,5错误!未找到引用源。
C. 6,8,11D. 5,12,232、下列条件中,能判定四边形为平行四边形的是().A.对角线互相垂直B.对角线互相平分C.一组对角相等D.一组对边相等3、下列图形中,是中心对称图形的是 ( )A B C D4、如图,四边形错误!未找到引用源。
的对角线互相平分,要使它成为矩形,那么需要添加的条件是()A.错误!未找到引用源。
B.错误!未找到引用源。
C.错误!未找到引用源。
D.错误!未找到引用源。
5、已知四边形错误!未找到引用源。
中,错误!未找到引用源。
,如果添加一个条件,即可推出该四边形是正方形,那么这个条件可以是().A.错误!未找到引用源。
B.错误!未找到引用源。
C.错误!未找到引用源。
D.错误!未找到引用源。
6.如图,菱形ABCD中,AB = 5,∠BCD= 120°,则对角线AC的长是().7、下列说法中正确的是( )A .对角线互相垂直且相等的四边形是正方形B .等边三角形是中心对称图形C .两条对角线相等的平行四边形是矩形D .两边相等的平行四边形是菱形 8、如图,在□ABCD 中,AB=6,AD=9,∠BAD 的平分线交BC 于点E ,交DC 的延长线于点F ,BG ⊥AE ,垂足为G ,BG=错误!未找到引用源。
,则ΔCEF 的周长为( )A.8B.9.5C.10D.11.5二、填空题(每小题4分,满分32分) 9、十二边形的内角和为 .10、一个多边形每一个外角都等于 40,则这个多边形的边数是______. 11、顺次连结任意四边形各边中点所得到的四边形一定是_____.12、如图在ABCD 中,AD =3cm ,AB =2cm ,则ABCD 的周长等于______.13、菱形ABCD 的对角线长分别为6cm 和8cm ,则菱形的面积为______.14、如图,D ,E 分别是△ABC 的边AC 和BC 的中点,已知DE =2,则AB =______.15、如图6,AC 是正方形ABCD 的对角线,AE 平分∠BAC ,EF ⊥AC 交AC 于点F ,若BE=2,则CF 长为 (第14题)CAE D BBACD(第6题)AD CB16、如图,第一个正方形的顶点A1(-1,1),B1(1,1);第二个正方形的顶点A2(-3,3),B2(3,3);第三个正方形的顶点A3(-6,6),B3(6,6);….按顺序取点A1,B 2,A3,B4,A5,B6,…,则第10个点应取点B10,其坐标为;第12n(n为正整数)个点应取点,其坐标为.三、解答题(本大题8小题,满分64分)17、(6分)已知:如图7,E、F是平行四边行ABCD的对角线AC上的两点,AE=CF。
八年级下册期中考试数学试卷(有答案)-名师版

八年级(下)期中数学试卷一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填在答题卡对应题目上.(注意:在试题卷上作答无效).1.下列各式中,属于分式的是()A.B.C.D.﹣2.在平面直角坐标系中,点M(﹣2,3)在()A.第一象限B.第二象限C.第三象限D.第四象限3.下列计算正确的是()A.2﹣2=﹣4B.2﹣2=4C.2﹣2=D.2﹣2=﹣4.下列约分中,正确的是()A.=x3B.=0C.D.5.王大爷饭后出去散步,从家中走20分钟到离家900米的公园,与朋友聊天10分钟后,用15分钟返回家中.下面图形表示王大爷离时间x(分)与离家距离y(米)之间的关系是()A.B.C.D.6.如果分式的值为零,则a的值为()A.±1B.2C.﹣2D.以上全不对7.如图,A、B两点在双曲线y=上,分别经过A、B两点向轴作垂线段,已知S=1,则S1+S2阴影=()A.3B.4C.5D.68.如图,直线y=x﹣1与x轴交于点B,与双曲线y=(x>0)交于点A,过点B作x轴的垂线,与双曲线y=交于点C,且AB=AC,则k的值为()A.2B.3C.4D.6二、填空题:(每小题3分,共24分)请把答案直接填在答题卡对应题中横线上.9.当x时,分式有意义.10.点P(3,﹣4)关于原点对称的点的坐标是.11.若函数y=(a+3)x+a2﹣9是正比例函数,则a=.12.用科学记数法表示:0.000204=.13.反比例函数y=的图象经过点(﹣2,3),则k的值为.14.若关于x的方程有增根,m.15.符号“”称为二阶行列式,规定它的运算法则为:=ad﹣bc,请你根据上述规定求出下列等式中x的值.若,那么x=.16.如图,过x轴正半轴上的任意一点P作y轴的平行线交反比例函数y=和y=﹣的图象于A,B两点,C是y轴上任意一点,则△ABC的面积为.三、解答题:本大题共8小题,共72分.解答应写出文字说明,证明过程或演算步骤.17.(10分)计算:①﹣4×()﹣2+|﹣5|+(π﹣3)0②﹣.18.(10分)解下列分式方程(1)=1(2)=19.(7分)先化简,再求值:,当a=﹣3时,求代数式的值.20.(7分)蓬溪芝溪玉液酒厂接到生产480件芝溪玉液酒的订单,为了尽快完成任务,该厂实际每天生产的件数比原来每天多50%,提前10天完成任务.原来每天生产多少件?21.(8分)“珍重生命,注意安全!”同学们在上下学途中一定要注意骑车安全.小明骑单车上学,当他骑了一段时,想起要买某本书,于是又折回到刚经过的新华书店,买到书后继续去学校,以下是他本次所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题:(1)小明家到学校的路程是多少米?(2)小明在书店停留了多少分钟?(3)本次上学途中,小明一共行驶了多少米?一共用了多少分钟?(4)我们认为骑单车的速度超过300米/分钟就超越了安全限度.问:在整个上学的途中哪个时间段小明骑车速度最快,速度在安全限度内吗?22.(8分)某商场欲购进一种商品,当购进这种商品至少为10kg,但不超过30kg时,成本y(元/kg)与进货量x(kg)的函数关系如图所示.(1)求y关于x的函数解析式,并写出x的取值范围.(2)若该商场购进这种商品的成本为9.6元/kg,则购进此商品多少千克?23.(10分)如图,直线y=x﹣2分别交x轴、y轴于A、B两点,O是原点.(1)求△AOB的面积.(2)过△AOB的顶点B画一条直线把△AOB分成面积相等的两部分,求出直线解析式.24.(12分)如图,已知A(﹣4,n),B(2,﹣4)是一次函数y=kx+b的图象和反比例函数y =的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线AB与x轴的交点C的坐标及△AOB的面积;(3)直接写出一次函数的值小于反比例函数值的x的取值范围.参考答案与试题解析一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填在答题卡对应题目上.(注意:在试题卷上作答无效).1.下列各式中,属于分式的是()A.B.C.D.﹣【分析】根据分式的定义,可得答案.【解答】解:A、是整式,故A错误;B、是分式,故B正确;C、是整式,故C错误;D、﹣是整式,故D错误;故选:B.【点评】本题考查了分式的定义,分母中含有字母的式子是分式,否则是整式,注意π是常数不是字母.2.在平面直角坐标系中,点M(﹣2,3)在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】横坐标小于0,纵坐标大于0,则这点在第二象限.【解答】解:∵﹣2<0,3>0,∴(﹣2,3)在第二象限,故选:B.【点评】本题考查了点的坐标,四个象限内坐标的符号:第一象限:+,+;第二象限:﹣,+;第三象限:﹣,﹣;第四象限:+,﹣;是基础知识要熟练掌握.3.下列计算正确的是()A.2﹣2=﹣4B.2﹣2=4C.2﹣2=D.2﹣2=﹣【分析】2﹣2表示2的平方的倒数,依据表示的意义即可求解.【解答】解:2﹣2==.故选:C.【点评】本题只需熟练掌握:负整数指数幂应把其化为正整数指数幂的倒数,进行计算即可.4.下列约分中,正确的是()A.=x3B.=0C.D.【分析】根据分式的基本性质,分别对每一项进行解答,即可得出答案.【解答】解:A、=x4,故本选项错误;B、=1,故本选项错误;C、==,故本选项正确;D、=,故本选项错误;故选:C.【点评】本题考查了约分,约去分式的分子与分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分.由约分的概念可知,要首先将分子、分母转化为乘积的形式,再找出分子、分母的最大公因式并约去,注意不要忽视数字系数的约分.5.王大爷饭后出去散步,从家中走20分钟到离家900米的公园,与朋友聊天10分钟后,用15分钟返回家中.下面图形表示王大爷离时间x(分)与离家距离y(米)之间的关系是()A.B.C.D.【分析】对四个图依次进行分析,符合题意者即为所求.【解答】解:A、从家中走20分钟到离家900米的公园,与朋友聊天20分钟后,用20分钟返回家中,故本选项错误;B、从家中走20分钟到离家900米的公园,与朋友聊天0分钟后,用20分钟返回家中,故本选项错误;C、从家中走30分钟到离家900米的公园,与朋友聊天0分钟后,用20分钟返回家中,故本选项错误;D、从家中走20分钟到离家900米的公园,与朋友聊天10分钟后,用15分钟返回家中,故本选项正确.故选:D.【点评】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.6.如果分式的值为零,则a的值为()A.±1B.2C.﹣2D.以上全不对【分析】根据分式的值为零的条件可得:|a|﹣2=0且a+2≠0,从而可求得a的值.【解答】解:由题意得:|a|﹣2=0且a+2≠0,解得:a=2.故选:B.【点评】此题主要考查了分式的值为零的条件,分式的值为零需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.7.如图,A、B两点在双曲线y=上,分别经过A、B两点向轴作垂线段,已知S=1,则S1+S2阴影=()A.3B.4C.5D.6【分析】欲求S1+S2,只要求出过A、B两点向x轴、y轴作垂线段与坐标轴所形成的矩形的面积即可,而矩形面积为双曲线y=的系数k,由此即可求出S1+S2.【解答】解:∵点A、B是双曲线y=上的点,分别经过A、B两点向x轴、y轴作垂线段,则根据反比例函数的图象的性质得两个矩形的面积都等于|k|=4,∴S1+S2=4+4﹣1×2=6.故选:D.【点评】本题主要考查了反比例函数的图象和性质及任一点坐标的意义,有一定的难度.8.如图,直线y=x﹣1与x轴交于点B,与双曲线y=(x>0)交于点A,过点B作x轴的垂线,与双曲线y=交于点C,且AB=AC,则k的值为()A.2B.3C.4D.6【分析】由题意得:BC垂直于x轴,点A在BC的垂直平分线上,则B(2,0)、C(2,),A (4,),将A点代入直线y=x﹣1求得k值.【解答】解:由于AB=AC,BC垂直于x轴,则点A在BC的垂直平分线上,由直线y=x﹣1,可得B(2,0),A、C均在双曲线y=上,则C(2,),A(4,),将A点代入直线y=x﹣1得:k=4.故选:C.【点评】本题考查了反比例函数系数k的几何意义,这里AB=AC是解决此题的突破口,题目比较好,有一定的难度.二、填空题:(每小题3分,共24分)请把答案直接填在答题卡对应题中横线上.9.当x≠1时,分式有意义.【分析】根据分式有意义的条件:分母≠0可得:x﹣1≠0,解可得答案.【解答】解:分式有意义,则x﹣1≠0,解得:x≠1,故答案为:≠1.【点评】此题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.10.点P(3,﹣4)关于原点对称的点的坐标是(﹣3,4).【分析】根据关于关于原点对称的点,横坐标与纵坐标都互为相反数.填空即可.【解答】解:点P(3,﹣4)关于原点对称的点的坐标是(﹣3,4),故答案为(﹣3,4).【点评】解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.11.若函数y=(a+3)x+a2﹣9是正比例函数,则a=3.【分析】由正比例函数的定义可得a2﹣9=0,a+3≠0,再解可得a的值.【解答】解:∵函数y=(a+3)x+a2﹣9是正比例函数,∴a2﹣9=0,a+3≠0,解得:a=3.故答案为:3.【点评】此题主要考查了正比例函数的定义,解题关键是掌握正比例函数的定义条件:正比例函数y=kx的定义条件是:k为常数且k≠0,自变量次数为1.12.用科学记数法表示:0.000204= 2.04×10﹣4.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:用科学记数法表示:0.000204=2.04×10﹣4.故答案为:2.04×10﹣4.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.13.反比例函数y=的图象经过点(﹣2,3),则k的值为﹣6.【分析】将点(﹣2,3)代入解析式可求出k的值.【解答】解:把(﹣2,3)代入函数y=中,得3=,解得k=﹣6.故答案为:﹣6.【点评】主要考查了用待定系数法求反比例函数的解析式.先设y=,再把已知点的坐标代入可求出k值,即得到反比例函数的解析式.14.若关于x的方程有增根,m3.【分析】分式方程去分母转化为整式方程,将x=5代入整式方程即可求出m的值.【解答】解:去分母得:2﹣x+m=0,将x=5代入得:2﹣5+m=0,解得:m=3.故答案为:3.【点评】此题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.15.符号“”称为二阶行列式,规定它的运算法则为:=ad﹣bc,请你根据上述规定求出下列等式中x的值.若,那么x=4.【分析】根据已知得出分式方程﹣=1,求出分式方程的解,再代入x﹣1和1﹣x进行检验即可.【解答】解:∵,∴﹣=1,方程两边都乘以x﹣1得:2+1=x﹣1,解得:x=4,检验:当x=4时,x﹣1≠0,1﹣x≠0,即x=4是分式方程的解,故答案为:4.【点评】本题考查了分式方程的应用,解此题的关键是根据材料得出分式方程,题目具有一定的代表性,是一道比较好的题目.16.如图,过x轴正半轴上的任意一点P作y轴的平行线交反比例函数y=和y=﹣的图象于A,B两点,C是y轴上任意一点,则△ABC的面积为3.【分析】设P(a,0),由直线APB与y轴平行,得到A和B的横坐标都为a,将x=a代入反比例函数y=和y=﹣中,分别表示出A和B的纵坐标,进而由AP+BP表示出AB,三角形ABC 的面积=×AB×OP,求出即可.【解答】解:设P(a,0),a>0,则A和B的横坐标都为a,将x=a代入反比例函数y=中得:y=,故A(a,);将x=a代入反比例函数y=﹣中得:y=﹣,故B(a,﹣),∴AB=AP+BP=+=,=AB•OP=××a=3.则S△ABC故答案为3.【点评】此题考查了反比例函数系数k的几何意义,以及坐标与图形性质,其中设出P的坐标,表示出AB是解本题的关键.三、解答题:本大题共8小题,共72分.解答应写出文字说明,证明过程或演算步骤.17.(10分)计算:①﹣4×()﹣2+|﹣5|+(π﹣3)0②﹣.【分析】(1)根据负整数指数幂、绝对值、零指数幂可以解答本题;(2)先对原式通分然后再化简即可解答本题.【解答】解:①﹣4×()﹣2+|﹣5|+(π﹣3)0=3﹣4×4+5+1=3﹣16+5+1=﹣7;②﹣=====.【点评】本题考查实数的运算、分式的加减法、负整数指数幂、零指数幂,解题的关键是明确它们各自的计算方法.18.(10分)解下列分式方程(1)=1(2)=【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:4﹣1=x﹣1,解得:x=4,经检验x=4是分式方程的解;(2)去分母得:4+x2+5x+6=x2﹣3x+2,解得:x=﹣1,经检验x=﹣1是分式方程的解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.19.(7分)先化简,再求值:,当a=﹣3时,求代数式的值.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将a的值代入计算可得.【解答】解:原式=﹣•=﹣=,当a=﹣3时,原式==﹣.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌分式的混合运算顺序和运算法则.20.(7分)蓬溪芝溪玉液酒厂接到生产480件芝溪玉液酒的订单,为了尽快完成任务,该厂实际每天生产的件数比原来每天多50%,提前10天完成任务.原来每天生产多少件?【分析】直接根据题意表示出原计划和实际生产的件数,进而利用提前10天完成任务得出等式求出答案.【解答】解:设原来每天生产x件,根据题意可得:=+10,解得:x=16,检验得:当x=16是原方程的根,答:原来每天生产16件.【点评】此题主要考查了分式方程的应用,根据题意利用生产的天数得出等式是解题关键.21.(8分)“珍重生命,注意安全!”同学们在上下学途中一定要注意骑车安全.小明骑单车上学,当他骑了一段时,想起要买某本书,于是又折回到刚经过的新华书店,买到书后继续去学校,以下是他本次所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题:(1)小明家到学校的路程是多少米?(2)小明在书店停留了多少分钟?(3)本次上学途中,小明一共行驶了多少米?一共用了多少分钟?(4)我们认为骑单车的速度超过300米/分钟就超越了安全限度.问:在整个上学的途中哪个时间段小明骑车速度最快,速度在安全限度内吗?【分析】(1)根据函数图象的纵坐标,可得答案;(2)根据函数图象的横坐标,可得到达书店时间,离开书店时间,根据有理数的减法,克的答案;(3)根据函数图象的纵坐标,可得相应的路程,根据有理数的加法,可得答案;(4)根据函数图象的纵坐标,可得路程,根据函数图象的横坐标,可得时间,根据路程与时间的关系,可得速度.【解答】解:(1)根据图象,学校的纵坐标为1500,小明家的纵坐标为0,故小明家到学校的路程是1500米;(2)根据题意,小明在书店停留的时间为从(8分)到(12分),故小明在书店停留了4分钟.(3)一共行驶的总路程=1200+(1200﹣600)+(1500﹣600)=1200+600+900=2700米;共用了14分钟.(4)由图象可知:0~6分钟时,平均速度==200米/分,6~8分钟时,平均速度==300米/分,12~14分钟时,平均速度==450米/分,所以,12~14分钟时速度最快,不在安全限度内.【点评】本题考查了函数图象,观察函数图象的纵坐标得出路程,观察函数图象的横坐标得出时间,又利用了路程与时间的关系.22.(8分)某商场欲购进一种商品,当购进这种商品至少为10kg,但不超过30kg时,成本y(元/kg)与进货量x(kg)的函数关系如图所示.(1)求y关于x的函数解析式,并写出x的取值范围.(2)若该商场购进这种商品的成本为9.6元/kg,则购进此商品多少千克?【分析】(1)设出成本y(元/kg)与进货量x(kg)的函数解析式,由图象上的点的坐标利用待定系数法即可求得结论;(2)令成本y=9.6,得出关于x的一元一次方程,解方程即可得出结论.【解答】解:(1)设成本y(元/kg)与进货量x(kg)的函数解析式为y=kx+b,由图形可知:,解得:.故y关于x的函数解析式为y=﹣0.1x+11,其中10≤x≤30.(2)令y=﹣0.1x+11=9.6,即0.1x=1.4,解得:x=14.故该商场购进这种商品的成本为9.6元/kg,则购进此商品14千克.【点评】本题考查了一次函数的图象以及用待定系数法求函数解析式,解题的关键:(1)设出解析式在图象上找出点的坐标利用待定系数法去求系数;(2)令y=9.6,得出关于x的一元一次方程.本题属于基础题,难度不大,解决该类题型的方法是利用图象得出点的坐标,结合待定系数法求出结论.23.(10分)如图,直线y=x﹣2分别交x轴、y轴于A、B两点,O是原点.(1)求△AOB的面积.(2)过△AOB的顶点B画一条直线把△AOB分成面积相等的两部分,求出直线解析式.【分析】(1)分别令直线解析式中x=0、y=0求出相对于的y、x值,由此即可得出点A、B的坐标,再利用三角形的面积公式即可得出结论;(2)找出线段OA的中点C,连接BC,设直线BC的解析式为y=kx+b(k≠0),由点A的坐标可得出点C的坐标,结合点B、C的坐标利用待定系数法即可得出结论.【解答】解:(1)令y=x﹣2中x=0,则y=﹣2,∴点B(0,﹣2);令y=x﹣2中y=0,则x﹣2=0,解得:x=3,∴点A(3,0).S=OA•OB=×2×3=3.△AOB(2)作出线段AO的中点C,连接BC,如图所示.∵点A(3,0),∴点C(,0).设直线BC的解析式为y=kx+b(k≠0),将点B(0,﹣2)、C(,0)代入y=kx+b中,得:,解得:,∴直线BC的解析式为y=x﹣2.【点评】本题考查了一次函数图象上点的坐标特征、三角形的面积公式以及待定系数法求出函数解析式,解题的关键是:(1)求出点A、B的坐标;(2)利用待定系数法求出函数解析式.本题属于基础题,难度不大,解决该题型题目时,找出点的坐标,再利用待定系数法求出函数解析式是关键.24.(12分)如图,已知A(﹣4,n),B(2,﹣4)是一次函数y=kx+b的图象和反比例函数y =的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线AB与x轴的交点C的坐标及△AOB的面积;(3)直接写出一次函数的值小于反比例函数值的x的取值范围.【分析】(1)先把B点坐标代入代入y=,求出m得到反比例函数解析式,再利用反比例函数解析式确定A点坐标,然后利用待定系数法求一次函数解析式;+S (2)根据x轴上点的坐标特征确定C点坐标,然后根据三角形面积公式和△AOB的面积=S△AOC进行计算;△BOC(3)观察函数图象得到当﹣4<x<0或x>2时,一次函数图象都在反比例函数图象下方.【解答】解:∵B(2,﹣4)在反比例函数y=的图象上,∴m=2×(﹣4)=﹣8,∴反比例函数解析式为:y=﹣,把A(﹣4,n)代入y=﹣,得﹣4n=﹣8,解得n=2,则A点坐标为(﹣4,2).把A(﹣4,2),B(2,﹣4)分别代入y=kx+b,得,解得,∴一次函数的解析式为y=﹣x﹣2;(2)∵y=﹣x﹣2,∴当﹣x﹣2=0时,x=﹣2,∴点C的坐标为:(﹣2,0),△AOB的面积=△AOC的面积+△COB的面积=×2×2+×2×4=6;(3)由图象可知,当﹣4<x<0或x>2时,一次函数的值小于反比例函数的值.【点评】本题考查的是一次函数与反比例函数的交点问题以及待定系数法的运用,灵活运用待定系数法是解题的关键,注意数形结合思想的正确运用.。
2015-2016学年天津市武清区八年级上期中数学试卷含答案解析
2015-2016学年天津市武清区八年级(上)期中数学试卷一、选择题(共12小题,每小题3分,满分36分)1.三角形的高、中线、角平分线都是()A.直线 B.射线C.线段 D.以上三种情况都有2.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A. B. C.D.3.如图,图中∠1的大小等于()A.40°B.50°C.60°D.70°4.下列说法正确的是()A.两个等边三角形一定全等B.腰对应相等的两个等腰三角形全等C.形状相同的两个三角形全等D.全等三角形的面积一定相等5.下列各组线段的长为边,能组成三角形的是()A.2cm,3cm,4cm B.2cm,3cm,5cm C.2cm,5cm,10cm D.8cm,4cm,4cm6.如图,是一块三角形木板的残余部分,量得∠A=100°,∠B=40°,这块三角形木板另外一个角∠C 的度数为()A.30°B.40°C.50°D.60°7.如图,AE∥DF,AE=DF,要使△EAC≌△FDB,需要添加下列选项中的()A.AB=CD B.EC=BF C.∠A=∠D D.AB=BC8.利用作角平分线的方法,可以把一个已知角()A.三等分B.四等分C.五等分D.六等分9.如图,在△ABC中,AB=AD=DC,∠B=70°,则∠C的度数为()A.35°B.40°C.45°D.50°10.如图,E是等边△ABC中AC边上的点,∠1=∠2,BE=CD,则△ADE的形状是()A.等腰三角形B.等边三角形C.不等边三角形 D.不能确定形状11.如图,直线L是一条河,P,Q是两个村庄.欲在L上的某处修建一个水泵站,向P,Q两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需管道最短的是()A. B.C.D.12.如图,Rt△ABC中,∠C=90°,∠B=45°,AD是∠CAB的平分线,DE⊥AB于E,AB=a,CD=m,则AC的长为()A.2m B.a﹣m C.a D.a+m二、填空题(共6小题,每小题3分,满分18分)13.如图是由射线AB,BC,CD,DE,EA组成的平面图形,则∠1+∠2+∠3+∠4+∠5=.14.如图,已知AB⊥CD,垂足为B,BC=BE,若直接应用“HL”判定△ABC≌△DBE,则需要添加的一个条件是.15.如图,在△ABC中,AB=AC,∠A=36°,BD、CE分别是△ABC、△BCD的角平分线,则图中的等腰三角形有个.16.已知等腰△ABC的周长为10,若设腰长为x,则x的取值范围是.17.如图,已知∠AOB=60°,点P是OA边上,OP=8cm,点M、N在边OB上,PM=PN,若MN=2cm,则ON=cm.18.如图,在△ABC中,∠ABC和∠ACB的平分线相交于点G,过点G作EF∥BC交AB于E,交AC于F,过点G作GD⊥AC于D,下列四个结论:①EF=BE+CF;②∠BGC=90°+∠A;③点G到△ABC各边的距离相等;④设GD=m,AE+AF=n,则S△AEF=mn.其中正确的结论是.三、解答题(共4小题,满分36分)19.如图,AD是△ABC边BC上的高,BE平分∠ABC交AD于点E.若∠C=60°,∠BED=70°.求∠ABC和∠BAC的度数.20.如图,方格纸中每个小正方形的边长都是1,△ABC的三个顶点都在格点上.(1)画△ABC关于直线MN的对称图形△A1B1C1(不写画法);(2)作出△ABC的边BC边上的高AE,垂足为点E.(不写画法);(3)△ABC的面积为.21.如图,已知△ABC≌△DEB,点E在AB上,DE与AC相交于点F,若DE=7,BC=4,∠D=35°,∠C=60°(1)求线段AE的长.(2)求∠DFA的度数.22.已知:如图,在△ABC、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C、D、E三点在同一直线上,连接BD.求证:(1)△BAD≌△CAE;(2)试猜想BD、CE有何特殊位置关系,并证明.2015-2016学年天津市武清区八年级(上)期中数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.三角形的高、中线、角平分线都是()A.直线 B.射线C.线段 D.以上三种情况都有【考点】三角形的角平分线、中线和高.【分析】根据三角形的角平分线、中线和高的定义即可求解.【解答】解:三角形的高、中线、角平分线都是线段.故选C.【点评】本题考查了三角形的角平分线、中线和高,从三角形的一个顶点向它的对边作垂线,垂足与顶点之间的线段叫做三角形的高;三角形一个内角的平分线与这个内角的对边交于一点,则这个内角的顶点与所交的点间的线段叫做三角形的角平分线;三角形一边的中点与此边所对顶点的连线叫做三角形的中线.注意:三角形有三条中线,有三条高线,有三条角平分线,它们都是线段.2.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A. B. C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、是轴对称图形,故本选项正确;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选A.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.3.如图,图中∠1的大小等于()A.40°B.50°C.60°D.70°【考点】三角形的外角性质.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:由三角形的外角性质得,∠1=130°﹣60°=70°.故选D.【点评】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,是基础题,熟记性质是解题的关键.4.下列说法正确的是()A.两个等边三角形一定全等B.腰对应相等的两个等腰三角形全等C.形状相同的两个三角形全等D.全等三角形的面积一定相等【考点】全等图形.【分析】根据全等图形的判定和性质对各个选项进行判断即可.【解答】解:两个等边三角形边长不一定相等,所以不一定全等,A错误;腰对应相等的两个等腰三角形对应角不一定相等,所以不一定全等,B错误;形状相同的两个三角形对应边不一定相等,所以不一定全等,C错误;全等三角形的面积一定相等,所以D正确,故选:D.【点评】本题考查的是全等图形的判定和性质,对应角相等、对应边相等的两个图形确定,全等形的周长和面积相等.5.下列各组线段的长为边,能组成三角形的是()A.2cm,3cm,4cm B.2cm,3cm,5cm C.2cm,5cm,10cm D.8cm,4cm,4cm【考点】三角形三边关系.【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.【解答】解:根据三角形任意两边的和大于第三边,可知A、2+3>4,能组成三角形,故A正确;B、2+3=5,不能组成三角形,故B错误;C、2+5<10,不能够组成三角形,故C错误;D、4+4=8,不能组成三角形,故D错误;故选A.【点评】本题考查了能够组成三角形三边的条件,其实用两条较短的线段相加,如果大于最长的那条就能够组成三角形.6.如图,是一块三角形木板的残余部分,量得∠A=100°,∠B=40°,这块三角形木板另外一个角∠C 的度数为()A.30°B.40°C.50°D.60°【考点】三角形内角和定理.【分析】直接根据三角形内角和定理解答即可.【解答】解:∵△ABC中,∠A=100°,∠B=40°,∴∠C=180°﹣∠A﹣∠B=180°﹣100°﹣40°=40°.故选B.【点评】此题比较简单,考查的是三角形内角和定理,即三角形的内角和是180°.7.如图,AE∥DF,AE=DF,要使△EAC≌△FDB,需要添加下列选项中的()A.AB=CD B.EC=BF C.∠A=∠D D.AB=BC【考点】全等三角形的判定.【分析】添加条件AB=CD可证明AC=BD,然后再根据AE∥FD,可得∠A=∠D,再利用SAS定理证明△EAC≌△FDB即可.【解答】解:∵AE∥FD,∴∠A=∠D,∵AB=CD,∴AC=BD,在△AEC和△DFB中,,∴△EAC≌△FDB(SAS),故选:A.【点评】此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.8.利用作角平分线的方法,可以把一个已知角()A.三等分B.四等分C.五等分D.六等分【考点】作图—基本作图.【分析】利用角平分线的性质进而分析得出答案.【解答】解:利用作角平分线的方法,可以把一个已知角2等分,进而可以将两角再次等分,故可以把一个已知角四等分.故选:B.【点评】此题主要考查了基本作图,正确把握角平分线的性质是解题关键.9.如图,在△ABC中,AB=AD=DC,∠B=70°,则∠C的度数为()A.35°B.40°C.45°D.50°【考点】等腰三角形的性质.【分析】先根据等腰三角形的性质求出∠ADB的度数,再由平角的定义得出∠ADC的度数,根据等腰三角形的性质即可得出结论.【解答】解:∵△ABD中,AB=AD,∠B=70°,∴∠B=∠ADB=70°,∴∠ADC=180°﹣∠ADB=110°,∵AD=CD,∴∠C=(180°﹣∠ADC)÷2=(180°﹣110°)÷2=35°,故选:A.【点评】本题考查的是等腰三角形的性质,熟知等腰三角形的两底角相等是解答此题的关键.10.如图,E是等边△ABC中AC边上的点,∠1=∠2,BE=CD,则△ADE的形状是()A.等腰三角形B.等边三角形C.不等边三角形 D.不能确定形状【考点】等边三角形的判定.【分析】先证得△ABE≌△ACD,可得AE=AD,∠BAE=∠CAD=60°,即可证明△ADE是等边三角形.【解答】解:∵△ABC为等边三角形∴AB=AC∵∠1=∠2,BE=CD∴△ABE≌△ACD∴AE=AD,∠BAE=∠CAD=60°∴△ADE是等边三角形.故选B.【点评】此题主要考查学生对等边三角形的判定及三角形的全等等知识点的掌握.11.如图,直线L是一条河,P,Q是两个村庄.欲在L上的某处修建一个水泵站,向P,Q两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需管道最短的是()A. B.C.D.【考点】轴对称-最短路线问题.【专题】应用题.【分析】利用对称的性质,通过等线段代换,将所求路线长转化为两定点之间的距离.【解答】解:作点P关于直线L的对称点P′,连接QP′交直线L于M.根据两点之间,线段最短,可知选项D铺设的管道,则所需管道最短.故选D.【点评】本题考查了最短路径的数学问题.这类问题的解答依据是“两点之间,线段最短”.由于所给的条件的不同,解决方法和策略上又有所差别.12.如图,Rt△ABC中,∠C=90°,∠B=45°,AD是∠CAB的平分线,DE⊥AB于E,AB=a,CD=m,则AC的长为()A.2m B.a﹣m C.a D.a+m【考点】角平分线的性质;等腰直角三角形.【分析】根据角平分线上的点到角的两边距离相等可得CD=DE,再利用“HL”证明Rt△ACD和Rt△AED全等,根据全等三角形对应边相等可得AC=AE,再判断出△BDE是等腰直角三角形,根据等腰直角三角形的性质可得BE=DE,然后根据AE=AB﹣BE计算即可得解.【解答】解:∵AD是∠CAB的平分线,DE⊥AB,∠C=90°,∴CD=DE,在Rt△ACD和Rt△AED中,,∴Rt△ACD≌Rt△AED(HL),∴AC=AE,∵∠B=45°,DE⊥AB,∴△BDE是等腰直角三角形,∴BE=DE=m,∵AE=AB﹣BE=a﹣m,∴AC=a﹣m.故选B.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,等腰直角三角形的判定与性质,熟记性质是解题的关键.二、填空题(共6小题,每小题3分,满分18分)13.如图是由射线AB,BC,CD,DE,EA组成的平面图形,则∠1+∠2+∠3+∠4+∠5=360°.【考点】多边形内角与外角.【分析】首先根据图示,可得∠1=180°﹣∠BAE,∠2=180°﹣∠ABC,∠3=180°﹣∠BCD,∠4=180°﹣∠CDE,∠5=180°﹣∠DEA,然后根据三角形的内角和定理,求出五边形ABCDE的内角和是多少,再用180°×5减去五边形ABCDE的内角和,求出∠1+∠2+∠3+∠4+∠5等于多少即可.【解答】解:∠1+∠2+∠3+∠4+∠5=(180°﹣∠BAE)+(180°﹣∠ABC)+(180°﹣∠BCD)+(180°﹣∠CDE)+(180°﹣∠DEA)=180°×5﹣(∠BAE+∠ABC+∠BCD+∠CDE+∠DEA)=900°﹣(5﹣2)×180°=900°﹣540°=360°.故答案为:360°.【点评】此题主要考查了多边形内角和定理,要熟练掌握,解答此题的关键是要明确:(1)n边形的内角和=(n﹣2)•180 (n≥3)且n为整数).(2)多边形的外角和指每个顶点处取一个外角,则n边形取n个外角,无论边数是几,其外角和永远为360°.14.如图,已知AB⊥CD,垂足为B,BC=BE,若直接应用“HL”判定△ABC≌△DBE,则需要添加的一个条件是AC=DE.【考点】直角三角形全等的判定.【分析】先求出∠ABC=∠DBE=90°,再根据直角三角形全等的判定定理推出即可.【解答】解:AC=DE,理由是:∵AB⊥DC,∴∠ABC=∠DBE=90°,在Rt△ABC和Rt△DBE中,,∴Rt△ABC≌Rt△DBE(HL).故答案为:AC=DE.【点评】本题考查了对全等三角形的判定定理的应用,主要考查学生的推理能力,注意:判定两直角三角形全等的方法有SAS,ASA,AAS,SSS,HL.15.如图,在△ABC中,AB=AC,∠A=36°,BD、CE分别是△ABC、△BCD的角平分线,则图中的等腰三角形有5个.【考点】等腰三角形的判定与性质.【分析】根据已知条件分别求出图中三角形的内角度数,再根据等腰三角形的判定即可找出图中的等腰三角形.【解答】解:∵AB=AC,∴△ABC是等腰三角形;∵AB=AC,∠A=36°,∴∠ABC=∠ACB=72°,∵BD、CE分别是∠ABC、∠BCD的角平分线,∴∠ABD=∠DBC=∠ABC=36°,∠BCE=∠ACE=∠ACB=36°,∴∠DBC=∠BCE,∠CED=∠DBC+∠BCE=36°+36°=72°,∠A=∠ABD,∠BDC=180°﹣∠DBC﹣∠BCD=180°﹣72°﹣36°=72°,∴△EBC、△ABD是等腰三角形;∠BDC=∠BCD,∠CED=∠CDE,∴△BCD、△CDE是等腰三角形,∴图中的等腰三角形有5个.故答案为:5.【点评】此题考查了等腰三角形的判定,用到的知识点是等腰三角形的判定、三角形内角和定理、三角形的角平分线等,解题时要找出所有的等腰三角形,不要漏了.16.已知等腰△ABC的周长为10,若设腰长为x,则x的取值范围是<x<5.【考点】等腰三角形的性质;解一元一次不等式组;三角形三边关系.【专题】压轴题.【分析】本题可根据已知条件得出底边的长为:10﹣2x,再根据第三边的长度应是大于两边的差而小于两边的和,即可求出第三边长的范围.【解答】解:依题意得:10﹣2x﹣x<x<10﹣2x+x,解得<x<5.故填<x<5.【点评】本题考查了等腰三角形的性质和三角形的三边关系及解一元一次不等式组等知识;根据三角形三边关系定理列出不等式,接着解不等式求解是正确解答本题的关键.17.如图,已知∠AOB=60°,点P是OA边上,OP=8cm,点M、N在边OB上,PM=PN,若MN=2cm,则ON=5cm.【考点】含30度角的直角三角形;等腰三角形的性质.【分析】过P作PD⊥OB于点D,在直角三角形POD中,利用含30度直角三角形的性质求出OD 的长,再由PM=PN,利用等腰三角形三线合一的性质得到D为MN中点,根据MN=2求出DN的长,由OD+DN即可求出ON的长.【解答】解:过P作PD⊥OB于点D,在Rt△OPD中,∵∠ODP=90°,∠POD=60°,∴∠OPD=30°,∴OD=OP=×8=4cm,∵PM=PN,PD⊥MN,MN=2cm,∴MD=ND=MN=1cm,∴ON=OD+DN=4+1=5cm.故答案为:5.【点评】此题考查了含30度直角三角形的性质,等腰三角形的性质,关键是掌握在直角三角形中,30°角所对的直角边等于斜边的一半;等腰三角形三线合一.18.如图,在△ABC中,∠ABC和∠ACB的平分线相交于点G,过点G作EF∥BC交AB于E,交AC于F,过点G作GD⊥AC于D,下列四个结论:①EF=BE+CF;②∠BGC=90°+∠A;③点G到△ABC各边的距离相等;④设GD=m,AE+AF=n,则S△AEF=mn.其中正确的结论是①②③.【考点】等腰三角形的判定与性质;平行线的性质;角平分线的性质.【分析】①根据∠ABC和∠ACB的平分线相交于点G可得出∠EBG=∠CBG,∠BCG=∠FCG,再由EF∥BC可知∠CBG=∠EGB,∠BCG=∠CGF,故可得出BE=EG,GF=CF,由此可得出结论;②先根据角平分线的性质得出∠GBC+∠GCB=(∠ABC+∠ACB),再由三角形内角和定理即可得出结论;③根据三角形内心的性质即可得出结论;④连接AG,根据三角形的面积公式即可得出结论.【解答】解:①∵∠ABC和∠ACB的平分线相交于点G,∴∠EBG=∠CBG,∠BCG=∠FCG.∵EF∥BC,∴∠CBG=∠EGB,∠BCG=∠CGF,∴∠EBG=∠EGB,∠FCG=∠CGF,∴BE=EG,GF=CF,∴EF=EG+GF=BE+CF,故本小题正确;②∵∠ABC和∠ACB的平分线相交于点G,∴∠GBC+∠GCB=(∠ABC+∠ACB)=(180°﹣∠A),∴∠BGC=180°﹣(∠GBC+∠GCB)=180°﹣(180°﹣∠A)=90°+∠A,故本小题正确;③∵∠ABC和∠ACB的平分线相交于点G,∴点G是△ABC的内心,∴点G到△ABC各边的距离相等,故本小题正确;④连接AG,∵点G是△ABC的内心,GD=m,AE+AF=n,∴S△AEF=AE•GD+AF•GD=(AE+AF)•GD=nm,故本小题错误.故答案为:①②③.【点评】本题考查的是等腰三角形的判定与性质,熟知角平分线的性质、三角形内角和定理及三角形内心的性质是解答此题的关键.三、解答题(共4小题,满分36分)19.如图,AD是△ABC边BC上的高,BE平分∠ABC交AD于点E.若∠C=60°,∠BED=70°.求∠ABC和∠BAC的度数.【考点】三角形内角和定理.【分析】先根据AD是△ABC的高得出∠ADB=90°,再由三角形内角和定理及三角形外角的性质可知∠DBE+∠ADB+∠BED=180°,故∠DBE=180°﹣∠ADB﹣∠BED=20°.根据BE平分∠ABC得出∠ABC=2∠DBE=40°.根据∠BAC+∠ABC+∠C=180°,∠C=60°即可得出结论.【解答】解:∵AD是△ABC的高,∴∠ADB=90°.又∵∠DBE+∠ADB+∠BED=180°,∠BED=70°,∴∠DBE=180°﹣∠ADB﹣∠BED=20°.∵BE平分∠ABC,∴∠ABC=2∠DBE=40°.又∵∠BAC+∠ABC+∠C=180°,∠C=60°,∴∠BAC=180°﹣∠ABC﹣∠C=80°.【点评】本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.20.如图,方格纸中每个小正方形的边长都是1,△ABC的三个顶点都在格点上.(1)画△ABC关于直线MN的对称图形△A1B1C1(不写画法);(2)作出△ABC的边BC边上的高AE,垂足为点E.(不写画法);(3)△ABC的面积为8.5.【考点】作图-轴对称变换.【分析】(1)根据轴对称的性质画出△A1B1C1即可;(2)过点A作AE垂直CB的延长线与点E,则线段AE即为所求;(3)利用矩形的面积减去三个顶点上三角形的面积即可.【解答】解:(1)如图所示;(2)如图所示;(3)S△ABC=4×5﹣×1×4﹣×1×4﹣×3×5=8.5.故答案为:8.5.【点评】本题考查的是作图﹣轴对称变换,熟知轴对称的性质是解答此题的关键.21.如图,已知△ABC≌△DEB,点E在AB上,DE与AC相交于点F,若DE=7,BC=4,∠D=35°,∠C=60°(1)求线段AE的长.(2)求∠DFA的度数.【考点】全等三角形的性质.【分析】(1)根据全等三角形的性质解答即可;(2)根据全等三角形的性质解答即可.【解答】解:(1)∵△ABC≌△DEB,∴AB=DE=7,BE=BC=4,∴AE=AB﹣BE=7﹣4=3;(2)∵△ABC≌△DEB,∴∠A=∠D=35°,∠DBE=∠C=60°,∴∠DFA=∠A+∠AEF=∠A+∠D+∠DBE=130°.【点评】此题考查全等三角形的性质,关键是根据全等三角形的对应角和对应边相等分析.22.已知:如图,在△ABC、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C、D、E三点在同一直线上,连接BD.求证:(1)△BAD≌△CAE;(2)试猜想BD、CE有何特殊位置关系,并证明.【考点】全等三角形的判定与性质.【专题】证明题;探究型.【分析】要证(1)△BAD≌△CAE,现有AB=AC,AD=AE,需它们的夹角∠BAD=∠CAE,而由∠BAC=∠DAE=90°很易证得.(2)BD、CE有何特殊位置关系,从图形上可看出是垂直关系,可向这方面努力.要证BD⊥CE,需证∠BDE=90°,需证∠ADB+∠ADE=90°可由直角三角形提供.【解答】(1)证明:∵∠BAC=∠DAE=90°∴∠BAC+∠CAD=∠DAE+CAD即∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS).(2)BD、CE特殊位置关系为BD⊥CE.证明如下:由(1)知△BAD≌△CAE,∴∠ADB=∠E.∵∠DAE=90°,∴∠E+∠ADE=90°.∴∠ADB+∠ADE=90°.即∠BDE=90°.∴BD、CE特殊位置关系为BD⊥CE.【点评】本题考查了全等三角形的判定和性质;全等问题要注意找条件,有些条件需在图形是仔细观察,认真推敲方可.做题时,有时需要先猜后证.。
2015年黄冈市五校联考八年级上期中数学试卷含答案解析版
2015-2016学年湖北省黄冈市五校联考八年级(上)期中数学试卷一、选择题(共10小题,每小题3分,共30分.在每小题给出的四个选项中只有一项是符合要求的,请将正确答案的序号填入对应题目后的括号内)1.下列汽车标志图案,不是轴对称图形的是( )A.B.C. D.2.对于任意三角形的高,下列说法不正确的是( )A.锐角三角形有三条高B.直角三角形只有一条高C.任意三角形都有三条高D.钝角三角形有两条高在三角形的外部3.一个三角形的两边的长分别为3和8,第三边的长为奇数,则第三边的长为( ) A.5或7 B.7 C.9 D.7或94.已知△ABC的三边长分别为3,5,7,△DEF的三边长分别为3,3x﹣2,2x﹣1,若这两个三角形全等,则x为( )A.B.4 C.3 D.不能确定5.点M(3,2)关于y轴对称的点的坐标为( )A.(﹣3,2)B.(﹣3,﹣2)C.(3,﹣2)D.(2,﹣3)6.如图,∠B=∠D=90°,CB=CD,∠1=30°,则∠2=( )A.30°B.40°C.50°D.60°7.现有四根木棒,长度分别为4cm,6cm,8cm,10cm,从中任取三根木棒,能组成三角形的个数为( )A.1个B.2个C.3个D.4个8.如图,△ABC中,AB=AC,D为BC的中点,以下结论:(1)△ABD≌△ACD;(2)AD⊥BC;(3)∠B=∠C;(4)AD是△ABC的角平分线.其中正确的有( )A.1个B.2个C.3个D.4个9.如图所示,△ABC中,AC=AD=BD,∠DAC=80°,则∠B的度数是( )A.40°B.35°C.25°D.20°10.用正三角形、正四边形和正六四边形按如图所示的规律拼图案,即从第二个图案开始,每个图案中正三角形的个数都比上一个图案中正三角形的个数多4个.则第n个图案中正三角形的个数为( ) (用含n的代数式表示).A.2n+1 B.3n+2 C.4n+2 D.4n﹣2二、填空题(本大题共8小题,每小题3分,共24分.请把答案填写在相应题目后的横线上)11.若A(x,3)关于y轴的对称点是B(﹣2,y),则x=__________,y=__________,点A关于x轴的对称点的坐标是__________.12.如图:△ABE≌△ACD,AB=10cm,∠A=60°,∠B=30°,则AD=__________ cm,∠ADC=__________.13.如图,已知线段AB、CD相交于点O,且∠A=∠B,只需补充一个条件__________,则有△AOC≌△BOD.14.如图,△ABC≌△DEF,且△ABC的周长为18.若AB=5,EF=6,则AC=__________.15.如图,七星形中∠A+∠B+∠C+∠D+∠E+∠F+∠G=__________.16.如图,小亮从A点出发前10m,向右转15°,再前进10m,又向右转15°,…,这样一直走下去,他第一次回到出发点A时,一共走了__________m.17.将一长方形纸条按如图所示折叠,∠2=55°,则∠1=__________.18.如图,线段AB的垂直平分线与BC的垂直平分线的交点P恰好在AC上,且AC=10cm,则B点到P点的距离为__________.三、解答题(本大题共7小题,共66分)19.已知一个多边形的内角和比它的外角和的3倍少180°,求这个多边形的边数.20.如图,已知点B、E、C、F在同一直线上,AB=DE,∠A=∠D,AC∥DF.求证:(1)△ABC≌△DEF;(2)BE=CF.21.如图,已知点B、C、D在同一条直线上,△ABC和△CDE都是等边三角形.BE交AC于F,AD交CE于H.(1)求证:△BCE≌△ACD;(2)求证:FH∥BD.22.△ABC在平面直角坐标系中的位置如图所示.A、B、C三点在格点上.(1)作出△ABC关于x轴对称的△A1B1C1,并写出点C1的坐标;(2)作出△ABC关于y对称的△A2B2C2,并写出点C2的坐标.23.如图,AD为△ABC的中线,BE为△ABD的中线.(1)∠ABE=15°,∠BAD=40°,求∠BE D的度数;(2)若△ABC的面积为40,BD=5,则E到BC边的距离为多少.24.如图,已知:E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,C、D是垂足,连接CD,且交OE于点F.(1)求证:OE是CD的垂直平分线.(2)若∠AOB=60°,请你探究OE,EF之间有什么数量关系?并证明你的结论.25.在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF.(1)求证:Rt△ABE≌Rt△CBF;(2)若∠CAE=30°,求∠ACF的度数.2015-2016学年湖北省黄冈市五校联考八年级(上)期中数学试卷一、选择题(共10小题,每小题3分,共30分.在每小题给出的四个选项中只有一项是符合要求的,请将正确答案的序号填入对应题目后的括号内)1.下列汽车标志图案,不是轴对称图形的是( )A.B.C. D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、是轴对称图形,故错误;B、不是轴对称图形,故正确;C、是轴对称图形,故错误;D、是轴对称图形,故错误.故选B.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.对于任意三角形的高,下列说法不正确的是( )A.锐角三角形有三条高B.直角三角形只有一条高C.任意三角形都有三条高D.钝角三角形有两条高在三角形的外部【考点】三角形的角平分线、中线和高.【分析】根据三角形的高的概念,通过具体作高,发现:任意一个三角形都有三条高,其中锐角三角形的三条高都在三角形的内部;直角三角形有两条高即三角形的两条直角边,一条在内部;钝角三角形有两条高在三角形的外部,一条在内部,据此解答即可.【解答】解:A、锐角三角形有三条高,说法正确,故本选项不符合题意;B、直角三角形有三条高,说法错误,故本选项符合题意;C、任意三角形都有三条高,说法正确,故本选项不符合题意;D、钝角三角形有两条高在三角形的外部,说法正确,故本选项不符合题意;故选B.【点评】本题考查了三角形的高:从三角形的一个顶点向它的对边作垂线,垂足与顶点之间的线段叫做三角形的高,注意不同形状的三角形的高的位置.3.一个三角形的两边的长分别为3和8,第三边的长为奇数,则第三边的长为( ) A.5或7 B.7 C.9 D.7或9【考点】三角形三边关系.【分析】首先根据三角形的三边关系求得第三边的取值范围,再根据第三边又是奇数得到答案.【解答】解:根据三角形的三边关系,得第三边大于8﹣3=5,而小于两边之和8+3=11.又第三边应是奇数,则第三边等于7或9.故选D.【点评】此类求三角形第三边的范围的题,实际上就是根据三角形三边关系定理列出不等式,然后解不等式即可.4.已知△ABC的三边长分别为3,5,7,△DEF的三边长分别为3,3x﹣2,2x﹣1,若这两个三角形全等,则x为( )A.B.4 C.3 D.不能确定【考点】全等三角形的性质.【分析】首先根据全等三角形的性质:全等三角形的对应边相等可得:3x﹣2与5是对应边,或3x﹣2与7是对应边,计算发现,3x﹣2=5时,2x﹣1≠7,故3x﹣2与5不是对应边.【解答】解:∵△ABC与△DEF全等,当3x﹣2=5,2x﹣1=7,x=,把x=代入2x﹣1中,2x﹣1≠7,∴3x﹣2与5不是对应边,当3x﹣2=7时,x=3,把x=3代入2x﹣1中,2x﹣1=5,故选:C.【点评】此题主要考查了全等三角形的性质,关键是掌握性质定理,要分情况讨论.5.点M(3,2)关于y轴对称的点的坐标为( )A.(﹣3,2)B.(﹣3,﹣2)C.(3,﹣2)D.(2,﹣3)【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于y轴对称点的横坐标互为相反数,纵坐标相等回答即可.【解答】解:点M(3,2)关于y轴对称的点的坐标为(﹣3,2).故选:A.【点评】本题主要考查的是关于坐标轴对称的点的坐标特点,关于y轴对称点的横坐标互为相反数,纵坐标相等;关于x轴对称点纵坐标互为相反数,横坐标相等.6.如图,∠B=∠D=90°,CB=CD,∠1=30°,则∠2=( )A.30°B.40°C.50°D.60°【考点】全等三角形的判定与性质.【分析】根据直角三角形两锐角互余求出∠3,再利用“HL”证明Rt△ABC和Rt△ADC全等,根据全等三角形对应角相等可得∠2=∠3.【解答】解:∵∠B=90°,∠1=30°,∴∠3=90°﹣∠1=90°﹣30°=60°,在Rt△ABC和Rt△ADC中,,∴Rt△ABC≌Rt△ADC(HL),∴∠2=∠3=60°.故选D.【点评】本题考查了全等三角形的判定与性质,直角三角形两锐角互余的性质,熟练掌握三角形全等的判定方法是解题的关键.7.现有四根木棒,长度分别为4cm,6cm,8cm,10cm,从中任取三根木棒,能组成三角形的个数为( )A.1个B.2个C.3个D.4个【考点】三角形三边关系.【分析】取四根木棒中的任意三根,共有4中取法,然后依据三角形三边关系定理将不合题意的方案舍去.【解答】解:共有4种方案:①取4cm,6cm,8cm;由于8﹣4<6<8+4,能构成三角形;②取4cm,8cm,10cm;由于10﹣4<8<10+4,能构成三角形;③取4cm,6cm,10cm;由于6=10﹣4,不能构成三角形,此种情况不成立;④取6cm,8cm,10cm;由于10﹣6<8<10+6,能构成三角形.所以有3种方案符合要求.故选C.【点评】考查三角形的边时,要注意三角形形成的条件:任意两边之和大于第三边,任意两边之差小于第三边.当题目指代不明时,一定要分情况讨论,把符合条件的保留下来,不符合的舍去.8.如图,△ABC中,AB=AC,D为BC的中点,以下结论:(1)△ABD≌△ACD;(2)AD⊥BC;(3)∠B=∠C;(4)AD是△ABC的角平分线.其中正确的有( )A.1个B.2个C.3个D.4个【考点】等腰三角形的性质.【分析】由“三线合一”可知(2)(4)正确,由等边对等角可知(3)正确,且容易证明△ABD≌△ACD,可得出答案.【解答】解:∵AB=AC,∴∠B=∠C,∴(3)正确,∵D为BC的中点,∴AD⊥BC,∠BAD=∠CAD,∴(2)(4)正确,在△ABD和△ACD中∴△ABD≌△ACD(SSS),∴(1)正确,∴正确的有4个,故选D.【点评】本题主要考查等腰三角形的性质,掌握等腰三角形底边上的中线、底边上的高、顶角的角平分线相互重合是解题的关键.9.如图所示,△ABC中,AC=AD=BD,∠DAC=80°,则∠B的度数是( )A.40°B.35°C.25°D.20°【考点】等腰三角形的性质.【分析】先根据等腰三角形的性质及三角形内角和定理求出∠ADC的度数,再根据等腰三角形的性质及三角形外角与内角的关系求出∠B的度数即可.【解答】解:∵△ABC中,AC=AD,∠DAC=80°,∴∠ADC==50°,∵AD=BD,∠ADC=∠B+∠BAD=50°,∴∠B=∠BAD=()°=25°.故选C.【点评】此题比较简单,考查的是等腰三角形的性质及三角形内角和定理.10.用正三角形、正四边形和正六四边形按如图所示的规律拼图案,即从第二个图案开始,每个图案中正三角形的个数都比上一个图案中正三角形的个数多4个.则第n个图案中正三角形的个数为( ) (用含n的代数式表示).A.2n+1 B.3n+2 C.4n+2 D.4n﹣2【考点】规律型:图形的变化类.【分析】由题意可知:每个图案中正三角形的个数都比上一个图案中正三角形的个数多4个,由此规律得出答案即可.【解答】解:第一个图案正三角形个数为6=2+4;第二个图案正三角形个数为2+4+4=2+2×4;第三个图案正三角形个数为2+2×4+4=2+3×4;…;第n个图案正三角形个数为2+(n﹣1)×4+4=2+4n=4n+2.故选:C.【点评】此题考查图形的变化规律,找出图形之间的数字运算规律,得出规律,解决问题.二、填空题(本大题共8小题,每小题3分,共24分.请把答案填写在相应题目后的横线上)11.若A(x,3)关于y轴的对称点是B(﹣2,y),则x=2,y=3,点A关于x轴的对称点的坐标是(2,﹣3).【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得x、y的值,再根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得点A关于x轴的对称点的坐标.【解答】解:∵A(x,3)关于y轴的对称点是B(﹣2,y),∴x=2,y=3;∴A(2,3),∴点A关于x轴的对称点的坐标是(2,﹣3),故答案为:2,3,(2,﹣3).【点评】此题主要考查了关于x、y轴的对称点的坐标,关键是掌握点的坐标的变化规律.12.如图:△ABE≌△ACD,AB=10cm,∠A=60°,∠B=30°,则AD=5 cm,∠ADC=90°.【分析】首先根据全等三角形的性质可得∠C=∠B=30°,AC=AB=10cm,再根据三角形内角和计算出∠ADC的度数,再根据直角三角形的性质可得AD=AC=5cm.【解答】解:∵△ABE≌△ACD,∴∠C=∠B=30°,AC=AB=10cm,∵∠A=60°,∴∠ADC=180°﹣60°﹣30°=90°,∴AD=AC=5cm,故答案为:5,90°.【点评】此题主要考查了全等三角形的性质,以及三角形内角和定理和直角三角形的性质,关键是掌握全等三角形的对应边相等,全等三角形的对应角相等.13.如图,已知线段AB、CD相交于点O,且∠A=∠B,只需补充一个条件AC=BD,则有△AOC≌△BOD.【考点】全等三角形的判定.【分析】补充条件:AC=BD,可利用AAS定理判定△AOC≌△BOD.【解答】解:补充条件:AC=BD,∵在△AOC和△DOB中,∴△AOC≌△BOD(AAS).故答案为:AC=BD.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.14.如图,△ABC≌△DEF,且△ABC的周长为18.若AB=5,EF=6,则AC=7.【专题】探究型.【分析】直接根据全等三角形的对应边相等进行解答即可.【解答】解:∵△ABC≌△DEF,AB=5,EF=6,∴BC=EF=6,∴AC=18﹣AB﹣BC=18﹣5﹣6=7.故答案为:7.【点评】本题考查的是全等三角形的性质,即全等三角形的对应边相等.15.如图,七星形中∠A+∠B+∠C+∠D+∠E+∠F+∠G=180°.【考点】三角形的外角性质;三角形内角和定理.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和解答即可.【解答】解:由三角形的外角性质得,∠1=∠B+∠F+∠C+∠G,∠2=∠A+∠D,由三角形的内角和定理得,∠1+∠2+∠F=180°,所以,∠A+∠B+∠C+∠D+∠E+∠F+∠G=180°.故答案为:180°.【点评】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,三角形的内角和定理,熟记性质并准确识图是解题的关键.16.如图,小亮从A点出发前10m,向右转15°,再前进10m,又向右转15°,…,这样一直走下去,他第一次回到出发点A时,一共走了240m.【考点】多边形内角与外角.【专题】应用题.【分析】由题意可知小亮所走的路线为正多边形,根据多边形的外角和定理即可求出答案.【解答】解:∵小亮从A点出发最后回到出发点A时正好走了一个正多边形,∴根据外角和定理可知正多边形的边数为n=360°÷15°=24,则一共走了24×10=240米.故答案为:240.【点评】本题主要考查了多边形的外角和定理.任何一个多边形的外角和都是360°,用外角和求正多边形的边数可直接让360°除以一个外角度数即可.17.将一长方形纸条按如图所示折叠,∠2=55°,则∠1=70°.【考点】平行线的性质;翻折变换(折叠问题).【分析】从折叠图形的性质入手,结合平行线的性质求解.【解答】解:由折叠图形的性质结合平行线同位角相等可知,2∠2+∠1=180°,∵∠2=55°,∴∠1=70°.故答案为:70°.【点评】此题考查折叠的性质及平行线的性质,结合图形灵活解决问题.18.如图,线段AB的垂直平分线与BC的垂直平分线的交点P恰好在AC上,且AC=10cm,则B点到P点的距离为5cm.【考点】线段垂直平分线的性质.【分析】连接BP,利用线段垂直平分线的性质可得到AP=BP=PC,根据AC=10cm即可解答.【解答】解:连接BP,∵PF是线段BC的垂直平分线,PH是线段AB的垂直平分线,∴AP=BP=PC,∵AC=10cm,∴AP=BP=PC=AC=×10=5cm.故答案为:5cm.【点评】本题考查的是线段垂直平分线的性质,根据题意作出辅助线,利用线段垂直平分线的性质求解是解答此题的关键.三、解答题(本大题共7小题,共66分)19.已知一个多边形的内角和比它的外角和的3倍少180°,求这个多边形的边数.【考点】多边形内角与外角.【分析】多边形的外角和是360度,根据多边形的内角和比它的外角和的3倍少180°,即可得到多边形的内角和的度数.根据多边形的内角和定理即可求得多边形的边数.【解答】解:设这个多边形的边数是n,依题意得(n﹣2)×180°=3×360°﹣180°,(n﹣2)=6﹣1,n=7.∴这个多边形的边数是7.【点评】任何多边形的外角和都是360度,不随边数的变化而变化.20.如图,已知点B、E、C、F在同一直线上,AB=DE,∠A=∠D,AC∥DF.求证:(1)△ABC≌△DEF;(2)BE=CF.【考点】全等三角形的判定与性质.【专题】证明题.【分析】(1)欲证两三角形全等,已经有两个条件,只要再有一个条件就可以了,而AC∥DF 可以得出∠ACB=∠F,条件找到,全等可证.(2)根据全等三角形对应边相等可得BC=EF,都减去一段EC即可得证.【解答】证明:(1)∵AC∥DF,∴∠ACB=∠F,在△ABC和△DEF中,,∴△ABC≌△DEF(AAS);(2)∵△ABC≌△DEF,∴BC=EF,∴BC﹣CE=EF﹣CE,即BE=CF.【点评】本题主要考查三角形全等的判定和全等三角形的对应边相等;要牢固掌握并灵活运用这些知识.21.如图,已知点B、C、D在同一条直线上,△ABC和△CDE都是等边三角形.BE交AC于F,AD交CE于H.(1)求证:△BCE≌△ACD;(2)求证:FH∥BD.【考点】等边三角形的判定与性质;全等三角形的判定与性质.【专题】证明题.【分析】(1)先根据△ABC和△CDE都是等边三角形得出BC=AC,CE=CD,∠BCA=∠ECD=60°,再由SAS定理即可得出△BCE≌△ACD;(2)由(1)知△BCE≌△ACD,可知∠CBF=∠CAH,BC=AC,再由ASA定理可知△BCF≌△ACH,可得出CF=CH,根据∠FCH=60°,可知△CHF为等边三角形,进而可得出结论.【解答】证明:(1)∵△ABC和△CDE都是等边三角形,∴BC=AC,CE=CD,∠BCA=∠ECD=60°,∴∠BCA+∠ACE=∠ECD+∠ACE,即∠BCE=∠ACD,∴在△BCE和△ACD中,∵,∴△BCE≌△ACD (SAS).(2)由(1)知△BCE≌△ACD,则∠CBF=∠CAH,BC=AC又∵△ABC和△CDE都是等边三角形,且点B、C、D在同一条直线上,∴∠ACH=180°﹣∠ACB﹣∠HCD=60°=∠BCF,在△BCF和△ACH中,∵,∴△BCF≌△ACH (ASA),∴CF=CH,又∵∠FCH=60°,∴△CHF为等边三角形∴∠FHC=∠HCD=60°,∴FH∥BD.【点评】本题考查的是等边三角形的判定与性质及全等三角形的判定与性质,熟知全等三角形的判定定理是解答此题的关键.22.△ABC在平面直角坐标系中的位置如图所示.A、B、C三点在格点上.(1)作出△ABC关于x轴对称的△A1B1C1,并写出点C1的坐标;(2)作出△ABC关于y对称的△A2B2C2,并写出点C2的坐标.【考点】作图-轴对称变换.【分析】(1)根据关于x轴对称的点的坐标特点画出△A1B1C1,并写出点C1的坐标即可;(2)根据关于y轴对称的点的坐标特点画出△A2B2C2,并写出点C2的坐标即可.【解答】解:(1)如图所示,点C1的坐标(3,﹣2);(2)如图2所示,点C2的坐标(﹣3,2).【点评】本题考查的是作图﹣轴对称变换,熟知关于坐标轴对称的点的坐标特点是解答此题的关键.23.如图,AD为△ABC的中线,BE为△ABD的中线.(1)∠ABE=15°,∠BAD=40°,求∠BED的度数;(2)若△ABC的面积为40,BD=5,则E到BC边的距离为多少.【考点】三角形的面积;三角形的角平分线、中线和高;三角形的外角性质.【分析】(1)根据三角形内角与外角的性质解答即可;(2)过E作BC边的垂线即可得:E到BC边的距离为EF的长,然后过A作BC边的垂线AG,再根据三角形中位线定理求解即可.【解答】解:(1)∵∠BED是△ABE的外角,∴∠BED=∠ABE+∠BAD=15°+40°=55°;(2)过E作BC边的垂线,F为垂足,则EF为所求的E到BC边的距离,过A作BC边的垂线AG,∴AD为△ABC的中线,BD=5,∴BC=2BD=2×5=10,∵△ABC的面积为40,∴BC•AG=40,即×10•AG=40,解得AG=8,∵EF⊥BC于F,∴EF∥AG,∵E为AD的中点,∴EF是△AGD的中位线,∴EF=AG=×8=4.∴E到BC边的距离为4.【点评】本题考查了三角形外角的性质、三角形中位线定理及三角形的面积公式,涉及面较广,但难度适中.添加适当的辅助线是解题的关键.24.如图,已知:E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,C、D是垂足,连接CD,且交OE于点F.(1)求证:OE是CD的垂直平分线.(2)若∠AOB=60°,请你探究OE,EF之间有什么数量关系?并证明你的结论.【考点】线段垂直平分线的性质.【专题】探究型.【分析】(1)先根据E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA得出△ODE≌△OCE,可得出OD=OC,DE=CE,OE=OE,可得出△DOC是等腰三角形,由等腰三角形的性质即可得出OE是CD的垂直平分线;(2)先根据E是∠AOB的平分线,∠AOB=60°可得出∠AOE=∠BOE=30°,由直角三角形的性质可得出OE=2DE,同理可得出DE=2EF即可得出结论.【解答】解:(1)∵E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,∴DE=CE,OE=OE,∴Rt△ODE≌Rt△OCE,∴OD=OC,∴△DOC是等腰三角形,∵OE是∠AOB的平分线,∴OE是CD的垂直平分线;(2)∵OE是∠AOB的平分线,∠AOB=60°,∴∠AOE=∠BOE=30°,∵EC⊥OB,ED⊥OA,∴OE=2DE,∠ODF=∠OED=60°,∴∠EDF=30°,∴DE=2EF,∴OE=4EF.【点评】本题考查的是角平分线的性质及直角三角形的性质、等腰三角形的判定与性质,熟知以上知识是解答此题的关键.25.在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF.(1)求证:Rt△ABE≌Rt△CBF;(2)若∠CAE=30°,求∠ACF的度数.【考点】全等三角形的判定与性质.【专题】几何图形问题;证明题;数形结合.【分析】(1)由AB=CB,∠ABC=90°,AE=CF,即可利用HL证得Rt△ABE≌Rt△CBF;(2)由AB=CB,∠ABC=90°,即可求得∠CAB与∠ACB的度数,即可得∠BAE的度数,又由Rt△ABE≌Rt△CBF,即可求得∠BCF的度数,则由∠ACF=∠BCF+∠ACB即可求得答案.【解答】(1)证明:∵∠ABC=90°,∴∠CBF=∠ABE=90°,在Rt△ABE和Rt△CBF中,,∴Rt△ABE≌Rt△CBF(HL);(2)解:∵AB=BC,∠ABC=90°,∴∠CAB=∠ACB=45°,又∵∠BAE=∠CAB﹣∠CAE=45°﹣30°=15°,由(1)知:Rt△AB E≌Rt△CBF,∴∠BCF=∠BAE=15°,∴∠ACF=∠BCF+∠ACB=45°+15°=60°.【点评】此题考查了直角三角形全等的判定与性质.此题难度不大,解题的关键是注意数形结合思想的应用.。
北师大版八年级上册数学期中考试试题带答案
北师大版八年级上册数学期中考试试卷一、选择题。(每小题只有一个正确答案,每小题3分)1.在−1.414,8,π,2+3,3.212212221…,17这些数中,无理数的个数为( )
A.2B.3C.4D.52.下列函数中,y是x的正比例函数的是( )A.y=−2x+1B.3xy=-C.y=2x2D.1y
x=
3.在平面直角坐标系中,点P(−1,−2+3)在()
A.第一象限B.第二象限C.第三象限D.第四象限4.下列数据中,哪一组不是勾股数()A.7,24,25B.9,40,41C.3,4,5D.8,15,195.下面计算正确的是()A.3333B.2733C.23=5D.4=2
6.在平面直角坐标系中,点P(-3,5)关于x轴的对称点的坐标是()A.(3,-5)B.(-3,-5)C.(3,5)D.(5,-3)7.已知正比例函数y=kx(k≠0)的函数值y随x的增大而增大,则一次函数y=kx+k的图象大致是()
A.B.C.D.8.坐标平面上,在第二象限内有一点P,且P点到x轴的距离是4,到y轴的距离是5,则P点的坐标为()A.(-5,4)B.(-4,5)C.(4,5)D.(5,-4)9.若一个直角三角形的三边分别为a、b、c,a2=144,b2=25,则c2
=( )
A.169B.119C.169或119D.13或25
10.下列哪个点在函数11
2yx
的图象上()
A.(2,1)B.(2,1)C.(2,0)D.(2,0)11.如图以数轴的单位长线段为边作一个正方形,以数轴的原点为旋转中心,将过原点的对角线顺时针旋转,使对角线的另一端点落在数轴正半轴的点A处,则点A表示的数是()A.32B.2C.3D.1.412.如图,点A的坐标为(1,0),点B在直线y=-x上运动,当线段AB最短时,点B的坐标为()
A.(0,0)B.(-12,12)C.(22,-22)D.(12,-12)
二、填空题13.16的算术平方根是_____.
人教版八年级上册数学期中考试试题含答案
人教版八年级上册数学期中考试试卷一、选择题。
(每小题只有一个正确答案)1.下列各组线段不能组成三角形的是()A.4cm、4cm、5cm B.4cm、6cm、11cmC.4cm、5cm、6cm D.5cm、12cm、13cm2.三角形一个外角小于与它相邻的内角,这个三角形()A.是钝角三角形B.是锐角三角形C.是直角三角形D.属于哪一类不能确定.3.若一个正多边形的每个内角度数都为135°,则这个正多边形的边数是()A.6 B.8 C.10 D.124.如图,在△AEC中,点D和点F分别是AC和AE上的两点,连接DF,交CE的延长线于点B,若∠A=25°,∠B=45°,∠C=36°,则∠DFE=()A.103°B.104°C.105°D.106°5.如图所示,有一个简易平分角的仪器(四边形ABCD),其中AB=AD,BC=DC,将点A放在角的顶点处,AB和AD沿着角的两边张开,并分别与AQ,AP重合,沿对角线AC画射线AE,AE就是∠P AQ的平分线这个平分角的仪器的制作原理是()A.角平分线性质B.AAS C.SSS D.SAS6.如图,△ABC的三边AB、BC、AC的长分别12,18,24,O是△ABC三条角平分线的交点,则S△OAB:S△OBC:S△OAC=()A.1:1:1 B.1:2:3 C.2:3:4 D.3:4:57.如下图,△MNP中,∠P=60°,MN=NP,MQ⊥PN,垂足为Q,延长MN至G,取NG=NQ,若△MNP的周长为12,MQ=a,则△MGQ周长是()A .8+2aB .8+aC .6+aD .6+2a8.如图,等边三角形ABC 的边长为4,AD 是BC 边上的中线,F 是AD 边上的动点,E 是AC 边上一点.若2AE =,当EF CF +取得最小值时,则ECF ∠的度数为( )A .15°B .225°C .30°D .45°9.下列四个图形中,不是轴对称图形的是( )A .B .C .D . 10.如下图所示,已知点O 是△ABC 内一点,且点O 到三边的距离相等,∠A=40゜,则∠BOC=( )A .130°B .140°C .110°D .120°二、填空题11.如图,六边形ABCDEF 中,AB ∥DC ,∠1、∠2、∠3、∠4分别是∠BAF 、∠AFE 、∠FED 、∠EDC 的外角,则∠1+∠2+∠3+∠4=_____.12.若点A(m+2,3)与点B(﹣4,n+5)关于x轴对称,则m+n=_____.13.如图,△ABC纸片中,AB=AC,∠BAC=90°,BC=8,沿过点C的直线折叠这个三角形,使点A落在BC边上的点F处,折痕为CD,BE⊥CD,垂足E在CD的延长线上,则结论①DF=DA;②∠ABE=22.5︒;③△BDF 的周长为8;④CD=2BE.正确的是________________(填上正确的结论序号).≅.(只需填写14.如图,已知AC DB=,再添加一个适当的条件________,使ABC DCB满足要求的一个条件即可).15.如图,AD⊥BC于点D,D为BC 的中点,连接AB,∠ABC的平分线交AD于点O,连结OC,若∠AOC=125°,则∠ABC=________________.16.已知△ABC中,AB=AC=4,∠A=60°,则△ABC的周长为______.三、解答题17.已知:如图,在△ABC中,点D是BC上一点,∠1=80°,AB=AD=DC.求:∠C的度数.18.(1)某多边形的内角和与外角和的总和为2 160°,求此多边形的边数;(2)某多边形的每一个内角都等于150°,求这个多边形的内角和.19.如图,线段AB和BC,交于B点:(1)请你用尺规作图的方法作出线段AB和BC的垂直平分线.(不写作法,保留作图痕迹)(2)如果线段AB和BC的垂直平分线交于点P,若AB=BC,求证:PB平分∠ABC.20.一个等腰三角形的周长为28cm.(1)如果底边长是腰长的1.5倍,求这个等腰三角形的三边长;(2)如果一边长为10cm,求这个等腰三角形的另两边长.21.如图,Rt△ABC的直角顶点C置于直线l上,AC=BC,现过A.B两点分别作直线l 的垂线,垂足分别为点D.E.(1)求证:△ACD≌△CBE.(2)若BE=3,DE=5,求AD的长.22.(1)如图,请在方格纸中画出△ABC 关于x 轴的对称图形△A ′B ′C ′.(2)写出对称点的坐标:A ′( , ),B ′( , ),C ′( , ). (3)△ABC 的面积是 .(4)请在图中找出一个格点D ,画出△ACD ,使△ACD 与△ABC 全等.23.如图,在△ABC 中,∠ABC =90°,AD ∥BC ,AB =BC ,E 是AB 的中点,CE ⊥BD . (1)求证:△ABD ≌△BCE .(2)求证:AC 是线段ED 的垂直平分线.24.如图,ABC ∆中,AB=AC ,36A ︒∠=,AC 的垂直平分线交AB 于E,D 为垂足,连结EC . (1)求ECD ∠的度数;(2)若CE=12,求BC 长.25.已知四边形ABCD 中,AB ⊥AD ,BC ⊥CD ,AB =BC ,∠ABC =120°,∠MBN =60°,∠MBN 绕B 点旋转,它的两边分别交AD ,DC (或它们的延长线)于E ,F .(1)当∠MBN 绕B 点旋转到AE =CF 时(如图1),求证:△ABE ≌△CBF .(2)当∠MBN 绕点B 旋转到AE ≠CF 时,如图2,猜想线段AE ,CF ,EF 有怎样的数量关系,并证明你的猜想.(3)当∠MBN 绕点B 旋转到图3这种情况下,猜想线段AE ,CF ,EF 有怎样的数量关系,并证明你的猜想.参考答案1.B【分析】根据三角形的任意两边之和大于第三边对各选项分析判断后利用排除法求解.【详解】A 、4485+=>,∴445cm cm cm 、、能组成三角形,故本选项错误;B 、461011+=<,∴4611cm cm cm 、、不能组成三角形,故本选项正确;C 、5496+=>,∴456cm cm cm 、、能组成三角形,故本选项错误;D 、5121713+=>,∴51213cm cm cm 、、能组成三角形,故本选项错误.故选:B .【点睛】本题考查了三角形的三边关系,是基础题,熟记三边关系是解题的关键.2.A【分析】由三角形的外角与它相邻的内角互为邻补角,且根据此外角小于与它相邻的内角,可得此外角为锐角,与它相邻的角为钝角,可得这个三角形为钝角三角形.【详解】∵三角形的外角与它相邻的内角互补,且此外角小于与它相邻的内角,∴此外角为锐角,与它相邻的角为钝角,则这个三角形为钝角三角形.故选:A.【点睛】此题考查了三角形的外角性质,其中得出三角形的外角与它相邻的内角互补是解本题的关键.3.B【分析】根据题意可先求出这个正多边形的每个外角度数,再根据多边形的外角和是360°即可求出答案.【详解】解:因为一个正多边形的每个内角度数都为135°,所以这个正多边形的每个外角度数都为45°,所以这个正多边形的边数是360°÷45°=8.故选:B.【点睛】本题考查了正多边形的有关概念和多边形的外角和,属于基本题目,熟练掌握多边形的基本知识是解题的关键.4.D【分析】由∠FEB是△AEC的一个外角,根据三角形外角的性质可得∠FEB=∠A+∠C=61°,再由∠DFE是△BFE的一个外角,根据三角形外角的性质即可求得∠DFE=∠B+∠FEB=106°,问题得解.【详解】∵∠FEB 是△AEC 的一个外角,∠A=25°,∠C=36°,∴∠FEB=∠A+∠C=61°,∵∠DFE 是△BFE 的一个外角,∠B=45°,∴∠DFE=∠B+∠FEB=106°,故选D .【点睛】本题考查了三角形外角的性质,熟知三角形的外角等于与它不相邻的两个内角的和是解题的关键.5.C【分析】根据题意,利用SSS 证明三角形全等,然后有对应角相等,即可得到答案.【详解】解:在△ABC 与△ADC 中,AB AD BC DC AC AC =⎧⎪=⎨⎪=⎩∴△ABC ≌△ADC (SSS ),∴∠BAC =∠DAC .即AE 平分∠BAD .∴不论∠DAB 是大还是小,始终有AE 平分∠BAD .故选C .【点睛】本题考查了角平分线的判定,解题的关键是熟练掌握全等三角形对应角相等.6.C【分析】直接根据角平分线的性质即可得出结论.【详解】∵O 是△ABC 三条角平分线的交点,AB 、BC 、AC 的长分别12,18,24,∴S △OAB :S △OBC :S △OAC =AB :OB :AC =12:18:24=2:3:4.故选C .【点睛】本题考查了角平分线的性质,熟知角的平分线上的点到角的两边的距离相等是解答此题的关键.7.D【解析】试题分析:由∠P=60°,MN=NP,可得△MNP是等边三角形,再根据等边三角形的“三线合一”的性质以及等腰三角形的判定,即可求得结果.∵∠P=60°,MN=NP∴△MNP是等边三角形.又∵MQ⊥PN,垂足为Q,∴PM=PN=MN=4,NQ=NG=2,MQ=a,∠QMN=30°,∠PNM=60°,∵NG=NQ,∴∠G=∠QMN,∴QG=MQ=a,∵△MNP的周长为12,∴MN=4,NG=2,∴△MGQ周长是6+2a.故选D.考点:本题考查的是等边三角形的判定和性质点评:认识到△MNP是等边三角形是解决本题的关键.同时熟练掌握等腰三角形的“三线合一”的性质:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.8.C【分析】可以取AB的中点G,连接CG交AD于点F,根据等边△ABC的边长为4,AE=2,可得点E是AC的中点,点G和点E关于AD对称,此时EF+FC=CG最小,根据等边三角形的性质即可得∠DCF的度数.【详解】解:如图,取AB的中点G,连接CG交AD于点F,∵等边△ABC的边长为4,AE=2,∴点E是AC的中点,所以点G和点E关于AD对称,此时EF+FC=CG最小,根据等边三角形的性质可知:∠ECF=1∠ACB=30°.2所以∠ECF的度数为30°.故选:C.【点睛】本题考查了轴对称-最短路线问题、等边三角形的性质,解决本题的关键是利用等边三角形的性质找对称点.9.D【解析】试题解析:根据轴对称的概念可知:选项A、B、C的图形均为轴对称图形,只有选项D的图形不是轴对称图形.故选D.10.C【分析】由已知,O到三角形三边距离相等,得O是内心,再利用三角形内角和定理即可求出∠BOC 的度数.【详解】由已知,O到三角形三边距离相等,所以O是内心,即三条角平分线交点,AO,BO,CO都是角平分线,所以有∠CBO=∠ABO=12∠ABC,∠BCO=∠ACO=12∠ACB,∠ABC+∠ACB=180゜-40゜=140゜∠OBC+∠OCB=70゜∠BOC=180゜-70゜=110°故选C.【点睛】此题主要考查学生对角平分线性质,三角形内角和定理,三角形的外角性质等知识点的理解和掌握,难度不大,是一道基础题.11.180°【分析】根据多边形的外角和减去∠B和∠C的外角的和即可确定四个外角的和.【详解】解:∵AB∥DC,∴∠B+∠C=180°,∴∠B的外角与∠C的外角的和为180°,∵六边形ABCDEF的外角和为360°,∴∠1+∠2+∠3+∠4=180°,故答案为:180°.【点睛】本题考查了多边形的外角和定理,解题的关键是发现∠B和∠C的外角的和为180°12.-14【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得m、n的值,再计算m+n即可.【详解】由题意,得m+2=﹣4,n+5=﹣3,解得m=﹣6,n=﹣8.m+n=﹣14,故答案为:﹣14.【点睛】本题考查平面直角坐标系中点坐标的特征,熟记基本结论准确求解参数是解题关键.13.①②③④【分析】由折叠的性质可得AC=CF,AD=DF,∠ACD=∠DCB=22.5°,由余角的性质可得∠EBC=67.5°,可求∠EBA=∠EBC-∠ABC=22.5°,由线段的和差关系可求△BDF的周长为8,延长CA,BE交于点H,通过证明△BCE≌△HCE和△ACD≌△ABH,可证CD=2BE.【详解】解:∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°,∵沿过点C的直线折叠这个三角形,使点A落在BC边上的点F处,∴△ACD≌△FCD,∴AC=CF,AD=DF,∠ACD=∠DCB=22.5°,故①正确;∵BE⊥CD,∴∠EBC=67.5°,∴∠EBA=∠EBC-∠ABC=22.5°,故②正确;∵△BDF的周长=BD+DF+BF=BD+AD+BF=AC+BF=CF+BF,∴△BDF的周长为8,故③正确,如图,延长CA,BE交于点H,∵∠ACD=∠BCD,CE=CE,∠BEC=∠CEH=90°,∴△BCE≌△HCE(ASA)∴BE=EH,∴BH=2BE,∵∠EBA=∠ACD=22.5°,∠BAH=∠CAD=90°,AC=AB,∴△ACD≌△ABH(ASA)∴CD=BH,∴CD=2BE,故④正确,故答案为:①②③④.【点睛】本题考查了翻折变换,全等三角形的判定和性质,等腰直角三角形的性质,添加恰当辅助线构造全等三角形是本题的关键.14.AB=DC或∠ACB=∠DBC【详解】若添加AB=DC,∵AC=DB,BC=BC,AB=DC∴△ABC≌△DCB∴加一个适当的条件是AB=DC.若添加∠ACB=∠DBC,∵AC=DB,∠ACB=∠DBC,BC=BC,∴△ABC≌△DCB∴加一个适当的条件是∠ACB=∠DBC.故答案为:AB=DC或∠ACB=∠DBC.15.70°【分析】略【详解】试题分析:根据题意可得:∠COD=55°,根据等腰三角形的三线合一定理可得:∠BOC=110°,根据等腰三角形的性质可得:∠OBC=∠C=35°,则根据角平分线的性质可得:∠ABC=35°×2=70°.【点睛】略16.12【详解】解:∵AB=AC=4,∠A=60°,∴△ABC是等边三角形,∴BC="AB=AC=4,"∴△ABC的周长为12.故答案为12.【点睛】本题考查等边三角形的判定与性质,难度不大.17.25°【分析】根据三角形的内角和定理和等腰三角形的性质求出∠ADB,根据等腰三角形的性质得出∠C =∠DAC,根据三角形的外角性质得出∠C+∠DAC=∠ADB,代入求出即可.【详解】解:∵∠1=80°,AB=AD,∴∠B=∠ADB=12⨯(180°﹣∠1)=50°,∴AD=CD,∴∠C=∠DAC,∵∠C+∠DAC=∠ADB=50°,∴∠C=∠DAC=12⨯50°=25°.【点睛】本题考查了等腰三角形的性质,三角形外角的性质,三角形的一个外角等于与它不相邻的两个内角的和.18.(1)12;(2)1800°.【分析】(1)任何多边形的外角和是360度,n边形的内角和是(n-2)•180°,根据多边形的内角和与外角和的总和为2160°列方程求解即可;(2)多边形的每一个内角都等于150°,根据内角与外角互为邻补角,因而就可以求出外角的度数.根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出,外角和中外角的个数,即多边形的边数,从而求出内角和.【详解】(1)设这个多边形的边数是n,(n-2)•180°+360°=2160°,解得n=12.(2)∵多边形的每一个内角都等于150°,∴多边形的每一个外角都等于180°-150°=30°,∴边数n=360°÷30°=12,∴这个多边形的内角和为=(12-2)×180°=1800°.故答案为1800°.【点睛】本题主要考查多边形的内角和定理及多边形的外角和定理,熟练掌握多边形内角和定理是解答本题的关键.n变形的内角和为:(n-2) ×180°,n变形的外角和为:360°;然后根据等量关系列出方程求解.19.(1)见解析;(2)见解析【分析】(1)依据几何语言进行作图即可得到线段AB和BC的垂直平分线;(2)依据全等三角形的对应角相等,即可得到PB平分∠ABC.【详解】解:(1)如图所示,DP为AB的垂直平分线,EP为BC的垂直平分线;(2)如图所示,∵AB=BC,DP为AB的垂直平分线,EP为BC的垂直平分线,∴DB=EB,∠BDP=∠BEP=90°,又∵BP=BP,∴Rt△BDP≌Rt△BEP(HL),∴∠PBD =∠PBE ,即BP 平分∠ABC .【点睛】本题主要考查了基本作图,解决问题的关键是掌握线段垂直平分线的定义以及全等三角形的性质.20.(1)8,8,12; (2)10,8或9,9【解析】试题分析:(1)、首先设腰长为xcm ,则底边长为1.5xcm ,然后根据三边长的和列出方程从而求出x 的值,得出三角形的三边长;(2)、本题需要分两种情况进行讨论,即10cm 为腰长或10cm 为底边时两种情况分别进行计算,得出答案.试题解析:(1)、设腰长为xcm ,则底边长为1.5xcm ,根据题意可得:2x+1.5x=28解得:x=8cm 则1.5x=1.5×8=12cm 即这个等腰三角形的三边长为8cm ,8cm ,12cm(2)、当10cm 为腰长时,则底边长为28-10×2=8cm ,则两边长为10cm ,8cm当10cm 为底边时,则腰边长为(28-10)÷2=9cm ,则两边长为9cm ,9cm 综上所述,这个等腰三角形的两边长为10cm ,8cm 或9cm ,9cm21.(1)详见解析;(2)AD=8【分析】(1)根据AAS 即可证明△ACD ≌△CBE ;(2)由(1)知△ACD ≌△CBE ,根据全等三角形的对应边相等,得出CD=BE=3,AD=CE ,由CE=CD+DE ,从而可求出AD 的长.【详解】(1)证明:∵AD ⊥CE ,BE ⊥CE ,∴∠ADC=∠CEB=90°,又∵∠ACB=90°,∴∠ACD=∠CBE=90°-∠ECB .在△ACD 与△CBE 中,ADC CEB ACD CBE AC BC ∠∠∠∠⎧⎪⎨⎪⎩===,∴△ACD≌△CBE(AAS);(2)解:∵△ACD≌△CBE,∴CD=BE=3,AD=CE,又∵CE=CD+DE=3+5=8,∴AD=8.【点睛】本题考查全等三角形的判定与性质,余角的性质,熟练掌握全等三角形的判定与性质是解题的关键.22.(1)见解析;(2)A′(﹣4,﹣5),B′(﹣6,﹣2),C′(﹣3,﹣1);(3)5.5;(4)见解析【分析】(1)利用关于x轴对称的点的坐标特征写出A、B、C关于x轴的对称点A′、B′、C′的坐标,然后描点即可;(2)根据作图即可确定A′,B′,C′三点坐标;(3)用一个矩形的面积分别减去三个直角三角形的面积去计算△ABC的面积;(4)以AC为对角线,作平行四边形ABCD即可.【详解】解:(1)如图,△A′B′C′为所作;(2)对称点的坐标:A′(﹣4,﹣5),B′(﹣6,﹣2),C′(﹣3,﹣1).(3)△ABC的面积=3×4﹣12×3×1﹣12×3×2﹣12×4×1=5.5;故答案为5.5.(4)如图,点D 为所作.【点睛】本题考查了作图-轴对称变换:几何图形都可看做是由点组成,我们在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的.也考查了三角形全等的判定. 23.(1)见解析 (2)见解析【分析】(1)根据等角的余角可知∠1=∠2,利用ASA 即可证得△BAD ≌△CBE ;(2)由△BAD ≌△CBE 可知AD=BE ,根据E 是AB 中点,故EB=EA ,进而可得AE=AD ,根据平行线的性质可得∠5=∠ACB=45°,再根据AD=AE ,即可知AF ⊥DE ,且EF=DF ,即可得证.【详解】如图(1)证明:∵∠ABC=90°,BD ⊥EC ,∴∠1+∠3=90°,∠2+∠3=90°,∴∠1=∠2,在△BAD 和△CBE 中,2190BA CB BAD CBE ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩, ∴△BAD ≌△CBE (ASA ),(2)证明:∵△BAD ≌△CBE ,∴AD=BE∵E 是AB 中点,∴EB=EA ,∴AE=AD ,∵AD ∥BC ,∴∠5=∠ACB=45°,∵∠4=45°,∴∠4=∠5,又∵AD=AE ,∴AF ⊥DE ,且EF=DF ,即AC是线段ED的垂直平分线;【点睛】本题考查全等三角形的判定及性质以及等腰三角形的性质,还涉及了等角的余角相等、平行线性质等知识点,熟练掌握各个性质定理是解题关键.24.(1)36°;(2)12.【分析】(1)ED是AC的垂直平分线,可得AE=EC;∠A=∠C;已知∠A=36,即可求得;(2)△ABC中,AB=AC,∠A=36°,可得∠B=72°,又∠BEC=∠A+∠ECA=72°,所以,得BC=EC=12.【详解】(1)解:∵DE垂直平分AC,∴CE=AE,∴∠ECD=∠A=36°.(2)解:∵AB=AC,∠A=36°,∴∠B=∠ACB=72°,∵∠ECD=36°,∴∠BCE=∠ACB-∠ECD=36°,∠BEC=72°=∠B,∴BC=EC=12.25.(1)见解析;(2)AE+CF=EF,证明见解析;(3)AE﹣CF=EF,证明见解析【分析】(1)利用SAS定理证明△ABE≌△CBF;(2)延长DC至点K,使CK=AE,连接BK,分别证明△BAE≌△BCK、△KBF≌△EBF,根据全等三角形的性质、结合图形证明结论;(3)延长DC 至G ,使CG =AE ,仿照(2)的证明方法解答.【详解】(1)证明:在△ABE 和△CBF 中,=90?AB BCBAE BCF AE CF=⎧⎪=⎨⎪=⎩∠∠,∴△ABE ≌△CBF (SAS );(2)解:AE +CF =EF ,理由如下:延长DC 至点K ,使CK =AE ,连接BK , 在△BAE 与△BCK 中,=BA BCBAE BCK AE CK=⎧⎪=⎨⎪⎩∠∠,∴△BAE ≌△BCK (SAS ),∴BE =BK ,∠ABE =∠KBC ,∵∠FBE =60°,∠ABC =120°,∴∠FBC +∠ABE =60°,∴∠FBC +∠KBC =60°,∴∠KBF =∠FBE =60°,在△KBF 与△EBF 中,BK BEKBF EBF BF BF=⎧⎪=⎨⎪=⎩∠∠,∴△KBF ≌△EBF (SAS ),∴KF =EF ,∴AE +CF =KC +CF =KF =EF ;(3)解:AE ﹣CF =EF ,理由如下:延长DC 至G ,使CG =AE ,由(2)可知,△BAE ≌△BCG (SAS ),∴BE =BG ,∠ABE =∠GBC ,21 ∠GBF =∠GBC ﹣∠FBC =∠ABE ﹣∠FBC =120°+∠FBC ﹣60°﹣∠FBC =60°, ∴∠GBF =∠EBF ,∵BG =BE ,∠GBF =∠EBF ,BF =BF ,∴△GBF ≌△EBF ,∴EF =GF ,∴AE ﹣CF =CG ﹣CF =GF =EF .【点睛】本题考查的是全等三角形的判定和性质,正确作出辅助线、掌握全等三角形的判定定理和性质定理是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学1
1
2015年秋季期中考试八年级数学试题
(时间:120分钟 满分:120分)
一、选择题: 命题人:吴烨
1.下列图形中,不是轴对称图形的是( )
2.墙上有一面镜子,镜子对面的墙上有一个数字式电子钟。如果在镜子里看到该电子钟的
时间显示如图所示,那么它的实际时间是( ) A.1 2:5 1 B.1 5:2 1 C.1 5:5 1 D.1 2:2 1 3.下列图形中,是轴对称图形的有( )个 ①角;②线段;③等腰三角形;④直角三角形;⑤圆;⑥锐角三角形 A、2 B、3 C、4 D、5 4.一个多边形有9条对角线,则这个多边形有多少条边( ) A.6 B.7 C.8 D.9 5.如果多边形的内角和是外角和的k 倍,那么这个多边形的边数是( ) A.k B.2 k+l C.2 k+2 D.2 k—2 6.如图,已知△ABC为直角三角形,∠C=900,若沿图中虚线剪去∠C,则∠1+ ∠2等于( ) A.90 0 B.1350 C.270 0 D.3150 7.图l为一张三角形ABC纸片,点P在BC上,将A折至P时,出现折痕BD,其中点D在AC上,如图2所示,若△ABC的面积为80,△ABD的面积为30,则AB与PC的长度之比为( ) A.3:2 B.5:3 C.8:5 D.13:8 8.长为9,6,5,4的四根木条,选其中三根组成三角形,选法有 ( ) A.1种 B.2种 C.3种 D.4种 9.若一个三角形三个内角度数的比为2:3:4,那么这个三角形是( ) A.直角三角形 B.锐角三角形 C.钝角三角形 D.等边三角形 10.如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过O点作EF∥BC交AB于点E,交AC于点F,过点O作OD⊥AC于D,下列四个结论。 ①EF=BE+CF ②∠BOC =900+21∠A ③点O到△ABC各边的距离相等 ④设OD=m, AE+AF=n 则S△AEF=21mn,正确的结论有 个。 A.1个 B.2个 C.3个 D.4个 二、填空题:(8×3分)
11、角的平分线的性质定理: 。
12、△两边长分别为12cm和17cm,其周长是整数,则这样的△有 个。
13、O为△ABC三边中垂线的交点,∠ABC=800,则∠AOC= 。。
14、正△与边长相等的正n边形进行平面镶嵌,则n= 。。
15、锐角△ABC与锐角△DEF,若AB=DE,∠A=∠D,BC=EF,则△ABC与△DEF是否全等。填(是
或否) 。
16、等腰△一腰上的高与其中一边的夹角为450,则顶角为 。
17、∠MON=300,P为∠MON内一点,OP=10cm,若A,B分别在OM,ON上,则△APB的周长最
小值为 cm。
18、从A点出发向前行am,左拐度,作为一次操作。经过这样5次操作,最后回到原点A,
则= 。。
三、解答题
19、证明三角形三内角和为1800 (8分)
(要求;结合图形,写出已知,求证:并证明)
20、小明的爷爷家住农村,村前有一条小河,如图,一天小明回老家看望爷爷,爷爷对小明说:
“你是初中生了,是小知青,你能否设计一种方案,测出小河的宽AB?”小明听后,十分高兴,
说:“爷爷,你放心吧,下次回家,我把我们数学兴趣小组组员带来,共同完成任务”如果你是
组员,协助他设计方案,测量河宽AB。
方案:(3分)
理由:(6分)
A
河
·
·
B
B
八年级数学2
2
21、(10分)已知:如图BA⊥AD,BC⊥CD,AD=BC,AD与BC交于O,求证:AO=CO. 22、(8分)已知:如图A、D、E三点在同一线上,BD=CD,BE=CE,求证:AB=AC. 23、(10分)已知:△ABC,AD是△角行平分线 求证:①CDBDACAB ②若AB=4cm,AC=2cm,BC=5cm 求BD的长 24、(8分)已知如图:四边形ABCD、AB>AD、CE⊥AB于E、现有四个论断:①AC平分∠BAD、②AB+AD=2AE、③CB=CD、④∠B+∠D=1800。以其中两个论断条件,另两个论断为结论,组成一个正确命题,选择其中一个正确命题,并给予证明。 25、(8分)已知如图:平面直角坐标系中,A(3,0)、B(0、3),AD平分∠BAO,BD⊥AD
于D,并连DO,求∠ADO的大小?
26、(5分)鄂州市原重型机械厂旁边有长江和洋澜湖出口(如图;假设江边和湖堤是分别平行
的),现要在长江和洋澜湖出口建两座大桥,大桥头必需与江堤和湖堤垂直,使A地人经过两座
桥到达B地路径最短,两桥建在何处?
·
·
八年级数学3
3
八年级数学4
4