8 第八章 边界层与绕流阻力解析

合集下载

流体力学第8章中文版课件

流体力学第8章中文版课件

Chapter 8: External flows
14
8.3 绕淹没体的流动
分离前的湍流边 界层 分离前的层流 边界层
2013-11-25
Chapter 8: External flows
15
8.3 绕淹没体的流动
2013-11-25
Chapter 8: External flows
16
8.3 绕淹没体的流动
W FD
sphere volume CD V 2 A
4 3 1 S water R CD V 2R 2 3 2
1 2
8RS water V 3C D
2013-11-25
1/ 2
8 0.15 1.02 9800 3 1.20 CD
Re
VD


129 0.3 2.42 10 6 1.6 10 5
V 129 m/s
2013-11-25 Chapter 8: External flows 20
8.3 绕淹没体的流动
求解:(b) 对于球在水中的下落情况,则必须考虑施加在球体上的与阻力FD 同方向的浮力 B 的作用:
如果物体形状上有一 个突然的变化,分离 点将出现在形状突然 变化点或其附近。 另外,分离后流 体在某一个位臵 上又会重新附着 在物体上。
2013-11-25
Chapter 8: External flows
10
8.2 分离
在分离点的上游,壁面附 在分离点的下游,壁面附 近的 x方向上的速度分量 近的 x方向上的速度分量在 负 x 方向,因此在正 x 方向,因此 壁面上 壁面上的 的 u/y一定是负的。 u/y是正的。

流体力学教案第8章边界层理论

流体力学教案第8章边界层理论

第八章 边界层理论§8—1 边界层的基本概念实际流体和理想流体的本质区别就是前者具有粘性。

对层流而言,单位面积摩擦力的大小yud d μτ=,可以看出,对于确定的流体的等温流场,摩擦力的大小与速度梯度有关,其比例函数即动力粘度。

速度梯度yud d 大,粘性力也大,此时的流场称为粘性流场。

若速度梯度yud d 很小,则粘性力可以忽略,称为非粘性流场。

对于非粘性流场,则可按理想流体来处理。

则N-S 方程可由欧拉方程代替,从而使问题大为简化。

Vlv l lV v A y u V l tVl t u mρρμρρ======2223d d d d 粘性力惯性力当空气、蒸汽,水等小粘度的流体与其它物体作高速相对运动时,一般雷诺数很大。

由vVl==粘性力惯性力Re ,则在这些流动中,惯性力〉〉粘性力,所以可略去粘性力。

但在紧靠物体壁面存在一流体薄层,粘性力却与惯性力为同一数量级。

所以,在这一薄层中,两者均不能略去。

这一薄层就叫边界层,或叫速度边界层,由普朗特在1904年发现.a .流体流过固体壁面,紧贴壁面处速度从零迅速增至主流速度,这一流体薄层,就叫边界层或速度边界层。

b .整个流场分为两部分 层外,0=∂∂yu,粘性忽略,无旋流动。

层内,粘性流,主要速度降在此,有旋流动.c .由边界层外边界上∞=V u %99,来定义δ,δ为边界层厚度。

d .按流动状态,边界层又分为层流边界层和紊流边界层。

由于在边界层内,流体在物体表面法线方向(即yu∂∂)速度梯度很大,所以,边界层内的流体具有相当大的旋涡强度;而在层外,由于速度梯度很小。

所以,即使对于粘度很大的流体,粘性力也很小,故可忽略不计,所以可认为,边图8-2空气沿平板边界层速度分布外部区域边界层界层外的流动是无旋的势流.边界层的基本特征有: (1)1<<Lδ⇒薄层性质,其中L 为物体的长度;沿流方向↑↑→δx 。

(2) 层内yu∂∂很大, 边界层内存在层流和紊流两种流态。

第8章 边界层理论基础及绕流运动

第8章 边界层理论基础及绕流运动

ux
∂ux ∂x
+ uy
∂ux ∂y
=

1 ρ
∂p ∂x
+
ν
∂ 2u x ∂y 2
∂ux ∂x
+
∂uy ∂y
=
0
边界条件: y =∞(或y = δ),ux = U0 y = 0,ux = 0, uy = 0
其中 U0 = U0(x) =边界层外界限上外部流动的流速 且 p = p(x) = 边界层外界限上外部流动的压强
=
1 2
δ
∫ ∫ δ2 =
δ 0
ux u0
⎜⎜⎝⎛1 −
ux u0
⎟⎟⎠⎞dy
=
δ
1η(1− η)dη = 1 δ
0
6
∫ ∫ ( ) δ3 =
δ 0
ux u0
⎜⎜⎝⎛1 −
ux 2 u0 2
⎟⎟⎠⎞dy
=
δ
1η 1− η2
0
dη = 1 δ 4
10
8.2 边界层微分方程
——利用边界层的性质对粘性流体基本方程(纳维-斯托克斯方 程)的简化。
⎟⎠⎞
=
−δ
dp dx
− τ0
其中: dp/dx和u0应由外部流动求出 → 三个未知量:τ0、δ、ux
应用动量积分方程求解边界层问题的步骤: (1) 补充 ux (x, y)、τ0(δ)关系式,积分方程转变为δ的常微分方程
(2)求解方程 → δ(x) →τ0(x) → 总阻力→ 计算位移厚度等其他 参数。
∫ ∫∫ ∑ 积分形式的动量方程
∂ ∂t
ρurdV
cv
+
cs
ρurundA

流体力学边界层理论

流体力学边界层理论

于是
τ 0 = 0.332
μρU 2 x
上式可看出平板层流边界层局部摩擦切应力与x坐标的平方根成反比的规
律随着x的增加而减小。
现计算整个平板上总摩擦阻力。设板长为L,板宽为b,则平板单面总摩擦
阻力是:
∫ ∫ Rf =

0
0bdx
=b
L
0.332
0
μρU 3 dx = 0.664 x
μρ LU 3
总摩擦阻力系数 C f 由下式确定:
2
则:
vx
(
x,
y)
=
U

1 2
ϕ ′(η )
设 U=25 km/h,ν=0.15cm2/s, x=3m,y=5mm,
求:Vx=?
解:U=25×1000/3600=6.95m/s, ν=0.0015m2/s,
x=3m, y=0.005m,
代入η中得:
η = 1 × 5×10−3 × 2
6.95 0.15 ×10−4
(11-14)式应采取如下形式:
ϕ(x, y) = xϕ( y ) x
(11-16)
返回为有量纲解时,不出现L,即 :
ϕ = ν U x ϕ (η )
η=1y U 2 νx
(11-18)
通过以上分析,来求解下列形式的ψ。
⎡y⎤
ϕ=
νUL
x
⎢ ⎢
L⎢
⎢ ⎣
νL ⎥
U ⎥=
x⎥
L
⎥ ⎦
⎡ νUxϕ ⎢ y
U(起参数作用),ν和U不同时,同一空间点上ψ的值不同。
现设法将方程和边界条件中各个物理量无量纲化,不再出现ν和U。
选特征量:
L:x的比例尺

流体力学教案第8章边界层理论

流体力学教案第8章边界层理论

第八章 边界层理论§8-1 边界层的基本概念实际流体和理想流体的本质区别就是前者具有粘性。

对层流而言,单位面积摩擦力的大小yud d μτ=,可以看出,对于确定的流体的等温流场,摩擦力的大小与速度梯度有关,其比例函数即动力粘度。

速度梯度yud d 大,粘性力也大,此时的流场称为粘性流场。

若速度梯度yud d 很小,则粘性力可以忽略,称为非粘性流场。

对于非粘性流场,则可按理想流体来处理。

则N-S 方程可由欧拉方程代替,从而使问题大为简化。

Vlv l lV v A y u V l tVl t u mρρμρρ======2223d d d d 粘性力惯性力当空气、蒸汽,水等小粘度的流体与其它物体作高速相对运动时,一般雷诺数很大。

由vVl==粘性力惯性力Re ,则在这些流动中,惯性力>>粘性力,所以可略去粘性力。

但在紧靠物体壁面存在一流体薄层,粘性力却与惯性力为同一数量级。

所以,在这一薄层中,两者均不能略去。

这一薄层就叫边界层,或叫速度边界层,由普朗特在1904年发现。

a .流体流过固体壁面,紧贴壁面处速度从零迅速增至主流速度,这一流体薄层,就叫边界层或速度边界层。

b .整个流场分为两部分 层外,0=∂∂yu,粘性忽略,无旋流动。

层内,粘性流,主要速度降在此,有旋流动。

c .由边界层外边界上∞=V u %99,来定义δ,δ为边界层厚度。

d .按流动状态,边界层又分为层流边界层和紊流边界层。

由于在边界层内,流体在物体表面法线方向(即yu∂∂)速度梯度很大,所以,边界层内的流体具有相当大的旋涡强度;而在层外,由于速度梯度很小。

所以,即使对于粘度很大的流体,粘性力也很小,故可忽略不计,所以可认为,图8-2空气沿平板边界层速度分布外部区域边界层边界层外的流动是无旋的势流。

边界层的基本特征有: (1)1<<Lδ⇒薄层性质,其中L 为物体的长度;沿流方向↑↑→δx 。

(2) 层内yu∂∂很大, 边界层内存在层流和紊流两种流态。

第八章 边界层理论

第八章  边界层理论
The last chapter introduces Navier-Stokes equation and Reynolds equation, the differential continuity and these two equations form basic differential equation which find the solution of viscosity fluid dynamics.
U0 x Re x v
(8—1)
Usually we take Reynolds number at transition point is
Rec 5 105
(8—2)
15
随着边界层厚度的增加,粘性对边界层内流体的约束作 用减小,而惯性作用增大。当粘性作用控制不住水质点的运 动时,就和流体在圆管中流动一样,由层流转变成紊流,此 现象称为边界层转捩,并且在过渡区和紊流区下面存在一层 流底层 0 。 假设主流中流速为 U 0 ,到平板前端的距离为 x ,这时 的雷诺数为
3
第八章 §8–1 引言
边界层理论
§8–2 边界层的基本概念 §8–3 边界层的运动微分方程式 §8–4 边界层中的各种厚度
§8–5 边界层的动量方程式和摩擦切应力
§8–6 光滑平板上的层流边界层 第八章 习题
4
Chapter 8 Boundary Layer Theory
§8-1 Introduction
因为随着平板长度的增加,摩擦损失亦增加,流体内部的能 量减少,流速亦减少,为了满足连续条件,边界层的厚度增大。
12
3、laminar flow section, transition section and turbulent flow section also exists in the boundary layer, under the transition section and turbulent flow section, there also exists a bottom layer 0 of laminar flow. As shown in Fig.8-1. y

8第八章 边界层理论基础和绕流运动

8第八章 边界层理论基础和绕流运动

第八章 边界层理论基础和绕流运动8—1 设有一静止光滑平板宽b =1m ,长L =1m ,顺流放置在均匀流u =1m/s 的水流中,如图所示,平板长边与水流方向一致,水温t =20℃。

试按层流边界层求边界层厚度的最大值δmax 和平板两侧所受的总摩擦阻力F f 。

解:20℃水的运动粘度ν=1.003⨯10-6 m 2/s 密度3998.2/kg m ρ=6119970091.00310ν-⨯===⨯L uLRe因为 56310997009310⨯<=<⨯L Re按层流边界层计算。

max 1/25.4470.0055m Re L L δ===3f 1/21.46 1.4610-===⨯L C Re 223998.2122 1.461011N 1.46N 22f ff u F C A ρ-⨯==⨯⨯⨯⨯⨯= 8—2 设有极薄的静止正方形光滑平板,边长为a ,顺流按水平和铅垂方向分别置放于二维恒定均速u 的水流中,试问:按层流边界层计算,平板两种置放分别所受的总摩擦阻力是否相等,为什么?解:因为两种置放情况的物理模型和数学模型及其分析、推导所得计算公式是相同的,所以两种情况平板所受的总摩擦阻力相等。

8—3 设有一静止光滑平板,如图所示,边长1m,上宽0.88m,下宽0.38m,顺流铅垂放置在均匀流速u =0.6m/s 的水流中,水温t =15℃。

试求作用在平板两侧的总摩擦阻力F f 。

注:若为层流边界层,C f 按式(8—24)计算。

解:由表1—1查得,15℃时水的密度ρ=999.13/kg m ,运动粘度ν=1.139×10-6m 2/s 。

首先判别流态,计算平板上宽雷诺数560.60.884635655101.13910ν-⨯===<⨯⨯L uLRe ,按层流边界层计算。

设z 轴铅垂向上,平板宽度x 为0.38+0.5z ,阻力系数C f 按式(8-24)计算,即12f 60.6(0.380.5)1.328 1.13910--⨯+⎡⎤==⨯⎢⎥⨯⎣⎦z C1521.328 5.2677810(0.380.5)z -轾=创?犏臌总摩擦阻力F f 按式(8—20)计算,f f1212(0.380.5)d 2F C u z z r =?ò115202 1.328 5.2677810(0.380.5)z -轾=创创+犏臌ò21999.10.6(0.380.5)d 2z z 创创+ 1120.658(0.380.5)d z z =?ò。

流体力学第八章答案

流体力学第八章答案

流体力学第八章答案【篇一:流体力学第8、10、11章课后习题】>一、主要内容(一)边界层的基本概念与特征1、基本概念:绕物体流动时物体壁面附近存在一个薄层,其内部存在着很大的速度梯度和漩涡,粘性影响不能忽略,我们把这一薄层称为边界层。

2、基本特征:(1)与物体的长度相比,边界层的厚度很小;(2)边界层内沿边界层厚度方向的速度变化非常急剧,即速度梯度很大;(3)边界层沿着流体流动的方向逐渐增厚;(4)由于边界层很薄,因而可以近似地认为边界层中各截面上压强等于同一截面上边界层外边界上的压强;(5)在边界层内粘性力和惯性力是同一数量级;(6)边界层内流体的流动与管内流动一样,也可以有层流和紊流2种状态。

(二)层流边界层的微分方程(普朗特边界层方程)??v?vy?2v1?p?vy?????vx?x?y??x?y2????p??0?y???v?vy???0?x?y??其边界条件为:在y?0处,vx?vy?0 在y??处,vx?v(x)(三)边界层的厚度从平板表面沿外法线到流速为主流99%的距离,称为边界层的厚度,以?表示。

边界层的厚度?顺流逐渐加厚,因为边界的影响是随着边界的长度逐渐向流区内延伸的。

图8-1 平板边界层的厚度1、位移厚度或排挤厚度?1?1?2、动量损失厚度?2?vx1?(v?v)dy?(1?)dy x??00vv?2?1?v2???vx(v?vx)dy???vxv(1?x)dy vv(四)边界层的动量积分关系式??2???p?vdy?v?vdy?????wdx xx??00?x?x?x对于平板上的层流边界层,在整个边界层内每一点的压强都是相同的,即p?常数。

这样,边界层的动量积分关系式变为?wd?2d?vdy?vvdy?? x?x??00dxdx?二、本章难点(一)平板层流边界层的近似计算根据三个关系式:(1)平板层流边界层的动量积分关系式;(2)层流边界层内的速度分布关系式;(3)切向应力关系式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

应用量级比较法
流 体 力 学 与 流 体 机 械
Fluid Mechanics and Machinery
第二节 边界层微分方程
~ L, ~ 1 ~ , dy ~ ~ , x ~ 1, u x ~ U
ux ~ 1, x u y ~ 1, u y ux 1 2 ux 2ux 1 ~ , ~ 1, ~ 2, ~1 2 2 y y x y u y ~ 1, u y x ~ , 2u y x
u x u x 1 p 2 u x 2 u x uy ( 2 2 ) u x y x x y x 2 2 u y 1 p u y u y u y uy ( 2 2 ) u x y y x y x u x u y x y 0
流 体 力 学 与 流 体 机 械
第一节 边界层概念 2 边界层的形成与发展
U
层流边界层
过渡区
紊流边界层
Rex=Ux/
层流底层
x
边界层的发展
流体流过光滑平板时,边界层由层流转变为湍流发生在 Rek=21053106
Fluid Mechanics and Machinery
流 体 力 学 与 流 体 机 械
U 2 U U u dy
2 0

2

0
u U
u 1 U
u dy 0 U
u 1 U
dy
Fluid Mechanics and Machinery
流 体 力 学 与 流 体 机 械
第二节 边界层微分方程 对不可压缩、二维、恒定流绕流流动,忽略质量力, 则其N-S方程式为:
Fluid Mechanics and Machinery
流 体 力 学 与 流 体 机 械
第一节 边界层概念 ② 边界层概念 普朗特边界层理论的主要内容: (1) 紧贴壁面非常薄的一层,该薄层内速度梯度很大, 这一薄层称为边界层。 (2)边界层以外的流动区域,称为主体区或外流区。该 区域内流体速度变化很小,故这一区域的流体流动可近似 看成是理想流体流动。
Fluid Mechanics and Machinery
y 4 l
3 2 1 0 紊流边界层
层流边界层 0.2 0.4 0.6 0.8 1.0
ux U
流 体 力 学 与 流 体 机 械
第一节 边界层概念 3 边界层的厚度 ① 名义厚度δ 边界层厚度可以看成是壁面对来流的粘滞作用扩散范围的度 量,定义为壁面起沿法向至流速达到外界主流流速之99%处。 对于大雷诺数流动,边界层是很薄的.
流 体 力 学 与 流 体 机 械
第一节 边界层概念 1 绕物体的流动图画 ① 理想流体中的圆柱绕流 达朗贝尔疑难:
D E F
D E : A , u , p E: Amin , umax , pmin
D p F E
E F : A , u , p u D u F , pD pF
第一节 边界层概念
边界层
umax
充分发展的流动
U
xe
进口段长度
(a)层流 U xe
边界层
层流时 xe=0.02875d Re; 湍流时 xe=(2540)d 这里,雷诺数 Re=Ud/。
充分发展的流动
进口段长度
(b)紊流 圆管内边界层的发展
Fluid Mechanics and Machinery
第ห้องสมุดไป่ตู้


边界层与绕流阻力
Fluid Mechanics and Machinery
流 体 力 学 与 流 体 机 械
第八章 边界层与绕流阻力 引言 本章讨论流体绕过物体的流动——外流。 不可压缩流场中研究物体周围流场的分布情况及物体 受到流体的作用力。
Fluid Mechanics and Machinery
x
y U
x
x , Re
翼弦长几米,δ厚约几厘米 轮船长几百米,δ厚约几米 透平叶片,δ厚约几毫米
Fluid Mechanics and Machinery
外部流动区域 边界层
前缘
x
流 体 力 学 与 流 体 机 械
第一节 边界层概念 ② 位移厚度δ1(排挤厚度) 定义:以速度U 通过高δ1断面的流量等于由边界层引起 的流量减少量。即:
流 体 力 学 与 流 体 机 械
第一节 边界层概念 层流边界层与紊流边界层在边 界层厚度、边界层内速度分布 和壁面切应力等方面有很大的 区别。紊流边界层中雷诺应力 所代表的动量对流使流速分布 趋于均匀,所以紊流边界层比 层流边界层厚,顺流增厚的速 度也比层流边界层快,相对均 匀的流速分布还导致壁面切应 力的增加。正因为如此,对两 种流态的边界层必须分别讨 论。
U 1 (U u )dy
0
y δ
U
1

0
u (1 ) dy U u (1 ) dy U
u
U-u


δ1 x
0
Fluid Mechanics and Machinery
流 体 力 学 与 流 体 机 械
第一节 边界层概念 ③ 动量损失厚度δ2 定义:以速度U 通过高δ2断面的动量等于由边界层引起 的动量减少量。即:
U U
主体区或外流区 U
U
ux=0.99U
u
边界层区
u
Fluid Mechanics and Machinery
流 体 力 学 与 流 体 机 械
第一节 边界层概念 ② 实际流体绕物体流动
(a) Re<<1
(b) Re=10
(c) Re=60
(d) Re=100
Fluid Mechanics and Machinery
Fluid Mechanics and Machinery
2
~ 2,
2u y y
2
~1
u x u x 1 p 2 u x 2 u x ux uy ( 2 2 ) x y x x y 1 U 1 1 2

u x u x 2ux 1 p ux uy x y x y 2
相关文档
最新文档