2017_2018学年高中数学第二章数列2.2等差数列2.2.2等差数列的性质课件新人教A版必修5

合集下载

新课标人教A版数学必修5全部课件:等差数列性质应(1)

新课标人教A版数学必修5全部课件:等差数列性质应(1)

f ( n )( n N ), 且 f (1) 2 求 f (101 )的值 tg ( A C )的值
(6)在 ABC 中 , A 、 B 、 C 成等差数列,求
练习题 2 (7)等差数列 a1 1 25 , 第10 项大于 1,求公差 d 的范围
(8 ) 若 a b , 且 a , x1 , x 2 , , x m , b 和 a , y1 , y 2 , , y n , b 都是 等差数列,试用 (9)已知等差数列 x 2 x1 m 、 n 的值表示 之值。 y 2 y1
a n , 满足 a 3 a 7
12 , a 4 a 6 4 94 , 数
求数列 a n 的通项公式 . (10 )四个数成等差数列,其 第一个数与第四个数的 的积少 18,求这四个数。 中四个数的平方和为 积比第二个数与第三个
练习题 1: (1)在等差数列中 a 3 5 , a 5 9 , 求 a10 的值 a15 33 , a 25 66 , 求 a 35的值 a 5 10 , a1 a 2 a 3 3, 求: a1、 d 使这五个数 。

( 2)在等差数列中, (3)在等差数列中,
( 4 .) 在 1与 7 之间依次插入三个数, 成等差数列,求此数列 (5)设 f ( n 1) 1 2
( 2 ) 若 lg 2、 2 1)、 2 3) 成等差数列,则 lg( lg(
x x
x?
(3)三数成等差数列,其
和为 9, ;
积为 15,求此三数 ( 若是五个数成等差数列 四个数成等差数列又如 何设未知数? )
(4)首项为 24 的等差数列,从第 为正数,求公差 d 的取值范围

高中数学第二章2.2 等差数列教案新课标人教A版必修五

高中数学第二章2.2 等差数列教案新课标人教A版必修五

2.2 等差数列知识梳理1.等差数列:一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数就叫做等差数列的公差,常用字母“d 〞表示。

⑴公差d 一定是由后项减前项所得,而不能用前项减后项来求;⑵对于数列{n a },假设n a -1-n a =d (与n 无关的数或字母),n ≥2,n ∈N +,那么此数列是等差数列,d 为公差2.等差数列的通项公式:①普通式:1(1)n a a n d =+-;②推广式:()n m a a n m d =+-;③变式:1(1)n a a n d =--;11n a a d n -=-;n m a a d n m-=-; 注:等差数列通项公式的特征:等差数列的通项公式为关于项数n 的次数不高于一次的多项式函数即a n =An +B (假设{a n }为常数列时,A =0).3.如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项;且A =2a b +。

}{n a 是等差数列⇔)1(211≥+=+-n a a a n n n 4.等差数列的单调性:由等差数列的定义知a n +1-a n =d ,当d >0时a n +1>a n 即{a n }为递增数列;当d =0时,a n +1=a n 即{a n }为常数列;当d <0时,a n +1<a n 即{a n }为递减数列.注:等差数列不会是摆动数列. 5.}{n a 是等差数列,假设q p n m +=+,那么q p n m a a a a +=+第一课时:典例剖析题型一 等差数列的通项公式例1 ⑴求等差数列8,5,2…的第20项⑵ -401是不是等差数列-5,-9,-13…的项?如果是,是第几项?解:⑴由35285,81-=-=-==d a , n=20,得49)3()120(820-=-⨯-+=a⑵由4)5(9,51-=---=-=d a ,得数列通项公式为:)1(45---=n a n由题意可知,此题是要回答是否存在正整数n ,使得)1(45401---=-n 成立解之得n=100,即-401是这个数列的第100项。

等差数列的概念(第二课时)等差数列的性质 课件 高二上学期数学人教A版(2019)选择性必修第二册

等差数列的概念(第二课时)等差数列的性质 课件 高二上学期数学人教A版(2019)选择性必修第二册
(2)由等差数列的性质,得 ,所以 ,解得 ,故 .(3)令 ,因为 , 都是等差数列,所以 也是等差数列.设数列 的公差为 ,由已知得 ,由 ,得 ,解得 ,故 .
思考:若数列 是等差数列,首项为 ,公差为 ,在 中每相邻两项之间都插入4个数,若要使之构成一个新的等差数列,你能求出它的公差吗?
解:
解1:
解2:
探究2 等差数列的综合问题
问题1:对于三个数成等差数列,某班同学给出了以下三种设法:
(1)设这三个数分别为 , , .
(2)设该数列的首项为 ,公差为 ,则这三个数分别为 , , .
(3)设该数列的中间项为 ,公差为 ,则这三个数分别为 , , .那么,哪种方法在计算中可能更便捷一些?
若下标成等差数列,则对应的项成等差数列.
新知运用
例1 (1)已知等差数列 , , ,求 的值;
(2)已知等差数列 , ,求 的值;
(3)已知数列 , 都是等差数列,且 , , ,求 的值.
[解析] (1)(法一)设 的公差为 ,则 解得 故 . (法二)因为 ,所以在等差数列 中有 ,从而 . (法三)因为5, , 成等差数列,所以 , , 也成等差数列,因此 ,即 ,解得 .
2A=a+b
第四章 数列
4.2 等差数列
课时2 等差数列的性质及其应用
学习目标
1.能用等差数列的定义推导等差数列的性质.2.能用等差数列的性质解决一些相关问题.3.能用等差数列的知识解决一些简单的应用问题.
探究:观察等差数列: 2, 4, 6, 8, 10, 12, 14, 16,……说出8是哪两项的等差中项?并找到它们满足的规律?
方法总结 等差数列项的常见设法:(1)通项法.(2)对称项设法.对称项设法的优点是:若有 个数构成等差数列,利用对称项设法设出这个数列,则其各项和为 .

等差数列(概念和通项公式)课件-高二数学人教A版(2019)选择性必修第二册

等差数列(概念和通项公式)课件-高二数学人教A版(2019)选择性必修第二册



又因为 = ( ∈ N ),所以+1 − =3( ∈ N ),且1

1
所以数列{}是等差数列,首项为 ,公差为3.

=
1

=
1
.

典例讲解


例2、①已知数列{ }满足+ − = , ∈ ,且 = ,则 =_____.



复习引入
1.数列的定义:
按一定次序排列的一列数
2.数列的通项公式:
数列 的第项 与项数之间的函数关系式,

即 = ∈ .
人教A版同步教材名师课件
等差数列
---概念和通项公式
学习目标
学习目标
理解等差数列的概念
掌握等差数列通项公式的求法
理解等差数列与一次函数的关系
核心素养
在等差数列通项公式中,有四个量,
, , , ,
知道其中的任意三个量,就可以求出另一个量,即知三求一 .
探究新知
等差数列的通项公式与一次函数有怎样的关系?
= + ( − ) = + − ,当 ≠ 时,是一次函数() = +
( − )( ∈ ),当 = 时的函数 = ().
实际上,等差数列中的某一项是与其等距离的前后两项的等差中项,

即 = − + + (, ∈ , < ).
2.等差中项法判定等差数列
若数列{ }满足 = − + + ( ≥ ),则可判定数列{ }是等差数列.
变式训练
��
2.已知
解析 (2)∵ = −, = − − − = −,

等差数列的性质课件-高二上学期数学人教A版(2019)选择性必修第二册

等差数列的性质课件-高二上学期数学人教A版(2019)选择性必修第二册

典例分析
例 2 (1)三个数成等差数列,其和为 9,前两项之积为后一项的 6 倍,求这三个数; (2)四个数成递增等差数列,中间两项的和为 2,首末两项的积为-8,求这四个数.
解:(1)设这三个数依次为 a-d,a,a+d,则
a-d+a+a+d=9, a-da=6a+d,
解得
a=3, d=-1.
∴这三个数为 4,3,2.
都插入3个数, 使它们和原数列的数一起构成一个新的等差数列{bn }.
(1)求数列{bn}的通项公式;
(2)b29是不是数列{an }的项? 若是, 它是{an }的第几项? 若不是, 说明理由.
解1:
解2:
由(1)知,b29 2 29 58, 令an 2 8(n 1) 58,
解得n 8
思考:其他条件不变,若 am+an=ap+aq,能得到 m+n=p+q 吗?
反例: 常数列
推广:(1)特别地,当 m+n=2k(m, n, k∈N*)时,am+an=2ak.
(2)对有穷等差数列,与首末两项“等距离”的两项之和等于 首末两项的和,即 a1+an=a2+an-1=…=ak+an-k+1=….
解: 设数列{bn}的公差为 d,
由题意知,b1 a1 2, b5 a2 2 8 10,
由b5 10 b1 4d 2 4d, 解得d 2
d 8 d d
31
k 1
所以bn 2 (n 1) 2 2n
所以,数列{bn}的通项公式是 bn 2n.
典例分析
例4 已知等差数列{an}的首项a1 2,公差d 8,在{an}中每相邻两项之间
A.14
B.21
C.28
D.35
3.已知数列{an}是等差数列,若a4+a8=20,a7=12,则a4= 6 .

2019-2020学年数学人教A版必修5课件:2.2 第2课时等差数列的性质

2019-2020学年数学人教A版必修5课件:2.2 第2课时等差数列的性质

4.在等差数列{an}中,已知a2+2a8+a14=120,则2a9- a10的值为________.
【答案】30
【解析】∵a2 +a14=2a8,∴a2 +2a8+a14=4a8=120, ∴a8=30.∴2a9-a10=(a8+a10)-a10=a8=30.
利用等差数列的通项公式或性质解题
【例1】 在等差数列{an}中,若a2=4,a4=2,则a6= ()
在等差数列{an}中,若a1+a2+a3=32,a11+a12+
a13=118,则a4+a10=( )
A.45
B.50
C.75
D.60
【答案】B
【解析】∵a1+a2+a3=3a2=32,a11+a12+a13=3a12= 118,∴3(a2+a12)=150,即a2+a12=50.∴a4+a10=a2+a12= 50.故选B.
(2019 年陕西西安模拟)《莱因德纸草书》是世
界上最古老的数学著作之一,书中有一道这样的题目:把 100
个面包分给五个人,使每人所得面包数成等差数列,且使较大
的三份之和的17等于较小的两份之和,问最小的 1 份为多少?这
个问题的答案为( )
A.53
B.130
C.56 【答案】A
D.161
【解析】设五个人分得的面包为 a-2d,a-d,a,a+d, a+2d(d>0),则(a-2d)+(a-d)+a+a+d+a+2d=5a=100, ∴a=20.由17(a+a+d+a+2d)=a-2d+a-d,得 3a+3d=7(2a -3d),∴24d=11a.∴d=565.∴最小的一份为 a-2d=20-2×565 =53.故选 A.
【方法规律】常见设元技巧: (1)某两个数是等差数列中的连续两个数且知其和,可设这 两个数为a-d,a+d,公差为2d; (2)三个数成等差数列且知其和,常设此三数为a-d,a,a +d,公差为d; (3)四个数成等差数列且知其和,常设成a-3d,a-d,a+ d,a+3d,公差为2d.

高中数学人教A版浙江专版必修5讲义第二章2.2等差数列含答案

等差数列第一课时 等差数列的概念及通项公式[新知初探]1.等差数列的定义如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d 表示.[点睛] (1)“从第2项起”是指第1项前面没有项,无法与后续条件中“与前一项的差”相吻合.(2)“每一项与它的前一项的差”这一运算要求是指“相邻且后项减去前项”,强调了:①作差的顺序;②这两项必须相邻.(3)定义中的“同一常数”是指全部的后项减去前一项都等于同一个常数,否则这个数列不能称为等差数列.2.等差中项如果三个数a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.这三个数满足的关系式是A =a +b2. 3.等差数列的通项公式已知等差数列{a n }的首项为a 1,公差为d .[点睛] 由等差数列的通项公式a n =a 1+(n -1)d 可得a n =dn +(a 1-d ),如果设p =d ,q =a 1-d ,那么a n =pn +q ,其中p ,q 是常数.当p ≠0时,a n 是关于n 的一次函数;当p =0时,a n =q ,等差数列为常数列.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)若一个数列从第2项起每一项与它的前一项的差都是常数,则这个数列是等差数列( )(2)等差数列{a n }的单调性与公差d 有关( )(3)根据等差数列的通项公式,可以求出数列中的任意一项( ) (4)若三个数a ,b ,c 满足2b =a +c ,则a ,b ,c 一定是等差数列( )解析:(1)错误.若这些常数都相等,则这个数列是等差数列;若这些常数不全相等,则这个数列就不是等差数列.(2)正确.当d >0时为递增数列;d =0时为常数列;d <0时为递减数列. (3)正确.只需将项数n 代入即可求出数列中的任意一项.(4)正确.若a ,b ,c 满足2b =a +c ,即b -a =c -b ,故a ,b ,c 为等差数列. 答案:(1)× (2)√ (3)√ (4)√2.等差数列{a n }中,a 1=1,d =3,a n =298,则n 的值等于( ) A .98 B .100 C .99D .101解析:选B a n =a 1+(n -1)d =3n -2,令a n =298,即3n -2=298⇒n =100. 3.在等差数列{a n }中,若a 1·a 3=8,a 2=3,则公差d =( ) A .1 B .-1 C .±1D .±2解析:选C 由已知得,⎩⎪⎨⎪⎧a 1(a 1+2d )=8,a 1+d =3,解得d =±1.4.若log 32,log 3(2x -1),log 3(2x +11)成等差数列.则x 的值为________.解析:由log 3(2x +11)-log 3(2x -1)=log 3(2x -1)-log 32,得:(2x )2-4·2x -21=0,∴2x=7,∴x =log 27.答案:log 27[典例] n(1)已知a 5=-1,a 8=2,求a 1与d ; (2)已知a 1+a 6=12,a 4=7,求a 9. [解] (1)∵a 5=-1,a 8=2,∴⎩⎪⎨⎪⎧ a 1+4d =-1,a 1+7d =2,解得⎩⎪⎨⎪⎧a 1=-5,d =1.(2)设数列{a n }的公差为d .由已知得,⎩⎪⎨⎪⎧ a 1+a 1+5d =12,a 1+3d =7,解得⎩⎪⎨⎪⎧a 1=1,d =2.∴a n =1+(n -1)×2=2n -1, ∴a 9=2×9-1=17.[活学活用]1.2 016是等差数列4,6,8,…的( ) A .第1 006项 B .第1 007项 C .第1 008项D .第1 009项解析:选B ∵此等差数列的公差d =2,∴a n =4+(n -1)×2,a n =2n +2,即2 016=2n +2,∴n =1 007.2.已知等差数列{a n }中,a 15=33,a 61=217,试判断153是不是这个数列的项,如果是,是第几项?解:设首项为a 1,公差为d ,则a n =a 1+(n -1)d ,由已知⎩⎪⎨⎪⎧a 1+(15-1)d =33,a 1+(61-1)d =217,解得⎩⎪⎨⎪⎧a 1=-23,d =4.所以a n =-23+(n -1)×4=4n -27,令a n =153,即4n -27=153,解得n =45∈N *,所以153是所给数列的第45项.[典例] 已知等差数列{a n },满足a 2+a 3+a 4=18,a 2a 3a 4=66.求数列{a n }的通项公式.[解] 在等差数列{a n }中,∵ a 2+a 3+a 4=18,∴3a 3=18,a 3=6.∴⎩⎪⎨⎪⎧ a 2+a 4=12,a 2·a 4=11,解得⎩⎪⎨⎪⎧ a 2=11,a 4=1或⎩⎪⎨⎪⎧a 2=1,a 4=11. 当⎩⎪⎨⎪⎧a 2=11,a 4=1时,a 1=16,d =-5. a n =a 1+(n -1)d =16+(n -1)·(-5)=-5n +21.当⎩⎪⎨⎪⎧a 2=1,a 4=11时,a 1=-4,d =5. a n =a 1+(n -1)d =-4+(n -1)·5=5n -9.三数a ,b ,[活学活用]1.已知数列8,a,2,b ,c 是等差数列,则a ,b ,c 的值分别为________,________,________.解析:因为8,a,2,b ,c 是等差数列, 所以⎩⎪⎨⎪⎧8+2=2a ,a +b =2×2,2+c =2b .解得⎩⎪⎨⎪⎧a =5,b =-1,c =-4.答案:5 -1 -42.已知数列{a n }中,a 3=2,a 7=1,且数列⎩⎨⎧⎭⎬⎫1a n +1为等差数列,则a 5=________.解析:由数列⎩⎨⎧⎭⎬⎫1a n +1为等差数列,则有1a 3+1+1a 7+1=2a 5+1,可解得a 5=75.答案:75[典例] 已知数列{a n }满足a 1=4,a n =4-4a n -1(n >1),记b n =1a n -2.求证:数列{b n }是等差数列.证明:[法一 定义法]∵b n +1=1a n +1-2=1⎝⎛⎭⎫4-4a n -2=a n 2(a n -2),∴b n +1-b n =a n 2(a n -2)-1a n -2=a n -22(a n -2)=12,为常数(n ∈N *).又b 1=1a 1-2=12, ∴数列{b n }是首项为12,公差为12的等差数列.[法二 等差中项法] ∵b n =1a n -2, ∴b n +1=1a n +1-2=1⎝⎛⎭⎫4-4a n -2=a n 2(a n -2).∴b n +2=a n +12(a n +1-2)=4-4a n 2⎝⎛⎭⎫4-4a n -2=a n -1a n -2.∴b n +b n +2-2b n +1=1a n -2+a n -1a n -2-2×a n 2(a n -2)=0. ∴b n +b n +2=2b n +1(n ∈N *), ∴数列{b n }是等差数列.[活学活用]已知1a ,1b ,1c 成等差数列,并且a +c ,a -c ,a +c -2b 均为正数,求证:lg(a +c ),lg(a -c ),lg(a +c -2b )也成等差数列.解:∵1a ,1b ,1c 成等差数列,∴2b =1a +1c , ∴2b =a +cac ,即2ac =b (a +c ).(a +c )(a +c -2b )=(a +c )2-2b (a +c )=(a +c )2-2×2ac =a 2+c 2+2ac -4ac =(a -c )2. ∵a +c ,a +c -2b ,a -c 均为正数,上式左右两边同时取对数得,lg[(a +c )(a +c -2b )]=lg(a -c )2,即lg(a +c )+lg(a +c -2b )=2lg(a -c ),∴lg(a +c ),lg(a -c ),lg(a +c -2b )成等差数列.层级一 学业水平达标1.已知等差数列{a n }的通项公式为a n =3-2n ,则它的公差为( ) A .2 B .3 C .-2D .-3解析:选C ∵a n =3-2n =1+(n -1)×(-2),∴d =-2,故选C. 2.若等差数列{a n }中,已知a 1=13,a 2+a 5=4,a n =35,则n =( )A .50B .51C .52D .53解析:选D 依题意,a 2+a 5=a 1+d +a 1+4d =4,代入a 1=13,得d =23.所以a n =a 1+(n -1)d =13+(n -1)×23=23n -13,令a n =35,解得n =53.3.设x 是a 与b 的等差中项,x 2是a 2与-b 2的等差中项,则a ,b 的关系是( ) A .a =-b B .a =3b C .a =-b 或a =3bD .a =b =0 解析:选C 由等差中项的定义知:x =a +b2, x 2=a 2-b 22,∴a 2-b 22=⎝⎛⎭⎫a +b 22,即a 2-2ab -3b 2=0.故a =-b 或a =3b .4.数列{a n }中,a 1=2,2a n +1=2a n +1,则a 2 015的值是( ) A .1 006 B .1 007 C .1 008D .1 009解析:选D 由2a n +1=2a n +1,得a n +1-a n =12,所以{a n }是等差数列,首项a 1=2,公差d =12,所以a n =2+12(n -1)=n +32,所以a 2 015=2 015+32=1 009.5.等差数列{a n }的首项为70,公差为-9,则这个数列中绝对值最小的一项为( )A .a 8B .a 9C .a 10D .a 11解析:选B |a n |=|70+(n -1)×(-9)|=|79-9n |=9⎪⎪⎪⎪879-n ,∴n =9时,|a n |最小. 6.在等差数列{a n }中,a 3=7,a 5=a 2+6,则a 6=________. 解析:设等差数列{a n }的公差为d ,由题意,得⎩⎪⎨⎪⎧a 1+2d =7,a 1+4d =a 1+d +6.解得⎩⎪⎨⎪⎧a 1=3,d =2.∴a n =a 1+(n -1)d =3+(n -1)×2=2n +1. ∴a 6=2×6+1=13. 答案:137.已知{a n }为等差数列,且a 7-2a 4=-1,a 3=0,则公差d =________. 解析:根据题意得:a 7-2a 4=a 1+6d -2(a 1+3d )=-a 1=-1, ∴a 1=1.又a 3=a 1+2d =1+2d =0, ∴d =-12.答案:-128.已知数列{a n }满足:a 2n +1=a 2n +4,且a 1=1,a n >0,则a n =________. 解析:根据已知条件a 2n +1=a 2n +4,即a 2n +1-a 2n =4.∴数列{a 2n }是公差为4的等差数列,则a 2n =a 21+(n -1)×4=4n -3.∵a n >0,∴a n =4n -3. 答案:4n -39.已知数列{a n }满足a 1=2,a n +1=2a na n +2,则数列⎩⎨⎧⎭⎬⎫1a n 是否为等差数列?说明理由.解:数列⎩⎨⎧⎭⎬⎫1a n 是等差数列,理由如下:因为a 1=2,a n +1=2a na n +2, 所以1a n +1=a n +22a n =12+1a n,所以1a n +1-1a n =12(常数). 所以⎩⎨⎧⎭⎬⎫1a n 是以1a 1=12为首项,公差为12的等差数列.10.若1b +c ,1a +c ,1a +b是等差数列,求证:a 2,b 2,c 2成等差数列. 证明:由已知得1b +c +1a +b =2a +c ,通分有2b +a +c (b +c )(a +b )=2a +c. 进一步变形有2(b +c )(a +b )=(2b +a +c )(a +c ),整理,得a 2+c 2=2b 2, 所以a 2,b 2,c 2成等差数列.层级二 应试能力达标1.若数列{a n }为等差数列,a p =q ,a q =p (p ≠q ),则a p +q 为( ) A .p +q B .0 C .-(p +q )D.p +q2解析:选B ∵a p =a 1+(p -1)d ,a q =a 1+(q -1)d ,∴⎩⎪⎨⎪⎧a 1+(p -1)d =q , ①a 1+(q -1)d =p . ②①-②,得(p -q )d =q -p . ∵p ≠q ,∴d =-1.代入①,有a 1+(p -1)×(-1)=q ,∴a 1=p +q -1. ∴a p +q =a 1+(p +q -1)d =p +q -1+(p +q -1)×(-1)=0.2.已知x ≠y ,且两个数列x ,a 1,a 2,…,a m ,y 与x ,b 1,b 2,…,b n ,y 各自都成等差数列,则a 2-a 1b 2-b 1等于( )A.m nB.m +1n +1C.n mD.n +1m +1解析:选D 设这两个等差数列公差分别是d 1,d 2,则a 2-a 1=d 1,b 2-b 1=d 2.第一个数列共(m +2)项,∴d 1=y -x m +1;第二个数列共(n +2)项,∴d 2=y -x n +1.这样可求出a 2-a 1b 2-b 1=d 1d 2=n +1m +1. 3.已知数列{a n },对任意的n ∈N *,点P n (n ,a n )都在直线y =2x +1上,则{a n }为( ) A .公差为2的等差数列 B .公差为1的等差数列 C .公差为-2的等差数列D .非等差数列解析:选A 由题意知a n =2n +1,∴a n +1-a n =2,应选A.4.如果a 1,a 2,…,a 8为各项都大于零的等差数列,且公差d ≠0,则( ) A .a 3a 6>a 4a 5 B .a 3a 6<a 4a 5 C .a 3+a 6>a 4+a 5D .a 3a 6=a 4a 5解析:选B 由通项公式,得a 3=a 1+2d ,a 6=a 1+5d ,那么a 3+a 6=2a 1+7d ,a 3a 6=(a 1+2d )(a 1+5d )=a 21+7a 1d +10d 2,同理a 4+a 5=2a 1+7d ,a 4a 5=a 21+7a 1d +12d 2,显然a 3a 6-a 4a 5=-2d 2<0,故选B.5.数列{a n }是首项为2,公差为3的等差数列,数列{b n }是首项为-2,公差为4的等差数列.若a n =b n ,则n 的值为________.解析:a n =2+(n -1)×3=3n -1, b n =-2+(n -1)×4=4n -6, 令a n =b n ,得3n -1=4n -6,∴n =5. 答案:56.在数列{a n }中,a 1=3,且对于任意大于1的正整数n ,点(a n , a n -1)都在直线x-y -3=0上,则a n =________.解析:由题意得a n -a n -1=3,所以数列{a n }是首项为3,公差为3的等差数列,所以a n =3n ,a n =3n 2.答案:3n 27.已知数列{a n }满足a 1=1,且a n =2a n -1+2n (n ≥2,且∈N *). (1)求a 2,a 3;(2)证明:数列⎩⎨⎧⎭⎬⎫a n 2n 是等差数列;(3)求数列{a n }的通项公式a n .解:(1)a 2=2a 1+22=6,a 3=2a 2+23=20. (2)证明:∵a n =2a n -1+2n (n ≥2,且n ∈N *), ∴a n 2n =a n -12n -1+1(n ≥2,且n ∈N *), 即a n 2n -a n -12n -1=1(n ≥2,且n ∈N *), ∴数列⎩⎨⎧⎭⎬⎫a n 2n 是首项为a 121=12,公差d =1的等差数列.(3)由(2),得a n 2n =12+(n -1)×1=n -12,∴a n =⎝⎛⎭⎫n -12·2n.8.数列{a n }满足a 1=2,a n +1=(λ-3)a n +2n (n ∈N *). (1)当a 2=-1时,求λ及a 3的值;(2)是否存在λ的值,使数列{a n }为等差数列?若存在求其通项公式;若不存在说明理由. 解:(1)∵a 1=2,a 2=-1,a 2=(λ-3)a 1+2,∴λ=32.∴a 3=-32a 2+22,∴a 3=112.(2)∵a 1=2,a n +1=(λ-3)a n +2n , ∴a 2=(λ-3)a 1+2=2λ-4. a 3=(λ-3)a 2+4=2λ2-10λ+16. 若数列{a n }为等差数列,则a 1+a 3=2a 2. 即λ2-7λ+13=0.∵Δ=49-4×13<0,∴方程无实数解.∴λ值不存在.∴不存在λ的值使{a n }成等差数列.第二课时 等差数列的性质[新知初探]1.等差数列通项公式的推广2.若{a n }是公差为d 的等差数列,正整数m ,n ,p ,q 满足m +n =p +q ,则a m +a n =a p+a q .(1)特别地,当m +n =2k (m ,n ,k ∈N *)时,a m +a n =2a k .(2)对有穷等差数列,与首末两项“等距离”的两项之和等于首末两项的和,即a 1+a n=a2+a n-1=…=a k+a n-k+1=….(3)若{a n}是公差为d的等差数列,则①{c+a n}(c为任一常数)是公差为d的等差数列;②{ca n}(c为任一常数)是公差为cd的等差数列;③{a n+a n+k}(k为常数,k∈N*)是公差为2d的等差数列.(4)若{a n},{b n}分别是公差为d1,d2的等差数列,则数列{pa n+qb n}(p,q是常数)是公差为pd1+qd2的等差数列.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)若{a n}是等差数列,则{|a n|}也是等差数列()(2)若{|a n|}是等差数列,则{a n}也是等差数列()(3)若{a n}是等差数列,则对任意n∈N*都有2a n+1=a n+a n+2()(4)数列{a n}的通项公式为a n=3n+5,则数列{a n}的公差与函数y=3x+5的图象的斜率相等()解析:(1)错误.如-2,-1,0,1,2是等差数列,但其绝对值就不是等差数列.(2)错误.如数列-1,2,-3,4,-5其绝对值为等差数列,但其本身不是等差数列.(3)正确.根据等差数列的通项可判定对任意n∈N*,都有2a n+1=a n+a n+2成立.(4)正确.因为a n=3n+5的公差d=3,而直线y=3x+5的斜率也是3.答案:(1)×(2)×(3)√(4)√2.在等差数列{a n}中,若a5=6,a8=15,则a14等于()A.32B.33C.-33 D.29解析:选B∵数列{a n}是等差数列,∴a5,a8,a11,a14也成等差数列且公差为9,∴a14=6+9×3=33.3.在等差数列{a n}中,已知a3+a4+a5+a6+a7=450,则a2+a8=()A.90 B.270C.180 D.360解析:选C因为a3+a4+a5+a6+a7=5a5=450,所以a5=90,所以a2+a8=2a5=2×90=180.4.在等差数列{a n}中,已知a2+2a8+a14=120,则2a9-a10的值为________.解析:∵a2+a14=2a8,∴a2+2a8+a14=4a8=120,∴a8=30.∴2a9-a10=(a8+a10)-a10=a8=30.答案:30[典例] (1)已知等差数列{a n }中,a 2+a 4=6,则a 1+a 2+a 3+a 4+a 5=( ) A .30 B .15 C .5 6D .10 6(2)设{a n },{b n }都是等差数列,且a 1=25,b 1=75,a 2+b 2=100,则a 37+b 37=( ) A .0 B .37 C .100D .-37[解析] (1)∵数列{a n }为等差数列,∴a 1+a 2+a 3+a 4+a 5=(a 1+a 5)+(a 2+a 4)+a 3=52(a 2+a 4)=52×6=15.(2)设c n =a n +b n ,由于{a n },{b n }都是等差数列, 则{c n }也是等差数列,且c 1=a 1+b 1=25+75=100, c 2=a 2+b 2=100, ∴{c n }的公差d =c 2-c 1=0. ∴c 37=100,即a 37+b 37=100. [答案] (1)B (2)C[活学活用]1.已知{a n }为等差数列,若a 1+a 5+a 9=π,则cos(a 2+a 8)的值为( ) A .-12B .-32C.12D.32解析:选A a 1+a 5+a 9=3a 5=π,所以a 5=π3,而a 2+a 8=2a 5=2π3,所以cos(a 2+a 8)=cos2π3=-12,故选A. 2.在等差数列{a n }中,已知a 3+a 8=10,则3a 5+a 7=( ) A .10 B .18 C .20D .28解析:选C 由等差数列的性质得:3a 5+a 7=2a 5+(a 5+a 7)=2a 5+(2a 6)=2(a 5+a 6)=2(a 3+a 8)=20,故选C.[典例] (1)三个数成等差数列,其和为9,前两项之积为后一项的6倍,求这三个数. (2)四个数成递增等差数列,中间两项的和为2,首末两项的积为-8,求这四个数. [解] (1)设这三个数依次为a -d ,a ,a +d ,则⎩⎪⎨⎪⎧(a -d )+a +(a +d )=9,(a -d )a =6(a +d ), 解得⎩⎪⎨⎪⎧a =3,d =-1.∴这三个数为4,3,2.(2)法一:设这四个数为a -3d ,a -d ,a +d ,a +3d (公差为2d ), 依题意,2a =2,且(a -3d )(a +3d )=-8, 即a =1,a 2-9d 2=-8, ∴d 2=1,∴d =1或d =-1.又四个数成递增等差数列,所以d >0, ∴d =1,故所求的四个数为-2,0,2,4.法二:若设这四个数为a ,a +d ,a +2d ,a +3d (公差为d ), 依题意,2a +3d =2,且a (a +3d )=-8, 把a =1-32d 代入a (a +3d )=-8,得⎝⎛⎭⎫1-32d ⎝⎛⎭⎫1+32d =-8, 即1-94d 2=-8,化简得d 2=4,所以d =2或-2.又四个数成递增等差数列,所以d >0,所以d =2, a =-2.故所求的四个数为-2,0,2,4.[活学活用]已知成等差数列的四个数,四个数之和为26,第二个数与第三个数之积为40,求这个等差数列.解:设这四个数依次为a -3d ,a -d ,a +d ,a +3d (公差为2d ). 由题设知⎩⎪⎨⎪⎧(a -3d )+(a -d )+(a +d )+(a +3d )=26,(a -d )(a +d )=40, 解得⎩⎨⎧a =132,d =32或⎩⎨⎧a =132,d =-32.∴这个数列为2,5,8,11或11,8,5,2.[典例] 某公司经销一种数码产品,第一年可获利200万元,从第二年起由于市场竞争方面的原因,其利润每年比上一年减少20万元,按照这一规律,如果公司不开发新产品,也不调整经营策略,从哪一年起,该公司经销这一产品将亏损?[解] 设从第一年起,第n 年的利润为a n 万元, 则a 1=200,a n +1-a n =-20(n ∈N *), ∴每年的利润构成一个等差数列{a n },从而a n =a 1+(n -1)d =200+(n -1)×(-20)=220-20n . 若a n <0,则该公司经销这一产品将亏损. ∴由a n =220-20n <0,得n >11,即从第12年起,该公司经销此产品将亏损.[活学活用]某市出租车的计价标准为1.2元/km,起步价为10元,即最初的4 km(不含4 km)计费10元.如果某人乘坐该市的出租车去往14 km处的目的地,且一路畅通,等候时间为0,需要支付车费________元.解析:根据题意,当该市出租车的行程大于或等于4 km时,每增加1 km,乘客需要支付1.2元.所以可以建立一个等差数列{a n}来计算车费.令a1=11.2,表示4 km处的车费,公差d=1.2,那么当出租车行至14 km处时,n=11,此时需要支付车费a11=11.2+(11-1)×1.2=23.2(元).答案:23.2层级一学业水平达标1.在等差数列{a n}中,已知a4+a8=16,则a2+a10=()A.12B.16C.20 D.24解析:选B因为数列{a n}是等差数列,所以a2+a10=a4+a8=16.2.在等差数列{a n}中,a1+a9=10,则a5的值为()A.5 B.6C.8 D.10解析:选A由等差数列的性质,得a1+a9=2a5,又∵a1+a9=10,即2a5=10,∴a5=5.3.下列说法中正确的是()A.若a,b,c成等差数列,则a2,b2,c2成等差数列B.若a,b,c成等差数列,则log2a,log2b,log2c成等差数列C.若a,b,c成等差数列,则a+2,b+2,c+2成等差数列D.若a,b,c成等差数列,则2a,2b,2c成等差数列解析:选C因为a,b,c成等差数列,则2b=a+c,所以2b+4=a+c+4,即2(b+2)=(a+2)+(c+2),所以a +2,b +2,c +2成等差数列.4.在等差数列{a n }中,a 1=2,a 3+a 5=10,则a 7=( ) A .5 B .8 C .10D .14解析:选B 由等差数列的性质可得a 1+a 7=a 3+a 5=10,又a 1=2,所以a 7=8. 5.等差数列{a n }中, a 2+a 5+a 8=9,那么方程x 2+(a 4+a 6)x +10=0的根的情况( ) A .没有实根 B .两个相等实根 C .两个不等实根D .无法判断解析:选A 由a 2+a 5+a 8=9得a 5=3,∴a 4+a 6=6,方程转化为x 2+6x +10=0.因为Δ<0,所以方程没有实根.6.若三个数成等差数列,它们的和为9,平方和为59,则这三个数的积为________. 解析:设这三个数为a -d ,a ,a +d ,则⎩⎪⎨⎪⎧a -d +a +a +d =9,(a -d )2+a 2+(a +d )2=59. 解得⎩⎪⎨⎪⎧ a =3,d =4或⎩⎪⎨⎪⎧a =3,d =-4.∴这三个数为-1,3,7或7,3,-1.∴它们的积为-21. 答案:-217.若a ,b ,c 成等差数列,则二次函数y =ax 2-2bx +c 的图象与x 轴的交点的个数为________.解析:∵a ,b ,c 成等差数列,∴2b =a +c , ∴Δ=4b 2-4ac =(a +c )2-4ac =(a -c )2≥0.∴二次函数y =ax 2-2bx +c 的图象与x 轴的交点个数为1或2. 答案:1或28.已知等差数列{a n }满足a m -1+a m +1-a 2m -1=0,且m >1,则a 1+a 2m -1=________. 解析:因为数列{a n }为等差数列,则 a m -1+a m +1=2a m ,则a m -1+a m +1-a 2m -1=0可化为2a m -a 2m -1=0,解得a m =1,所以a 1+a 2m -1=2a m =2.答案:29.在等差数列{a n }中,若a 1+a 2+…+a 5=30,a 6+a 7+…+a 10=80,求a 11+a 12+…+a 15.解:法一:由等差数列的性质得a 1+a 11=2a 6,a 2+a 12=2a 7,…,a 5+a 15=2a 10.∴(a 1+a 2+…+a 5)+(a 11+a 12+…+a 15)=2(a 6+a 7+…+a 10).∴a 11+a 12+…+a 15=2(a 6+a 7+…+a 10)-(a 1+a 2+…+a 5)=2×80-30=130.法二:∵数列{a n}是等差数列,∴a1+a2+…+a5,a6+a7+…+a10,a11+a12+…+a15也成等差数列,即30,80,a11+a12+…+a15成等差数列.∴30+(a11+a12+…+a15)=2×80,∴a11+a12+…+a15=130.10.有一批影碟机原销售价为每台800元,在甲、乙两家家电商场均有销售.甲商场用如下的方法促销:买一台单价为780元,买两台单价都为760元,依次类推,每多买一台则所买各台单价均再减少20元,但每台最低价不能低于440元;乙商场一律都按原价的75%销售.某单位购买一批此类影碟机,问去哪家商场买花费较少.解:设单位需购买影碟机n台,在甲商场购买每台售价不低于440元,售价依台数n 成等差数列.设该数列为{a n}.a n=780+(n-1)(-20)=800-20n,解不等式a n≥440,即800-20n≥440,得n≤18.当购买台数小于等于18台时,每台售价为(800-20n)元,当台数大于18台时,每台售价为440元.到乙商场购买,每台售价为800×75%=600元.作差:(800-20n)n-600n=20n(10-n),当n<10时,600n<(800-20n)n,当n=10时,600n=(800-20n)n,当10<n≤18时,(800-20n)n<600n,当n>18时,440n<600n.即当购买少于10台时到乙商场花费较少,当购买10台时到两商场购买花费相同,当购买多于10台时到甲商场购买花费较少.层级二应试能力达标1.已知等差数列{a n}:1,0,-1,-2,…;等差数列{b n}:0,20,40,60,…,则数列{a n +b n}是()A.公差为-1的等差数列B.公差为20的等差数列C.公差为-20的等差数列D.公差为19的等差数列解析:选D(a2+b2)-(a1+b1)=(a2-a1)+(b2-b1)=-1+20=19.2.已知数列{a n}为等差数列且a1+a7+a13=4π,则tan(a2+a12)的值为()A. 3 B.±3C.-33D.- 3解析:选D由等差数列的性质得a1+a7+a13=3a7=4π,∴a7=4π3.∴tan(a2+a12)=tan(2a7)=tan 8π3=tan2π3=- 3.3.若方程(x 2-2x +m )(x 2-2x +n )=0的四个根组成一个首项为14的等差数列,则|m -n |=( )A .1 B.34 C.12D.38解析:选C 设方程的四个根a 1,a 2,a 3,a 4依次成等差数列,则a 1+a 4=a 2+a 3=2, 再设此等差数列的公差为d ,则2a 1+3d =2, ∵a 1=14,∴d =12,∴a 2=14+12=34,a 3=14+1=54,a 4=14+32=74,∴|m -n |=|a 1a 4-a 2a 3| =⎪⎪⎪⎪14×74-34×54=12.4.《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为( )A .1升 B.6766升 C.4744升 D.3733升 解析:选B 设所构成的等差数列{a n }的首项为a 1,公差为d ,则有⎩⎪⎨⎪⎧ a 1+a 2+a 3+a 4=3,a 7+a 8+a 9=4, 即⎩⎪⎨⎪⎧4a 1+6d =3,3a 1+21d =4.解得⎩⎨⎧a 1=1322,d =766,则a 5=a 1+4d =6766, 故第5节的容积为6766升.5.已知{a n }为等差数列,且a 6=4,则a 4a 7的最大值为________.解析:设等差数列的公差为d ,则a 4a 7=(a 6-2d )(a 6+d )=(4-2d )(4+d )=-2(d +1)2+18,即a 4a 7的最大值为18.答案:186.已知数列{a n }满足a 1=1,若点⎝ ⎛⎭⎪⎫a n n ,a n +1n +1在直线x -y +1=0上,则a n=________.解析:由题设可得a n n -a n +1n +1+1=0,即a n +1n +1-a n n =1,所以数列⎩⎨⎧⎭⎬⎫a n n 是以1为公差的等差数列,且首项为1,故通项公式a nn =n ,所以a n =n 2.答案:n 27.数列{a n }为等差数列,b n =⎝⎛⎭⎫12a n ,又已知b 1+b 2+b 3=218,b 1b 2b 3=18,求数列{a n }的通项公式.解:∵b 1+b 2+b 3=⎝⎛⎭⎫12a 1+⎝⎛⎭⎫12a 2+⎝⎛⎭⎫12a 3=218,b 1b 2b 3=⎝⎛⎭⎫12a 1+a 2+a 3=18,∴a 1+a 2+a 3=3.∵a 1,a 2,a 3成等差数列,∴a 2=1,故可设a 1=1-d ,a 3=1+d , 由⎝⎛⎭⎫121-d +12+⎝⎛⎭⎫121+d =218,得2d +2-d =174,解得d =2或d =-2.当d =2时,a 1=1-d =-1,a n =-1+2(n -1)=2n -3; 当d =-2时,a 1=1-d =3,a n =3-2(n -1)=-2n +5.8.下表是一个“等差数阵”:ij (1)写出a 45的值;(2)写出a ij 的计算公式,以及2 017这个数在“等差数阵”中所在的一个位置. 解:通过每行、每列都是等差数列求解. (1)a 45表示数阵中第4行第5列的数.先看第1行,由题意4,7,…,a 15,…成等差数列, 公差d =7-4=3,则a 15=4+(5-1)×3=16. 再看第2行,同理可得a 25=27.最后看第5列,由题意a 15,a 25,…,a 45成等差数列,所以a 45=a 15+3d =16+3×(27-16)=49.(2)该“等差数阵“的第1行是首项为4,公差为3的等差数列a 1j =4+3(j -1); 第2行是首项为7,公差为5的等差数列a 2j =7+5(j -1); …第i 行是首项为4+3(i -1),公差为2i +1的等差数列, ∴a ij =4+3(i -1)+(2i +1)(j -1) =2ij +i +j =i (2j +1)+j .要求2 017在该“等差数阵”中的位置,也就是要找正整数i ,j ,使得i (2j +1)+j =2 017, ∴j =2 017-i 2i +1.又∵j ∈N *,∴当i =1时,得j =672.∴2 017在“等差数阵”中的一个位置是第1行第672列.。

高中数学必修5课件:第2章2-3-2等差数列前n项和习题课


第二章 数列
温故知新
等差数列{an}的前 n 项和 Sn=na1+nn-2 1d=d2n2+(a1-d2)n,令d2=A,a1-d2=B,则得 Sn=________.[答案] An2+Bn数 Nhomakorabea 必修5
第二章 数列
新课引入
用分期付款的方式购买家用电器需 11 500 元,购买当天先付 1 500 元,以后每月交付 500 元,并加付利息,月利率为 0.5%, 若从交付 1 500 元后的第 1 个月开始算分期付款的第 1 个月,问:
所以S3m=3ma1+3m3m2 -1d=210.
数学 必修5
第二章 数列
方法二:利用公式 Sn=na1+2 an,以及等差数列的性质 p
+q=m+n⇒ap+aq=am+an.
ma1+am=60,

由已知有m3ma1a+1+a2am3m==1020S,3m,
② ③
2a2m=am+a3m,

由①②③④可得 S3m=210.
【错解】 an=Sn-Sn-1=(n2+n-1)-[(n-1)2+(n-1)- 1]=2n,又an-an-1=2n-2(n-1)=2,即数列每一项与前一项 的差是同一个常数,
∴{an}是等差数列. 【错因】 已知数列的前n项和Sn,求数列的通项an时,需 分类讨论,即分n≥2与n=1两种情况.
数学 必修5
解得a=m202, b=1m0.
所以 S3m=9am2+3bm=210.
数学 必修5
第二章 数列
等差数列前n项和的性质应用
一个等差数列的前12项的和为354,前12项中偶 数项的和与奇数项的和的比为32∶27,求该数列的公差d.
[思路点拨] 可以利用列方程组方法求解,也可以利用等 差数列前n项和的性质求解.

等差数列的性质(课件)高二数学(人教A版2019选择性必修第二册)


一个数列是否为等差数列,要看任意相邻两项的差是否为同一常数, 要判断一个数列为等差数列,需证明 an+1-an=d(d 为常数)对 n∈N*恒成立, 若要判断一个数列不是等差数列,只需举出一个反例即可.
[跟踪训练 4] 已知数列{an}满足(an+1-an)(an+1+an)=16,且 a1=1, an>0.
若 an<0,则该公司经销这一产品将亏损,由 an=-20n+220<0,解得 n>11,即从第 12 年起,该公司经销这一产品将亏损.

解决等差数列实际问题的步骤 (1)将已知条件翻译成数学语言,将实际问题转化为数学问题; (2)构建等差数列模型,由条件确定 a1,d,n,an; (3)利用通项公式或等差数列的性质求解; (4)将所求问题还原到实际问题中.

(2)不存在实数 λ 使数列{an}为等差数列. 证明如下:由 a1=1,an+1=(n2+n-λ)an, 得 a2=2-λ,a3=(6-λ)(2-λ), a4=(12-λ)(6-λ)(2-λ). 若存在 λ,使{an}为等差数列,则 a3-a2=a2-a1, 即(5-λ)(2-λ)=1-λ, 解得 λ=3.于是 a2-a1=1-λ=-2, a4-a3=(11-λ)(6-λ)(2-λ)=-24. 这与{an}为等差数列矛盾.所以不存在 λ 使{an}是等差数列.
[跟踪训练 5] 如图所示,三个正方形的边 AB,BC,CD 的长组成等差 数列,且 AD=21 cm,这三个正方形的面积之和是 179 cm2.
(1)求 AB,BC,CD 的长; (2)以 AB,BC,CD 的长为等差数列的前三项,以第 10 项为边长的正 方形的面积是多少?
解 (1)设公差为 d(d>0),BC=x,

【课件】第2课时 等差数列的性质说课课件高二上学期数学人教A版(2019)选择性必修第二册

三、教学分析---(五)教学效果预测
(1)注重培养学生的自主学习习惯教师可在课前为学生准备导学案,使学生带着问题进行自主预习,逐步形成能学习、会学习、善学习的优良态势;(2)注重联系,突出转化,强化对等差数列的整体认识本单元以概念和公式为主,因此,在教学设计时不仅要注重概念公式的形成过程,更要注重公式之间的联系,注重公式与函数之间的联系,强化对等差数列的整体认识,体会数学的整体性.
教学中根据建构主义理论,采用诱思导学探究法,以问题驱动,促使学生独立思考,层层铺垫,由特殊到一般的方法启发学生,并在合作探究中得到充分的交流与表达.
三、教学分析---(二)学法分析
问题情景
知识、技能、核心素养
观察、探究、反思、交流
教学中,让学生在问题情境中,经历知识的形成和发展,通过观察、探索、交流、反思参与学习,认识和理解数学知识,学会学习,提升能力,发展数学核心素养.
三、教学分析---(六)课程资源开发与利用建议
一、教材内容分析---(二)育人价值
在探究等差数列性质的过程中,学生会用等差数列的通项公式、方程的思想和基本量的方法来证明等差数列的性质,有助于发展学生推理、运算能力。另外,还从数形结合的角度展示了等差数列的性质,满足了学生的探究欲望,提升学生对数列特殊规律的研究能力.
二、教学目标分析---(一)课程标准
课程目标:
1.掌握等差数列的性质;2.能在具体的问题情境中,发现数列的等差关系, 并解决相应的问题.
二、教学目标分析---(二)学情分析
数列是一类特殊的函数,而学生在高一时经历了研究函数的一般路径,在知识、经验方面有所积累,并且学生通过前面的学习,对等差数列的概念、通项公式也有了初步的理解,这些都为本课时的应用提供了探究方法和理论基础;在能力水平方面,学生已经具备一定的抽象、推理、类比等能力,但公式的灵活应用能力不足、从实际情境中建立数学模型的能力还有待提升.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(3)an=am+(n-m)d(m,n∈N*). (4)若m+n=p+q(m,n,p,q∈N*),则am+an=ap+aq.
������+������ (5)若 = 2
������, 则am+an=2ak(m,n,k∈N*).
(6)若数列{an}是有穷等差数列,则与首末两项等距离的两项之和 都相等,且等于首末两项之和,即a1+an=a2+an-1=…=ai+1+an* i=…(n,i∈N ). (7)数列{λan+b}(λ,b是常数)是公差为λd的等差数列.
等差数列的性质 剖析若数列{an}是公差为d的等差数列,则 (1)当d=0时,数列为常数列;当d>0时,数列为递增数列;当d<0时, 数列为递减数列.
(2)d=
������������ -������1 ������-1
=
������������ -������������ (������, ������ , ������∈N*). ������-������
题型一
题型二
题型三
等差数列性质的应用 【例1】 设数列{an}为等差数列,若a3+a4+a5+a6+a7=450,求 a2+a8. 分析方法一:依性质“若m+n=p+q,则am+an=ap+aq”求解即可. 方法二:将a3+a4+a5+a6+a7用a1,d表示,再将a2+a8用a1,d表示,从中 寻找关系来解决. 解法一∵a3+a7=a4+a6=2a5=a2+a8, ∴a3+a4+a5+a6+a7=5a5=450, ∴a5=90,∴a2+a8=2a5=180. 解法二∵{an}为等差数列,设首项为a1,公差为d, ∴a3+a4+a5+a6+a7=a1+2d+a1+3d+a1+4d+a1+5d+a1+6d=5a1+20 d,即5a1+20d=450,∴a1+4d=90. ∴a2+a8=a1+d+a1+7d=2a1+8d=180.
第2课时
等差数列的性质
1.复习巩固等差数列的概念及其通项公式. 2.掌握等差中项的应用. 3.掌握等差数列的性质,并能解决有关问题.
1.等差数列 (1)定义:一般地,如果一个数列从第2项起,每一项与它的前一项的 差都等于同一个常数,这个数列就叫做等差数列,这个常数就叫做 等差数列的公差,公差通常用字母d表示. 定义还可以叙述为: 在数列{an}中,若an+1-an=d(n∈N*),d为常数,则数列{an}是等差数 列.常数d称为等差数列的公差. (2)通项公式:an=a1+(n-1)d ,a1为首项,d为公差. 【做一做1-1】 等差数列{an}的公差d=2,a1=2,则an等于( ). A.2 B.2n-2 C.2n D.2n+2 解析:an=a1+(n-1)d=2+2(n-1)=2n. 答案:C
ห้องสมุดไป่ตู้型一
题型二
题型三
等差中项的应用 【例2】 已知三个数成等差数列,且是递增数列,它们的和为18, 平方和为116,求这三个数. 分析充分利用等差中项的定义求解未知量. 解法一设这三个数分别为a,b,c,且a<b<c. 2������ = ������ + ������, 则由题意,得 ������ + ������ + ������ = 18, ������2 + ������ 2 + ������ 2 = 116, 解得a=4,b=6,c=8. 故这三个数是4,6,8.
【做一做1-2】 在等差数列{an}中,a3=7,a5=a2+6,则 a6= . 解析:设公差为d,则a6=a3+3d=a3+(a5-a2)=7+6=13. 答案:13
2.等差中项 由三个数a,A,b组成的等差数列可以看成最简单的等差数列,这时 A叫做a与b的等差中项.
归纳总结由 a,A,b 成等差数列,得 A-a=b-A,所以 A= 如果 A=
题型一
题型二
题型三
反思1.比较方法一和方法二,显然方法一要优于方法二,因此要注 意灵活运用等差数列的性质解题. 2.等差数列的性质实质上是数列的定义、通项、等差中项的综 合应用,因此应用得当可为解题带来极大的方便,如本题方法一.
题型一
题型二
题型三
【变式训练1】 如果在等差数列{an}中,a3+a4+a5=12,那么 a1+a2+…+a7等于( ). A.14 B.21 C.28 D.35 解析:∵a3+a4+a5=12,∴3a4=12,a4=4. 又a1+a7=a2+a6=a3+a5=2a4, 故a1+a2+…+a7=7a4=28. 答案:C
������+������ , 那么2A=a+b,A-a=b-A,即 2
������+������ . 反过来, 2
a,A,b 成等差数列.
).
【做一做2】 已知x+1与y-1的等差中项为10,则x+y等于( A.0 B.10 C.20 D.不确定 解析:由题意得,(x+1)+(y-1)=2×10,即x+y=20. 答案:C
(8)下标成等差数列且公差为m的项ak,ak+m,ak+2m,…(k,m∈N*)组成 公差为md的等差数列. 由等差数列的定义及通项公式易证明性质(1)(2)(3)(4)(6)(8),下面 证明其他两个. 证明性质(5):∵an=a1+(n-1)d, ∴am=a1+(m-1)d,ak=a1+(k-1)d, ∴am+an=2a1+(m+n-2)d =2a1+(2k-2)d=2a1+2(k-1)d =2[a1+(k-1)d]=2ak. 证明性质(7):∵an=a1+(n-1)d,且λ,b为常数, ∴λan+b=λ[a1+(n-1)d]+b=(λa1+b)+(n-1)λd, λan-1+b=λ[a1+(n-2)d]+b=(λa1+b)+(n-2)λd(n≥2), ∴(λan+b)-(λan-1+b)=λd(n≥2)为常数, ∴数列{λan+b}也是等差数列,公差为λd.
题型一
题型二
题型三
解法二设这三个数分别为a-d,a,a+d,
(������-������) + ������ + (������ + ������) = 18, ① 由已知,得 (������-������ )2 + ������2 + (������ + ������ )2 = 116, ② 由①,得a=6. 代入②,得d=±2. ∵该数列是递增数列,∴d=2. ∴这三个数为4,6,8. 反思当三个数或四个数成等差数列时,可设出这几个数,由已知条 件列方程组求解;也可采用对称的设法,当有三个数时,设为ad,a,a+d,当有四个数时,设为a-3d,a-d,a+d,a+3d,利用已知条件列方 程(组)先求出其中的a与d,再进一步解题.
相关文档
最新文档