步步高浙江新高考数学理科一轮复习配套练习10.1分类加法计数原理与分步乘法计数原理(含答案详析)

合集下载

2021届浙江新高考数学一轮复习高效演练分层突破:第十章 1 第1讲 分类加法计数原理与分步乘法计数原理

2021届浙江新高考数学一轮复习高效演练分层突破:第十章 1 第1讲 分类加法计数原理与分步乘法计数原理

[基础题组练]1.从集合{0,1,2,3,4,5,6}中任取两个互不相等的数a,b组成复数a+b i,其中虚数的个数是()A.30B.42C.36 D.35解析:选C.因为a+b i为虚数,所以b≠0,即b有6种取法,a有6种取法,由分步乘法计数原理知可以组成6×6=36个虚数.2.用10元、5元和1元来支付20元钱的书款,不同的支付方法有()A.3种B.5种C.9种D.12种解析:选C.只用一种币值有2张10元,4张5元,20张1元,共3种;用两种币值的有1张10元,2张5元;1张10元,10张1元;3张5元,5张1元;2张5元,10张1元;1张5元,15张1元,共5种;用三种币值的有1张10元,1张5元,5张1元,共1种.由分类加法计数原理得,共有3+5+1=9(种).3.某电话局的电话号码为139××××××××,若前六位固定,最后五位数字是由6或8组成的,则这样的电话号码的个数为()A.20 B.25C.32 D.60解析:选C.依据题意知,最后五位数字由6或8组成,可分5步完成,每一步有2种方法,根据分步乘法计数原理,符合题意的电话号码的个数为25=32.4.用数字1,2,3,4,5组成没有重复数字的五位数,其中偶数的个数为()A.24 B.48C.60 D.72解析:选B.先排个位,再排十位,百位,千位,万位,依次有2,4,3,2,1种排法,由分步乘法计数原理知偶数的个数为2×4×3×2×1=48.5.已知两条异面直线a,b上分别有5个点和8个点,则这13个点可以确定不同的平面个数为()A.40 B.16C.13 D.10解析:选C.分两类情况讨论:第1类,直线a分别与直线b上的8个点可以确定8个不同的平面;第2类,直线b分别与直线a上的5个点可以确定5个不同的平面.根据分类加法计数原理知,共可以确定8+5=13个不同的平面.6.如图所示,小圆圈表示网络的结点,结点之间的线段表示它们有网线相连,连线标注的数字,表示该段网线单位时间内可以通过的最大信息量,现从结点A向结点B传递信息,信息可以从分开不同的路线同时传递,则单位时间内传递的最大信息量为()A.26 B.20C.24 D.19解析:选D.因为信息可以从分开不同的路线同时传递,由分类加法计数原理,完成从A 向B传递有四种办法:12→5→3;12→6→4;12→6→7;12→8→6.故单位时间内传递的最大信息量为四条不同网线上信息量的和:3+4+6+6=19.7.如图所示,使电路接通,开关不同的开闭方式有()A.11种B.20种C.21种D.12种解析:选C.电路接通,则每一个并联电路中至少有一个开关闭合,再利用乘法原理求解.两个开关并联的电路接通方式有3种,即每个开关单独接通共2种.两个开关都接通有一种,所以共有3种,同理三个开关并联的电路接通方式有7种,由乘法原理可知不同的闭合方式有3×7=21(种).8.某市汽车牌照号码可以上网自编,但规定从左到右第二个号码只能从字母B,C,D 中选择,其他四个号码可以从0~9这十个数字中选择(数字可以重复),有车主第一个号码(从左到右)只想在数字3,5,6,8,9中选择,其他号码只想在1,3,6,9中选择,则他的车牌号码可选的所有可能情况有()A.180种B.360种C.720种D.960种解析:选D.按照车主的要求,从左到右第一个号码有5种选法,第二个号码有3种选法,其余三个号码各有4种选法.因此车牌号码可选的所有可能情况有5×3×4×4×4=960(种).9.直线l:xa+yb=1中,a∈{1,3,5,7},b∈{2,4,6,8}.若l与坐标轴围成的三角形的面积不小于10,则这样的直线的条数为()A.6 B.7C.8 D.16解析:选B.l与坐标轴围成的三角形的面积为S =12ab ≥10,即ab ≥20. 当a =1时,不满足;当a =3时,b =8,即1条.当a ∈{5,7}时,b ∈{4,6,8},此时a 的取法有2种,b 的取法有3种,则直线l 的条数为2×3=6.故满足条件的直线的条数为1+6=7.故选B.10.在如图所示的五个区域中,现有四种颜色可供选择,要求每一个区域只涂一种颜色,相邻区域所涂颜色不同,则不同的涂色方法种数为( )A .24种B .48种C .72种D .96种解析:选C.分两种情况:(1)A ,C 不同色,先涂A 有4种,C 有3种,E 有2种,B ,D 有1种,有4×3×2=24(种).(2)A ,C 同色,先涂A 有4种,E 有3种,C 有1种,B ,D 各有2种,有4×3×2×2=48(种).综上两种情况,不同的涂色方法共有48+24=72(种).11.从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有________种(用数字作答).解析:第一步,先选出文娱委员,因为甲、乙不能担任,所以从剩下的3人中选1人当文娱委员,有3种选法.第二步,从剩下的4人中选学习委员和体育委员,又可分两步进行:先选学习委员有4种选法,再选体育委员有3种选法.由分步乘法计数原理可得,不同的选法共有3×4×3=36(种).答案:3612.乘积(a +b +c )(d +e +f +h )(i +j +k +l +m )展开后共有________项.解析:由(a +b +c )(d +e +f +h )(i +j +k +l +m )展开式各项都是从每个因式中选一个字母的乘积,由分步乘法计数原理可得其展开式共有3×4×5=60(项).答案:6013.在平面直角坐标系内,点P (a ,b )的坐标满足a ≠b ,且a ,b 都是集合{1,2,3,4,5,6}中的元素.又点P 到原点的距离|OP |≥5,则这样的点P 的个数为________.解析:依题意可知:当a =1时,b =5,6,两种情况;当a =2时,b =5,6,两种情况;当a =3时,b =4,5,6,三种情况;当a =4时,b =3,5,6,三种情况;当a=5或6时,b各有五种情况.所以共有2+2+3+3+5+5=20种情况.答案:2014.如图所示,在A,B间有四个焊接点,若焊接点脱落,则可能导致电路不通.今发现A,B之间线路不通,则焊接点脱落的不同情况有________种.解析:采用排除法.各个焊点有2种情况,所以四个焊点共有24种可能,其中能使线路通的情况有:1,4同时通,且2和3至少有一个通时线路才能通,共有3种可能,故不通的情况共有24-3=13种情况.答案:1315.将4个不同小球放入3个不同的盒子,其中每个盒子都不空的放法共有________种.解析:必有一个盒子放2个小球,将4个小球分3组,其中有2个小球为一组,另外2个小球为两组,共有6种分组方法.然后,每一种分组的小球放入3个不同盒子,按分步乘法计数原理,有3×2×1种放法,共有6×(3×2×1)=36(种)放法.答案:3616.如果一条直线与一个平面垂直,那么称此直线与平面构成一个“正交线面对”.在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是________.解析:分类讨论:第1类,对于每一条棱,都可以与两个侧面构成“正交线面对”,这样的“正交线面对”有2×12=24个;第2类,对于每一条面对角线,都可以与一个对角面构成“正交线面对”,这样的“正交线面对”有12个.所以正方体中“正交线面对”共有24+12=36(个).答案:3617.已知集合A={最大边长为7,且三边长均为正整数的三角形},则集合A的真子集共有________个.解析:另外两个边长用x,y(x,y∈N*)表示,且不妨设1≤x≤y≤7,要构成三角形,必须x+y≥8.当y取7时,x可取1,2,3,…,7,有7个三角形;当y取6时,x可取2,3,…,6,有5个三角形;当y取5时,x可取3,4,5,有3个三角形.当y取4时,x只能取4,只有1个三角形.所以所求三角形的个数为7+5+3+1=16.其真子集共有(216-1)个.答案:216-1[综合题组练]1.有一项活动需在3名老师,6名男同学和8名女同学中选人参加,(1)若只需一人参加,有多少种不同选法?(2)若需一名老师,一名学生参加,有多少种不同选法?(3)若需老师、男同学、女同学各一人参加,有多少种不同选法?解:(1)只需一人参加,可按老师、男同学、女同学分三类各自有3,6,8种方法,总方法数为3+6+8=17(种).(2)分两步,先选老师共3种选法,再选学生共6+8=14种选法,由分步乘法计数原理知,总方法数为3×14=42(种).(3)老师、男、女同学各一人可分三步,每步方法依次为3,6,8种,由分步乘法计数原理知,总方法数为3×6×8=144(种).2.同室四人各写一张贺年卡,先集中起来,然后每人从中各拿1张别人送出的贺年卡,则4张贺年卡不同的分配方式有几种?解:设四个人为甲、乙、丙、丁,依次写的贺年卡为A,B,C,D.第一步:甲有3种拿法,即拿了B,C或D.第二步:对甲的每一种拿法,不妨设拿了乙的B卡,则乙也有3种拿法,即拿A,C或D,有3种拿法.若乙拿了甲的A卡,则丙、丁只能是丙拿D,丁拿C.若乙拿了丙的C卡,则丙只能拿D卡,丁拿A卡.若乙拿了丁的D卡,则丁只能拿C卡,丙拿A卡.所以分配方式共有3×3=9(种).3.由数字1,2,3,4,(1)可组成多少个三位数?(2)可组成多少个没有重复数字的三位数?(3)可组成多少个没有重复数字,且百位数字大于十位数字,十位数字大于个位数字的三位数?解:(1)百位数共有4种排法;十位数共有4种排法;个位数共有4种排法,根据分步乘法计数原理知共可组成43=64个三位数.(2)百位上共有4种排法;十位上共有3种排法;个位上共有2种排法,由分步乘法计数原理知共可排成没有重复数字的三位数4×3×2=24(个).(3)排出的三位数分别是432、431、421、321,共4个.4.已知集合M={-3,-2,-1,0,1,2},若a,b,c∈M,则:(1)y=ax2+bx+c可以表示多少个不同的二次函数?(2)y=ax2+bx+c可以表示多少个图象开口向上的二次函数?解:(1)y=ax2+bx+c表示二次函数时,a的取值有5种情况,b的取值有6种情况,c 的取值有6种情况,因此y=ax2+bx+c可以表示5×6×6=180个不同的二次函数.(2)当y=ax2+bx+c的图象开口向上时,a的取值有2种情况,b,c的取值均有6种情况,因此y=ax2+bx+c可以表示2×6×6=72个图象开口向上的二次函数.。

2020年浙江高考数学一轮复习课堂测试:分类加法计数原理与分步乘法计数原理

2020年浙江高考数学一轮复习课堂测试:分类加法计数原理与分步乘法计数原理

课时跟踪检测(五十二)分类加法计数原理与分步乘法计数原理一抓基础,多练小题做到眼疾手快1. a, b, c, 选法的种数是(d, e共5个人,从中选1名组长1名副组长,但a不能当副组长,不同)A. 20 B . 16C . 10D . 6解析:选B当a当组长时,则共有 1 X 4 = 4(种)选法;当a不当组长时,因为a不能当副组长,则共有4X 3= 12(种)选法.因此共有4+ 12= 16种选法.2. (2019江山模拟)某班班干部有5名男生,4名女生,从中各选一名干部参加学生党校培训,则不同的选法种数有()A. 9B. 20C. 16D. 24解析:选B 先选男生,有5种不同的选法,再选女生,有4种不同的选法.由分步乘法计数原理可知:N = 5X 4 = 20.3. 某市汽车牌照号码可以上网自编,但规定从左到右第二个号码只能从字母B, C, D中选择,其他四个号码可以从0〜9这十个数字中选择(数字可以重复),有车主第一个号码(从左到右)只想在数字3,5,6,8,9中选择,其他号码只想在1, 3,6,9中选择,则他的车牌号码可选的所有可能情况有()A. 180种B. 360 种C. 720种D. 960 种解析:选D 按照车主的要求,从左到右第一个号码有5种选法,第二个号码有3种选法,其余三个号码各有4种选法.因此车牌号码可选的所有可能情况有5X 3 X 4X 4X 4=960(种).4. 从0,1,2,3,4这5个数字中任取3个组成三位数,其中奇数的个数是 _____________ ; 3的倍数的个数有_________ .解析:从1,3中取一个排个位,故排个位有2种方法;排百位不能是0,可以从另外3个数中取一个,有3种方法;排十位有3种方法.故所求奇数的个数为3X 3 X 2= 18.若有0, 则另两个数分别为1,2或2,4,则不同的三位数有2 X 2X 2 = 8种,若有3,则另两个数分别为1,2或2,4,则不同的三位数有 3 X 2X 2= 12种,所以满足条件的3的倍数的个数为8 +12= 20 个.答案:18 205. (2018温州八校)将三个分别标有A, B, C的球随机放入编号为1,2,3,4的四个盒子中,则1号盒子中无球的不同放法种数有____________ 种;1号盒子中有球的不同放法种数有________ 种.解析:1号盒子无球的不同放法有33= 27种,1号盒子有球的不同放法有43- 33= 64-27= 37 种.答案:27 37二保咼考,全练题型做到咼考达标1•设集合A = {- 1,0,1},集合B= {0,1,2,3},定义A*B = {(x, y)|x€ A n B, y€ A U B}, 则A*B中元素的个数是()A. 7B. 10C. 25D. 52解析:选 B 因为集合 A = { - 1,0,1},集合B= {0,1,2,3},所以 A n B= {0,1} ,A U B = {-1,0,1,2,3},所以x有2种取法,y有5种取法,所以根据分步乘法计数原理得有2X 5 = 10(个).2.从2,3,4,5,6,7,8,9这8个数中任取2个不同的数分别作为一个对数的底数和真数,则可以组成不同对数值的个数为()A. 56B. 54C. 53D. 52解析:选D 在8个数中任取2个不同的数共有8X 7= 56(个)对数值,但在这56个对数值中,lo g24= log39, 10字2= log93, log23= log49, log32= log94,即满足条件的对数值共有56- 4= 52(个).3. (2019嘉兴四高适应性考试)将3封信投入6个不同的信箱内,则不同的投法种数有()A. 9B. 18C. 216D. 729解析:选C 将3封信投入6个不同的信箱内,每封信都有6种不同的投法,所以满足条件的不同投法种数有63= 216种.4.用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40 000大的偶数共有()A. 144个B. 120 个C. 96个D. 72 个解析:选B 当万位数字为4时,个位数字从0,2中任选一个,共有2A4个偶数;当万位数字为5时,个位数字从0,2,4中任选一个,共有C1A4个偶数.故符合条件的偶数共有2A:+ C3A4= 120(个).5. 如图是一个由四个全等的直角三角形与一个小正方形拼成的大正方形,现在用四种颜色给这四个直角三角形区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不相同,则不同的涂色方法有()D . 120 种 解析:选C 如图,设四个直角三角形顺次为C —>D 顺序涂色,下面分两种情况:(1) A , C 不同色(注意:B ,D 可同色、也可不同色, D 只要不与A ,C 同色,所以D 可 以从剩余的2种颜色中任意取一色):有4X 3X 2X 2= 48(种)不同的涂法.(2) A , C 同色(注意:B , D 可同色、也可不同色, D 只要不与A , C 同色,所以D 可以 从剩余的3种颜色中任意取一色):有4X 3X 1X 3= 36(种)不同的涂法.故共有48+ 36= 84(种) 不同的涂色方法.故选 C.6. 集合 N = {a , b , c}? {- 5,— 4,— 2,1,4},若关于 x 的不等式 ax 2+ bx + c v 0 恒有实数解,则满足条件的集合 N 的个数是 _________ .解析:依题意知,集合 N 最多有C 3= 10(个),其中对于不等式 ax 2 + bx + c v 0没有实 数解的情况可转化为需要满足 a > 0,且△= b 2— 4ac < 0,因此只有当a , c 同号时才有可能, 共有2种情况,因此满足条件的集合 N 的个数是10— 2 = 8.答案:87. 在一个三位数中,若十位数字小于个位和百位数字,则称该数为"驼峰数”,比如“102,” “ 546为“驼峰数”.由数字 1,2,3,4可构成无重复数字的“驼峰数”有 _____________ 个.其中偶数有 __________ 个.解析:十位上的数为 1时,有213,214,312,314,412,413,共6个,十位上的数为 2时,有 324,423,共 2 个,所以共有 6+ 2= 8(个).偶数为 214,312,314,412,324,共 5 个.答案:85 8.如图所示,用五种不同的颜色分别给 A , B , C , D 四个区域涂色,相邻区域必须涂不同颜色,若允许同一种颜色多次使用,则不同的涂色方法共有 ________ 种.解析:按区域分四步:第一步, A 区域有5种颜色可选;第二步,B 区域有4种颜色可选;第三步,C 区域有3种颜色可选;第四步,D 区域也有3种颜色可选.由 分步乘法计数原理,共有 5X 4X 3X 3= 180(种)不同的涂色方法.答案:1809. ___________ 已知△ ABC 三边a , b , c 的长都是整数,且 a < b < c ,如果b = 25,则符合条件的 三角形共有 ____ 个.解析:根据三边构成三角形的条件可知, c v 25+ a.C . 84 种» B第一类:当a= 1, b= 25时,c可取25,共1个值;第二类,当a= 2, b= 25时,c可取25,26,共2个值;当a = 25, b= 25时,c可取25,26,…,49,共25个值;所以三角形的个数为 1 + 2 +…+ 25= 325.答案:32510. 已知集合M = {—3,—2,—1, 0, 1, 2},若a, b, c€ M,则:(1) y= ax2+ bx+ c可以表示多少个不同的二次函数;(2) y= ax2+ bx+ c可以表示多少个图象开口向上的二次函数.解:(1)a的取值有5种情况,b的取值有6种情况,c的取值有6种情况,因此y= ax2 + bx+ c 可以表示5 X 6 X 6= 180(个)不同的二次函数.(2)y= ax2+ bx+ c的图象开口向上时,a的取值有2种情况,b, c的取值均有6种情况,因此y= ax2+ bx+ c可以表示2X 6X 6= 72(个)图象开口向上的二次函数.三上台阶,自主选做志在冲刺名校1.已知集合A={(x, y)|x2+ y2< 1, x, y€ Z}, B= {(x, y川x|w 2, |y|< 2, x, y€ Z}, 定义集合A® B = {(X1 + X2, y1+ y2)|( X1,y1) € A, (x2 ,y2)€ B},则A® B 中元素的个数为()A. 77B. 49C. 45D. 30解析:选C A= {(x, y)|x2+ y2w 1, x, y€ Z} = {(x, y)|x = ± , y= 0;或x= 0 , y= ±1; 或x= 0 , y= 0},B= {(x , y川x|w 2 , |y|< 2 , x , y€ Z}= {(x , y)|x= —2, —1 , 0,1,2; y=—2, —1,0,1,2}, A ® B 表示点集.由X1=—1,0,1, X2=—2, —1,0,1,2 ,得x1 + X2=—3, —2, —1,0,1,2,3 ,共7 种取值可能.同理,由y1=—1,0,1 , y2=—2, —1,0,1,2,得y1+ y2=—3, —2, —1,0,1,2,3 ,共7 种取值可能.当X1+ X2=—3或3时,y1 + y2可以为一2, —1,0,1,2中的一个值,分别构成5个不同的占八、、5当X1+ X2=—2, —1,0,1,2 时,y1 + y2可以为一3, —2, —1, 0,1,2,3 中的一个值,分别构成7个不同的点,故A® B共有2X 5 + 5X 7= 45(个)元素.2. (2019湖南十二校联考)若m , n均为非负整数,在做m+ n的加法时各位均不进位(例如:134+ 3 802= 3 936),则称(m , n)为“简单的”有序对,而m+ n称为有序对(m , n)的值,那么值为1 942的“简单的”有序对的个数是______________________ .解析:第1步,1= 1 + 0,1 = 0+ 1,共2种组合方式;第 2 步,9= 0 + 9,9= 1 + 8,9= 2+ 7,9 = 3+ 6,…,9= 9+ 0,共10 种组合方式;第 3 步,4= 0 + 4,4= 1 + 3,4= 2+ 2,4 = 3+ 1,4= 4 + 0,共5 种组合方式;第4步,2= 0 + 2,2= 1 + 1,2= 2+ 0,共3种组合方式.根据分步乘法计数原理,值为 1 942的“简单的”有序对的个数为 2 X 10X 5 X 3= 300.答案:3003. 如图所示,将一个四棱锥的每一个顶点染上一种颜色,并使同一条棱上的两端异色,如果只有5种颜色可供使用,求共有多少不同的染色方法.解:可分为两大步进行,先将四棱锥一侧面三顶点染色,然后再分.类考虑另外两顶点的染色数,用分步乘法计数原理即可得出结论. 由题设,四棱锥S -ABCD 的顶点S,A,B所染的颜色互不相同,它们共有5X 4 X 3 = 60(种)染色方法.当S,A,B 染好时,不妨设其颜色分别为1,2,3,若C染2,则D可染3或4或5,有3种染法;若C染4,贝U D可染3或5,有2种染法;若C染5,贝U D可染3或4,有2种染法.可见,当S,A, B 已染好时,C, D还有7种染法,故不同的染色方法有60X 7= 420(种).。

新高考数学 第10章 第1讲 分类加法计数原理与分步乘法计数原理

新高考数学  第10章 第1讲 分类加法计数原理与分步乘法计数原理

第十章 计数原理、概率、随机变量及其分布
高考一轮总复习 • 数学
返回导航
考点二
分步乘法计数原理——师生共研
例2 (1)如图,小明从街道的E处出发,先到F处与小红会合,再
一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选
择的最短路径条数为
( B)
A.24
B.18
C.12
D.9
第十章 计数原理、概率、随机变量及其分布
返回导航
分类加法计数原理和分步乘法计数原理的区别 分类加法计数原理针对“分类”问题,其中各种方法相互独立,用 其中任何一种方法都可以做完这件事;分步乘法计数原理针对“分步” 问题,各个步骤相互联系、相互依存,只有各个步骤都完成了才算完成 这件事.
第十章 计数原理、概率、随机变量及其分布
高考一轮总复习 • 数学
第十章 计数原理、概率、随机变量及其分布
高考一轮总复习 • 数学
返回导航
5.(2021·全国高考)将5名北京冬奥会志愿者分配到花样滑冰、短道
速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每
个项目至少分配1名志愿者,则不同的分配方案共有
( C)
A. 60种
B. 120种
C. 240种
[解析] C14A55=480 或 A25A44=480.
第十章 计数原理、概率、随机变量及其分布
高考一轮总复习 • 数学
返回导航
3.(选择性必修3P27T17改编)如图所示的五个区域中,现有四种颜 色可供选择,要求每一个区域只涂一种颜色,相邻区域所涂颜色不同,
则不同的涂色方法种数为
( C)
A.24种
D.324
第十章 计数原理、概率、随机变量及其分布

21版:§10.1 分类加法计数原理与分步乘法计数原理(步步高)

21版:§10.1 分类加法计数原理与分步乘法计数原理(步步高)

§10.1分类加法计数原理与分步乘法计数原理最新考纲考情考向分析1.理解分类加法计数原理和分步乘法计数原理.2.会用两个计数原理解决一些简单的实际问题. 两个计数原理在高考中单独命题较少,一般是与排列组合结合进行考查,一般以选择、填空题的形式出现.基本形式一般形式区别分类加法计数原理完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法,那么完成这件事共有N=m+n种不同的方法完成一件事有n类不同方案,在第1类方案中有m1种不同的方法,在第2类方案中有m2种不同的方法,…,在第n类方案中有m n种不同的方法,那么完成这件事共有N=m1+m2+…+m n种不同的方法分类加法计数原理与分步乘法计数原理,都涉及完成一件事情的不同方法种数.它们的区别在于:分类加法计数原理与分类有关,各种方法相互独立,用其中的任何一种方法都可以完成这件事;分步乘法计数原理与分步有关,分步乘法计数原理完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法,那么完完成一件事需要n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,…,做第n步有m n种不同的方法,成这件事共有N =m×n 种不同的方法那么完成这件事共有N=m1×m2×…×m n种不同的方法各个步骤相互依存,只有各个步骤都完成了,这件事才算完成概念方法微思考1.在解题过程中如何判定是用分类加法计数原理还是分步乘法计数原理?提示如果已知的每类办法中的每一种方法都能完成这件事,应该用分类加法计数原理;如果每类办法中的每一种方法只能完成事件的一部分,就用分步乘法计数原理.2.两种原理解题策略有哪些?提示①明白要完成的事情是什么;②分清完成该事情是分类完成还是分步完成,“类”间互相独立,“步”间互相联系;③有无特殊条件的限制;④检验是否有重复或遗漏.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)在分类加法计数原理中,两类不同方案中的方法可以相同.(×)(2)在分类加法计数原理中,每类方案中的方法都能直接完成这件事.(√)(3)在分步乘法计数原理中,每个步骤中完成这个步骤的方法是各不相同的.(√)(4)在分步乘法计数原理中,事情是分两步完成的,其中任何一个单独的步骤都能完成这件事.(×)题组二教材改编2.已知集合M={1,-2,3},N={-4,5,6,-7},从M,N这两个集合中各选一个元素分别作为点的横坐标,纵坐标,则这样的坐标在直角坐标系中可表示第一、第二象限内不同的点的个数是()A.12B.8C.6D.4答案 C解析分两步:第一步先确定横坐标,有3种情况,第二步再确定纵坐标,有2种情况,因此第一、二象限内不同点的个数是3×2=6,故选C.3.已知某公园有4个门,从一个门进,另一个门出,则不同的走法的种数为()A.16B.13C.12D.10答案 C解析将4个门编号为1,2,3,4,从1号门进入后,有3种出门的方式,共3种走法,从2,3,4号门进入,同样各有3种走法,共有不同走法3×4=12(种).4.书架的第1层放有4本不同的计算机书,第2层放有3本不同的文艺书,第3层放有2本不同的体育书.从书架中任取1本书,则不同取法的种数为________.答案9解析分三类:第一类,从第1层取一本书有4种,第二类,从第2层取一本书有3种,第三类,从第3层取一本书有2种.共有4+3+2=9(种).题组三易错自纠5.从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为()A.24B.18C.12D.6答案 B解析分两类情况讨论:第1类,奇偶奇,个位有3种选择,十位有2种选择,百位有2种选择,共有3×2×2=12(个)奇数;第2类,偶奇奇,个位有3种选择,十位有2种选择,百位有1种选择,共有3×2×1=6(个)奇数.根据分类加法计数原理知,共有12+6=18(个)奇数.6.某人有3个电子邮箱,他要发5封不同的电子邮件,则不同的发送方法有________种.答案243解析因为每个邮件选择发的方式有3种不同的情况.所以要发5个电子邮件,发送的方法有3×3×3×3×3=35=243(种).分类加法计数原理1.满足a,b∈{-1,0,1,2},且关于x的方程ax2+2x+b=0有实数解的有序数对(a,b)的个数为()A.14B.13C.12D.10答案 B解析方程ax2+2x+b=0有实数解的情况应分类讨论.①当a=0时,方程为一元一次方程2x+b=0,不论b取何值,方程一定有解.此时b的取值有4个,故此时有4个有序数对.②当a≠0时,需要Δ=4-4ab≥0,即ab≤1.显然有3个有序数对不满足题意,分别为(1,2),(2,1),(2,2).a≠0时,(a,b)共有3×4=12(个)实数对,故a≠0时满足条件的实数对有12-3=9(个),所以答案应为4+9=13.2.如果一个三位正整数如“a1a2a3”满足a1<a2,且a2>a3,则称这样的三位数为凸数(如120,343, 275等),那么所有凸数的个数为()A.240B.204C.729D.920答案 A解析若a2=2,则百位数字只能选1,个位数字可选1或0,“凸数”为120与121,共2个.若a2=3,则百位数字有两种选择,个位数字有三种选择,则“凸数”有2×3=6(个).若a2=4,满足条件的“凸数”有3×4=12(个),…,若a2=9,满足条件的“凸数”有8×9=72(个). 所以所有凸数有2+6+12+20+30+42+56+72=240(个).3.如果把个位数是1,且恰有3个数字相同的四位数叫做“好数”,那么在由1,2,3,4四个数字组成的有重复数字的四位数中,“好数”共有________个.答案12解析当组成的数字有三个1,三个2,三个3,三个4时共有4种情况.当有三个1时:2111,3111, 4111,1211,1311,1411,1121,1131,1141,有9种,当有三个2,3,4时:2221,3331,4441,有3种,根据分类加法计数原理可知,共有12种结果.思维升华分类标准是运用分类加法计数原理的难点所在,应抓住题目中的关键词,关键元素,关键位置.(1)根据题目特点恰当选择一个分类标准.(2)分类时应注意完成这件事情的任何一种方法必须属于某一类,并且分别属于不同种类的两种方法是不同的方法,不能重复.(3)分类时除了不能交叉重复外,还不能有遗漏.分步乘法计数原理例1(1)如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为()A.24B.18C.12D.9答案 B解析从E点到F点的最短路径有6条,从F点到G点的最短路径有3条,所以从E点到G点的最短路径有6×3=18(条),故选B.(2)有六名同学报名参加三个智力项目,每项限报一人,且每人至多参加一项,则共有________种不同的报名方法.答案120解析每项限报一人,且每人至多参加一项,因此可由项目选人,第一个项目有6种选法,第二个项目有5种选法,第三个项目有4种选法,根据分步乘法计数原理,可得不同的报名方法共有6×5×4=120(种).本例(2)中若将条件“每项限报一人,且每人至多参加一项”改为“每人恰好参加一项,每项人数不限”,则有多少种不同的报名方法?解每人都可以从这三个比赛项目中选报一项,各有3种不同的报名方法,根据分步乘法计数原理,可得不同的报名方法共有36=729(种).本例(2)中若将条件“每项限报一人,且每人至多参加一项”改为“每项限报一人,但每人参加的项目不限”,则有多少种不同的报名方法?解每人参加的项目不限,因此每一个项目都可以从这六人中选出一人参赛,根据分步乘法计数原理,可得不同的报名方法共有63=216(种).思维升华(1)利用分步乘法计数原理解决问题要按事件发生的过程合理分步,即分步是有先后顺序的,并且分步必须满足:完成一件事的各个步骤是相互依存的,只有各个步骤都完成了,才算完成这件事.(2)分步必须满足两个条件:一是步骤互相独立,互不干扰;二是步与步之间确保连续,逐步完成.跟踪训练1(1)(2020·洛阳联考)2019年牡丹花会期间,5名志愿者被分配到我市3个博物馆为外地游客提供服务,其中甲博物馆分配1人,另2个博物馆各分配2人,则不同的分配方法共有()A.15种B.30种C.90种D.180种答案 B解析分两步完成:第一步,选1人到甲博物馆,有5种分配方法;第二步,将余下的4人各分配2人到另2个博物馆,有6种分配方法.根据分步乘法计数原理可得,不同的分配方法共有5×6=30(种).(2)已知a∈{1,2,3},b∈{4,5,6,7},则方程(x-a)2+(y-b)2=4可表示不同的圆的个数为()A.7B.9C.12D.16答案 C解析得到圆的方程分两步:第一步:确定a有3种选法;第二步:确定b有4种选法,由分步乘法计数原理知,共有3×4=12(个).两个计数原理的综合应用例2(1)现有5种不同颜色的染料,要对如图所示的四个不同区域进行涂色,要求有公共边的两个区域不能使用同一种颜色,则不同的涂色方法的种数是()A.120B.140C.240D.260答案 D解析由题意,先涂A处共有5种涂法,再涂B处有4种涂法,然后涂C处,若C处与A处所涂颜色相同,则C处共有1种涂法,D处有4种涂法;若C处与A处所涂颜色不同,到C处有3种涂法,D处有3种涂法,由此可得不同的涂色方法有5×4×(1×4+3×3)=260(种).故选D.(2)(2019·赫山区校级月考)中国古代儒家要求学生掌握六种基本才能(六艺):礼、乐、射、御、书、数,某校国学社团周末开展“六艺”课程讲座活动,一天连排六节,每艺一节,排课有如下要求:“射”不能排在第一,“数”不能排在最后,则“六艺”讲座不同的排课顺序共有________种.答案504解析根据题意,分2种情况讨论:①“数”排在第一,将剩下的“五艺”全排列,安排在剩下的5节,有A55=120(种)情况.②“数”不排在第一,则“数”的排法有4种,“射”的排法有4种,将剩下的“四艺”全排列,安排在剩下的4节,有A44=24(种)情况,则此时有4×4×24=384(种)情况.则一共有120+384=504(种)排课顺序.(3)用0,1,2,3,4,5,6这7个数字可以组成________个无重复数字的四位偶数.(用数字作答)答案420解析要完成的“一件事”为“组成无重复数字的四位偶数”,所以千位数字不能为0,个位数字必须是偶数,且组成的四位数中四个数字不重复,因此应先分类,再分步.①第1类,当千位数字为奇数,即取1,3,5中的任意一个时,个位数字可取0,2,4,6中的任意一个,百位数字不能取与这两个数字重复的数字,十位数字不能取与这三个数字重复的数字. 根据分步乘法计数原理,有3×4×5×4=240(种)取法.②第2类,当千位数字为偶数,即取2,4,6中的任意一个时,个位数字可以取除首位数字的任意一个偶数数字,百位数字不能取与这两个数字重复的数字,十位数字不能取与这三个数字重复的数字.根据分步乘法计数原理,有3×3×5×4=180(种)取法.③根据分类加法计数原理,共可以组成240+180=420(个)无重复数字的四位偶数.思维升华利用两个计数原理解决应用问题的一般思路(1)弄清完成一件事是做什么.(2)确定是先分类后分步,还是先分步后分类.(3)弄清分步、分类的标准是什么.(4)利用两个计数原理求解.跟踪训练2(1)(2020·郑州质检)将数字“124467”重新排列后得到不同的偶数的个数为() A.72 B.120 C.192 D.240答案 D解析 将数字“124467”重新排列后所得数字为偶数,则末位数应为偶数,(1)若末位数字为2,因为含有2个4,所以有5×4×3×2×12=60(种)情况;(2)若末位数字为6,同理有60种情况;(3)若末位数字为4,因为有两个相同数字4,所以共有5×4×3×2×1=120(种)情况.综上,共有60+60+120=240(种)情况.(2)从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有( ) A.24对 B.30对 C.48对 D.60对 答案 C解析 如图,在正方体ABCD -A 1B 1C 1D 1中,与面对角线AC 成60°角的面对角线有B 1C ,BC 1,A 1D ,AD 1,AB 1,A 1B ,D 1C ,DC 1,共8条,同理与DB 成60°角的面对角线也有8条.因此一个面上的2条面对角线与其相邻的4个面上的8条对角线共组成16对.又正方体共有6个面,所以共有16×6=96(对).又因为每对被计算了2次,因此成60°的面对角线有12×96=48(对).。

核按钮(新课标)高考数学一轮复习第十章计数原理、概率、随机变量及其分布10.1分类加法计数原理与分步

核按钮(新课标)高考数学一轮复习第十章计数原理、概率、随机变量及其分布10.1分类加法计数原理与分步
第五页,共25页。
3.两个计数原理的区别 分类加法计数原理和分步乘法计数原理解决的都是有关做一件事的不 同方法的种数问题,区别在于:分类加法计数原理针对的是“分类”问题, 其中各种方法______________,用其中______________都可以做完这件事; 分步乘法计数原理针对的是“分步”问题,各个步骤中的方法 ______________,只有______________才算做完这件事. 4.两个计数原理解决计数问题时的方法 最重要的是在开始计算之前要进行仔细分析——是需要分类还是需要 分步. (1)分类要做到“______________”.分类后再分别对每一类进行计数, 最后用分类加法计数原理求和,得到总数. (2)分步要做到“______________”,即完成了所有步骤,恰好完成任务, 当然步与步之间要______________,分步后再计算每一步的方法数,最后 根据分步乘法计数原理,把完成每一步的方法数相乘,得到总数.
(2)分两步:先选教师,共 3 种选法,再选学生,共 6+8=14 种选法.由分步乘法计数原理知总选法数为 3×14=42(种).
(3)老师、男同学、女同学各一人可分三步,每步方法数依次为 3、6、8 种.由分步乘法计数原理知选法数为 3×6×8=144(种).
第十六页,共25页。
类型二 两个原理的综合应用
第十五页,共25页。
有一项活动需在 3 名老师,6 名男同学和 8 名女同学中选 人参加.
(1)若只需一人参加,有多少种不同选法? (2)若需一名老师,一名学生参加,有多少种不同选法? (3)若需老师、男同学、女同学各一人参加,有多少种不同选法?
解:(1)只需一人参加,可按老师、男同学、女同学分三类,各 自有 3、6、8 种选法,总选法数为 3+6+8=17(种).

【步步高】高考数学大一轮复习 10

【步步高】高考数学大一轮复习 10

=_____________m__!__________________,由于 0! 乘明确;有序排
பைடு நூலகம்
= 1 ,所以 Cn0= 1 . (4)组合数的性质:①Cmn = ②Cmn+1= Cmn + Cmn -1 .
Cnn-m ;
列,无序组合; 分类相加,分步 相乘.”
基础知识·自主学习
基础自测
题号
1 2 3 4 5
数学 R A(理)
§10.2 排列与组合
第十章 计数原理
基础知识·自主学习
要点梳理
难点正本 疑点清源
1.排列
1.排列与组合最根
(1)排列的定义:从 n 个 不同 元素中取出 本 的 区 别 在 于
m (m≤n)个元素,按照一定的 顺序 排成一 “ 有 序 ” 和
列,叫做从 n 个不同元素中取出 m 个元素 的一个排列. (2)排列数的定义:从 n 个不同元素中取出 m(m≤n)个元素的 所有不同排列 的个数 叫做从 n 个不同元素中取出 m 个元素的排 列数,用 Amn 表示.
有 1 个盒内有 2 个球”与“恰有 1 个盒不放球”是同一件事,所以
共有 144 种放法.
题型分类·深度剖析
题型三
排列与组合的综合应用问题
【例 3】 4 个不同的球,4 个不同
思维启迪 解析 探究提高
(3的)确盒定子2,个把空球盒全有部C放42种入方盒法内.. 4 (个1)球恰放有进1 个2 个盒不盒放子球可,分共成有(3几,1)、(2,2)两类,第一类有序不均匀分 组种(有2)放恰C法有34C?111A个22种盒方内法有;2第个二球类,有共序均匀分组有CA24C22 22·A22种方法.故共 有有C几24(C种34放C11法A22?+CA24C22 22·A22)=84(种).

分类加法和分步乘法


21
板块一
板块二
板块三
板块四
板块五
高考一轮总复习 ·数学(理)
命题角度 1 与数字有关的问题 例 3 从 0,4,6 中选两个数字,从 3,5,7 中选两个数字,组成无重复数字的四位数.其中偶数的个数为 ( ) A.56 C.36 B.96 D.360
1 3 1 2 3 1 1 2 2 [解析] 当四位数中不含有 0 时,有 C2 C A = 36 种,当四位数中含有 0 时, C C A + C 3 2 3 2 3 3 2C2C3A2=60
11
板块一
板块二
板块三
板块四
板块五
高考一轮总复习 ·数学(理)
17 . 4. 从 1,2,3,4,7,9 六个数中, 任取两个数作对数的底数和真数, 则所有不同的对数的值的个数为________
解析 (1)当取 1 时,1 只能为真数,此时对数的值为 0. (2)不取 1 时,分两步: ①取底数,5 种; ②取真数,4 种. 其中 log23=log49,log32=log94,log24=log39,log42=log93. ∴N=1+5×4-4=17.
19
板块一
板块二
板块三
板块四
板块五
高考一轮总复习 ·数学(理)
168 (2)4 张卡片的正、 反面分别写有 0 与 1,2 与 3,4 与 5,6 与 7, 将其中 3 张卡片排放在一起, 可组成________
个不同的三位数.
[解析] 要组成三位数,根据首位、十位、个位应分三步: 第一步:首位可放 8-1=7(个)数; 第二步:十位可放 6 个数; 第三步:个位可放 4 个数. 故由分步计数原理,得共可组成 7×6×4=168(个)不同的三位数.

浙江新高考数学理科一轮复习创新方案知能检测10.1分类加法计数原理与分步乘法计数原理(含答案详析)

第一节分类加法计数原理与分步乘法计数原理[全盘巩固]1.将3张不同的奥运会门票分给10名同学中的3人,每人1张,则不同分法的种数是()A.2 160 B.720 C.240 D.120解析:选B分步来完成此事.第1张有10种分法;第2张有9种分法;第3张有8种分法,共有10×9×8=720种分法.2.a,b,c,d,e共5个人,从中选1名组长1名副组长,但a不能当副组长,不同选法的种数是()A.20 B.16 C.10 D.6解析:选B当a当组长时,则共有1×4=4种选法;当a不当组长时,又因为a也不能当副组长,则共有4×3=12种选法.因此共有4+12=16种选法.3. (2014·汕头模拟)如图,用6种不同的颜色把图中A,B,C,D四块区域分开,若相邻区域不能涂同一种颜色,则不同涂法的种数为()A.400 B.460 C.480 D.496解析:选C从A开始,有6种方法,B有5种,C有4种,D,A同色1种,D,A不同色3种,则有6×5×4×(1+3)=480种不同涂法.4.集合P={x,1},Q={y,1,2},其中x,y∈{1,2,3,…,9},且P⊆Q.把满足上述条件的一对有序整数对(x,y)作为一个点的坐标,则这样的点的个数是()A.9 B.14 C.15 D.21解析:选B∵P={x,1},Q={y,1,2},且P⊆Q,∴x∈{y,1,2}.∴当x=2时,y=3,4,5,6,7,8,9,共有7种情况;当x=y时,x=3,4,5,6,7,8,9,共有7种情况.共有7+7=14种情况.即这样的点的个数为14.5.(2014·济南调研)已知两条异面直线a,b上分别有5个点和8个点,则这13个点可以确定不同的平面个数为()A.40 B.16 C.13 D.10解析:选C分两类情况讨论:第1类,直线a分别与直线b上的8个点可以确定8个不同的平面;第2类,直线b分别与直线a上的5个点可以确定5个不同的平面.根据分类加法计数原理知,共可以确定8+5=13个不同的平面.6.(2014·杭州模拟)如果一条直线与一个平面平行,那么称此直线与平面构成一个“平行线面组”.在一个长方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“平行线面组”的个数是()A.60 B.48 C.36 D.24解析:选B长方体的6个表面构成的“平行线面组”个数为6×6=36,另含4个顶点的6个面(非表面)构成的“平行线面组”个数为6×2=12,故符合条件的“平行线面组”的个数是36+12=48.7.在平面直角坐标系内,点P(a,b)的坐标满足a≠b,且a,b都是集合{1,2,3,4,5,6}中的元素,又点P到原点的距离|OP|≥5.则这样的点P的个数为________.解析:依题意可知:当a=1时,b=5,6两种情况;当a=2时,b=5,6两种情况;当a=3时,b=4,5,6三种情况;当a=4时,b=3,4,5,6四种情况;当a=5或6,b各有6种情况.所以共有2+2+3+4+6+6=23种情况.答案:238.集合N={a,b,c}⊆{-5,-4,-2,1,4},若关于x的不等式ax2+bx+c<0恒有实数解,则满足条件的集合N的个数是________.解析:依题意知,最多有10个集合N,其中对于不等式ax2+bx+c<0没有实数解的情况可转化为需要满足a>0,且Δ=b2-4ac≤0,因此只有当a,c同号时才有可能,共有2种情况,因此满足条件的集合N的个数是10-2=8.答案:89.将数字1,2,3,4,5,6排成一列,记第i个数为a i(i=1,2,…,6),若a1≠1,a3≠3,a5≠5,a1<a3<a5,则不同的排列方法有________种(用数字作答).解析:分两步:第1步,先排a1,a3,a5,若a1=2,有2种排法;若a1=3,有2种排法;若a1=4,有1种排法,所以共有5种排法;第2步,再排a2,a4,a6,共有6种排法,故有5×6=30种不同的排列方法.答案:3010.有六名同学报名参加三个智力竞赛项目,在下列情况下各有多少种不同的报名方法?(不一定六名同学都能参加)(1)每人恰好参加一项,每项人数不限;(2)每项限报一人,且每人至多参加一项;(3)每项限报一人,但每人参加的项目不限.解:(1)每人都可以从这三个比赛项目中选报一项,各有3种不同的报名方法,根据分步乘法计数原理,可得共有36=729种不同的报名方法.(2)每项限报一人,且每人至多参加一项,因此可由项目选人,第一个项目有6种选法,第二个项目有5种选法,第三个项目只有4种选法,根据分步乘法计数原理,可得共有6×5×4=120种不同的报名方法.(3)每人参加的项目不限,因此每一个项目都可以从这六人中选出一人参赛,根据分步乘法计数原理,可得共有63=216种不同的报名方法.11.某电视台连续播放6个广告,其中有3个不同的商业广告、两个不同的宣传广告、一个公益广告,要求最后播放的不能是商业广告,且宣传广告与公益广告不能连续播放,两个宣传广告也不能连续播放,则有多少种不同的播放方式?解:用1,2,3,4,5,6表示广告的播放顺序,则完成这件事有三类方法.第1类:宣传广告与公益广告的播放顺序是2,4,6,分6步完成这件事,共有3×3×2×2×1×1=36种不同的播放方式.第2类:宣传广告与公益广告的播放顺序是1,4,6,分6步完成这件事,共有3×3×2×2×1×1=36种不同的播放方式.第3类:宣传广告与公益广告的播放顺序是1,3,6,同样分6步完成这件事,共有3×3×2×2×1×1=36种不同的播放方式.由分类加法计数原理得:6个广告共有36+36+36=108种不同的播放方式.12. 某城市在中心广场建造一个花圃,花圃分为6个部分(如图).现要栽种4种不同颜色的花,每部分栽种一种且相邻部分不能栽种同样颜色的花,不同的栽种方法有多少种(用数字作答).解:法一:从题意来看,6部分种4种颜色的花,又从图形看,知必有2组同颜色的花,从同颜色的花入手分类求解.(1)2与5同色,则3,6也同色或4,6也同色,所以共有4×3×2×2×1=48种栽种方法;(2)3与5同色,则2,4或4,6同色,所以共有4×3×2×2×1=48种栽种方法;(3)2与4且3与6同色,所以共有4×3×2×1=24种栽种方法.所以共有48+48+24=120种栽种方法.法二:记颜色为A,B,C,D四色,先安排1,2,3有4×3×2种不同的栽法,不妨设1,2,3已分别栽种A,B,C,则4,5,6的栽种方法共5种,由以下树状图清晰可见.根据分步乘法计数原理,共有4×3×2×5=120种不同的栽种方法.[冲击名校]1.设集合I={1,2,3,4,5},选择I的两个非空子集A和B,要使B中最小的数大于A中最大的数,则不同的选择方法的种数为()A.50 B.49 C.48 D.47解析:选B根据题意,B中最小的数大于A中最大的数,则集合A,B中没有相同的元素,且都不是空集,按A中元素分情况讨论,分别计算其选法种数,进而相加即可.第1类,当A中最大的数是1时,A是{1},B可以是{2,3,4,5}的非空子集,即有24-1=15种选法;第2类,当A中最大的数是2时,A可以是{2}或{1,2},B可以是{3,4,5}的非空子集,即有2×(23-1)=14种选法;第3类,当A中最大的数是3时,A可以是{3},{1,3},{2,3},{1,2,3},B可以是{4,5}的非空子集,即有4×(22-1)=12种选法;第4类,当A中最大的数是4时,A可以是{4},{1,4},{2,4},{3,4},{1,2,4},{1,3,4},{2,3,4},{1,2,3,4},B是{5},即有8×1=8种选法.综上可知,共有15+14+12+8=49种不同的选择方法.2.若m,n均为非负整数,在做m+n的加法时各位均不进位(例如:134+3 802=3 936),则称(m,n)为“简单的”有序对,而m+n称为有序对(m,n)的值,那么值为1 942的“简单的”有序对的个数为________.解析:第1步,1=1+0,或1=0+1,共2种组合方式;第2步,9=0+9,或9=1+8,或9=2+7,或9=3+6,…,或9=9+0,共10种组合方式;第3步,4=0+4,或4=1+3,或4=2+2,或4=3+1,或4=4+0,共5种组合方式;第4步,2=0+2,或2=1+1,或2=2+0,共3种组合方式.根据分步乘法计数原理,值为1 942的“简单的”有序对的个数为2×10×5×3=300.答案:300。

2023年新高考数学一轮复习讲义精讲精练第32讲 计数原理(解析)

第32讲计数原理学校____________ 姓名____________ 班级____________一、知识梳理基本计数原理1.分类加法计数原理完成一件事,如果有n类办法,且:第一类办法中有m1种不同的方法,第二类办法中有m2种不同的方法……第n类办法中有m n种不同的方法,那么完成这件事共有N=m1+m2+…+m n种不同的方法.2.分步乘法计数原理完成一件事,如果需要分成n个步骤,且:做第一步有m1种不同的方法,做第二步有m2种不同的方法……做第n步有m n种不同的方法.那么完成这件事共有N=m1×m2×…×m n种不同的方法.3.分类加法和分步乘法计数原理,区别在于:分类加法计数原理针对“分类”问题,其中各种方法相互独立,用其中任何一种方法都可以做完这件事;分步乘法计数原理针对“分步”问题,各个步骤中的方法相互依存,只有各个步骤都完成了才算完成这件事.排列与组合1.排列与组合的概念(1)从n个不同对象中取出m(m≤n)个对象的所有排列的个数,称为从n个不同对象中取出m个对象的排列数,用符号A m n表示.(2)从n个不同对象中取出m(m≤n)个对象的所有组合的个数,称为从n个不同对象中取出m个对象的组合数,用符号C m n表示.3.排列数、组合数的公式及性质公式(1)A m n=n(n-1)(n -2)…(n-m+1)=n!(n-m)!.(2)C m n=A m nA m m=n(n-1)(n-2)…(n-m+1)m!=n!m!(n-m)!(n,m∈N*,且m≤n).特别地C0n=1性质(1)0!=1;A n n=n!.(2)C m n=C n-mn;C m+1n+C m n=C m+1n+1二项式定理1.二项式定理(1)二项式定理:(a+b)n=C0n a n+C1n a n-1b+…+C k n a n-k b k+…+C n n b n(n∈N*);(2)通项公式:T k+1=C k n a n-k b k,它表示第k+1项;(3)二项式系数:二项展开式中各项的系数C0n,C1n,…,C n n.2.二项式系数的性质性质性质描述对称性与首末等距离的两个二项式系数相等,即C m n=C n-mn增减性二项式系数C k n当k<n+12(n∈N*)时,是递增的当k>n+12(n∈N*)时,是递减的二项式系数最大值当n为偶数时,中间的一项取得最大值当n为奇数时,中间的两项与相等且取得最大值(1)(a+b)n展开式的各二项式系数和:C0n+C1n+C2n+…+C n n=2n.(2)奇数项的二项式系数的和等于偶数项的二项式系数的和,即C0n+C2n+C4n +…=C1n+C3n+C5n+…=2n-1.二、考点和典型例题1、基本计数原理【典例1-1】(2022·湖北·天门市教育科学研究院模拟预测)甲乙丙丁四个同学星期天选择到东湖公园,西湖茶经楼,历史博物馆和北湖公园其中一处去参观游玩,其中茶经楼必有人去,则不同的参观方式共有( )种. A .24 B .96 C .174 D .175【答案】D 【详解】若4人均去茶经楼,则有1种参观方式,若有3人去茶经楼,则从4人中选择3人,另1人从另外3处景点选择一处,有3143C A 12=种参观方式;若有2人去茶经楼,则从4人中选择2人,另外2人从另外3处景点任意选择一处,有211433C A A 54=种参观方式;若有1人去茶经楼,则从4人中选择1人,另外3人从另外的3处景点任意选择一处,有11114333C A A A 108=种参观方式,综上:共有11254108175+++=种参观方式. 故选:D【典例1-2】(2023·山西大同·高三阶段练习)高中数学新教材有必修一和必修二,选择性必修有一、二、三共5本书,把这5本书放在书架上排成一排,必修一、必修二不相邻的排列方法种数是( ) A .72 B .144 C .48 D .36【答案】A 【详解】先将选择性必修有一、二、三这三本书排成一排,有33A =6种方法, 再将必修一、必修二这两本书插入两个空隙中,有24A =12种方法,所以把这5本书放在书架上排成一排,必修一、必修二不相邻的排列方法种数是:612=72⨯.故选:A.【典例1-3】(2023·全国·高三专题练习(理))2010年世界杯足球赛预计共有24个球队参加比赛,第一轮分成6个组进行单循环赛(在同一组的每两个队都要比赛),决出每个组的一、二名,然后又在剩下的12个队中按积分取4个队(不比赛),共计16个队进行淘汰赛来确定冠亚军,则一共需比赛( )场次. A .53B .52C .51D .50【答案】C 【详解】第一轮分成6个组进行单循环赛共需要246C 36=场比赛,淘汰赛有如下情况:16进8需要8场比赛,8进4需要4场比赛,4进2需要2场比赛,确定冠亚军需要1场比赛,共需要36842151++++=场比赛故选:C .【典例1-4】(2022·河南·濮阳一高高三阶段练习(理))某医院从7名男医生(含一名主任医师),6名女医生(含一名主任医师)中选派4名男医生和3名女医生支援抗疫工作,若要求选派的医生中有主任医师,则不同的选派方案数为( ) A .350 B .500 C .550 D .700【答案】C 【详解】所选医生中只有一名男主任医师的选法有3365C C 200,所选医生中只有一名女主任医师的选法有4265C C 150, 所选医生中有一名女主任医师和一名男主任医师的选法有3265C C 200,故所选医师中有主任医师的选派方法共有200150200550种, 故选:C【典例1-5】(2023·全国·高三专题练习)《数术记遗》是《算经十书》中的一部,相传是汉末徐岳所著.该书记述了我国古代14种算法,分别是:积算(即筹算)、太乙算、两仪算、三才算、五行算、八卦算、九宫算、运筹算、了知算、成数算、把头算、龟算、珠算和计数.某中学研究性学习小组有甲、乙、丙、丁四人,该小组拟全部收集九宫算、运筹算、了知算、成数算和把头算等5种算法的相关资料,要求每人至少收集其中一种,且每种算法只由一个人收集,但甲不收集九宫算和了知算的资料,则不同的分工收集方案共有( )种. A .108 B .136 C .126 D .240【答案】C 【详解】分以下两种情况讨论:①若甲只收集一种算法,则甲有3种选择,将其余4种算法分为3组,再分配给乙、丙、丁三人,此时,不同的收集方案种数为23433C A 108=种;②若甲收集两种算法,则甲可在运筹算、成数算和把头算3种算法中选择2种,其余3种算法分配给乙、丙、丁三人,此时,不同的收集方案种数为2333C A 18=种.综上所述,不同的收集方案种数为10818126+=种.2、排列与组合【典例2-1】(2023·全国·高三专题练习)有甲、乙、丙、丁、戊5名同学站成一排参加文艺汇演,若甲不站在两端,丙和丁相邻,则不同排列方式共有( ) A .12种 B .24种 C .36种 D .48种【答案】B 【详解】因为丙丁要在一起,先把丙丁捆绑,看做一个元素,连同乙,戊看成三个元素排列,有3!种排列方式;为使甲不在两端,必须且只需甲在此三个元素的中间两个位置任选一个位置插入,有2种插空方式;注意到丙丁两人的顺序可交换,有2种排列方式,故安排这5名同学共有:3!2224⨯⨯=种不同的排列方式, 故选:B【典例2-2】(2023·全国·高三专题练习(理))教育部于2022年开展全国高校书记校长访企拓岗促就业专项行动,某市3所高校的校长计划拜访当地企业,共有4家企业可供选择.若每名校长拜访3家企业,每家企业至少接待1名校长,则不同的安排方法共有( ) A .60种 B .64种 C .72种 D .80种【答案】A 【详解】解:3名校长在4家企业任取3家企业的所有安排情况为:333444C C C 44464=⨯⨯=种又每家企业至少接待1名校长,故3名校长选的3家企业,不全相同,因为3名校长选的3家企业完全相同有34C 4=种,则不同的安排方法共有:64460-=种. 故选:A.【典例2-3】(2022·全国·高三专题练习)某校在高一开展了选课走班的活动,已知该校提供了3门选修课供学生选择,现有5名同学参加选课走班的活动,要求这5名同学每人选修一门课程且每门课程都有人选,则5名同学选课的种数为( ) A .150 B .180 C .240 D .540【答案】A 【详解】先把5名同学分为3组:(3人,1人,1人)或(2人,2人,1人), 再把这3组同学分配给3门选修课即可解决.则5名同学选课的种数为311221352153132222C C C C C C A 150A A ⎛⎫+= ⎪⎝⎭(种)【典例2-4】(2023·全国·高三专题练习)北京2022年冬奥会吉祥物“冰墩墩”和冬残奥会吉祥物“雪容融”一亮相,好评不断.为了宣传2022年北京冬奥会和冬残奥会,某学校决定派小明和小李等5名志愿者将两个吉祥物安装在学校的体育广场,每人参与且只参与一个吉祥物的安装,每个吉祥物都至少由两名志愿者安装.若小明和小李必须安装不同的吉祥物,则不同的安排方案有( ) A .6种 B .12种 C .18种 D .24种【答案】B 【详解】由题意可知:应将志愿者分为三人组和两人组.先将小李、小明之外的三人分为两组,有12323C C =种分法,再将小李、小明分进两组,有222A =种分法,最后将两组分配安装两个吉祥物,有222A =种分法,所以共计有32212⨯⨯=种.故选:B【典例2-5】(2022·贵州·贵阳一中高三阶段练习(理))贵阳一中体育节中,乒乓球球单打12强中有4个种子选手,将这12人平均分成3个组(每组4个人)、则4个种子选手恰好被分在同一组的分法有( ) A .21 B .42 C .35 D .70【答案】C 【详解】4个种子选手分在同一组,即剩下的8人平均分成2组,方法有448422C C 35 A =种, 故选:C .3、二项式定理【典例3-1】(2022·河南洛阳·模拟预测(理))3nx ⎛⎝的展开式中各二项式系数之和为64,则展开式中的常数项为( ) A .-540 B .135C .18D .1215【答案】B 【详解】由题意得264n =,所以6n =,所以63x ⎛- ⎝展开式的通项()()36662166C 31C 3rr rr r r r r T x x---+⎛==-⋅⋅⋅ ⎝, 令3602r -=,得4r =,所以展开式中的常数项为()44261C 3135-⋅⋅=. 故选:B .【典例3-2】(2022·全国·高三专题练习)()91-x 按x 降幕排列的展开式中,系数最大的项是( ) A .第4项和第5项 B .第5项 C .第5项和第6项 D .第6项【答案】B 【详解】因为()91-x 的展开式通项为()919C 1k kk k T x -+=⋅⋅-, 其中第5项和第6项的二项式系数最大,但第5项的系数为正,第6项的系数为负, 故()91-x 按x 降幕排列的展开式中,系数最大的项是第5项. 故选:B.【典例3-3】(2022·全国·高三专题练习)若()1nx +的展开式中,某一项的系数为7,则展开式中第三项的系数是( ) A .7 B .21 C .35 D .21或35【答案】B 【详解】解:由题意,展开式的通项为1(C 0,1,,)r rr n T x r n +==,所以某一项的系数为7,即C 7rn =,解得n =7,r =1或n =7,r =6,所以展开式中第三项的系数是27C 21=.故选:B .【典例3-4】(2023·全国·高三专题练习)二项式()()()237121212x x x ++++++的展开式中,含2x 项的二项式系数为( ) A .84 B .56 C .35 D .21【答案】B 【详解】解:因为二项式为()()()237121212x x x ++++++,所以其展开式中,含2x 项的二项式系数为:222222234567C C C C C C +++++, 3222244567=C C C C C ++++,32225567=C C C C +++, 322667=C C C ++,3277=C C +, 38=C 56=.故选:B【典例3-5】(2022·全国·高三专题练习)已知()523450123451ax a a x a x a x a x a x +=+++++,若3270a =-,则024a a a ++=( ) A .992 B .-32 C .-33 D .496【答案】D 【详解】由题意知:()3333335C 10a x ax a x ==,则310270a =-,解得3a =-;令1x =,则()50123451332a a a a a a -=+++++=-,令1x =-,则()5012345131024a a a a a a +=-+-+-=,两式相加得()0242992a a a ++=,则024496a a a ++=. 故选:D.。

【北师大版】高三数学步步高(理)第十编 计数原理

第十编 计数原理§10.1 分类加法计数原理与分步乘法计数原理1.有不同颜色的四件上衣与不同颜色的三件长裤,如果一条长裤与一件上衣配成一套,则不同的配法种数( )A .7B .64C .12D .81答案 C2.从3名女同学和2名男同学中选1人主持本班的某次主题班会,则不同的选法种数为( )A .6B .5C .3D .2答案 B3.一个乒乓球队里有男队员5人,女队员4人,从中选出男、女队员各一名组成混合双打,共有不同的选法种数为( )A .9B .20C .54D .45答案 B4.将4个不同的小球放入3个不同的盒子,其中每个盒子都不空的放法共有( )A .34种B .43种C .18种D .36种答案 D5.有一项活动需在3名老师,8名男同学和5名女同学中选人参加,(1)若只需一人参加,有多少种不同的选法? (2)若需一名老师,一名学生参加,有多少种不同的选法?(3)若只需老师,男同学,女同学各一人参加,有多少种不同的选法? 解 (1)“完成这件事”只需从老师、学生中选1人即可,共有3+8+5=16种.(2)“完成这件事”需选2人,老师、学生各1人,分两步进行:选老师有3种方法,选学生有8+5=13种方法,共有 3×13=39种方法.(3)“完成这件事”需选3人,老师、男同学、女同学各一人,可分三步进行,选老师有3种方法,选男同学有8种方法,选女同学有5种方法,共有3×8×5=120种方法.例1 在所有的两位数中,个位数字大于十位数字的两位数共有多少个?解 方法一 按十位数上的数字分别是1,2,3,4,5,6,7,8的情况分成8类,在每一类中满足题目条件的两位数分别有8个,7个,6个,5个,4个,3个,2个,1个. 由分类加法计数原理知,符合题意的两位数的个数共有: 8+7+6+5+4+3+2+1=36(个).方法二 按个位数字是2,3,4,5,6,7,8,9分成8类,在每一类中满足条件的两位数分别有1个、2个、3个、4个、5个、6个、7个、8个,所以按分类计数原理共有: 1+2+3+4+5+6+7+8=36(个).例2 已知集合M ={-3,-2,-1,0,1,2},P (a ,b )表示平面上的点(a ,b ∈M ),问: (1)P 可表示平面上多少个不同的点? (2)P 可表示平面上多少个第二象限的点? (3)P 可表示多少个不在直线y =x 上的点?解 (1)确定平面上的点P (a ,b )可分两步完成:基础自测第一步确定a的值,共有6种确定方法;第二步确定b的值,也有6种确定方法.根据分步乘法计数原理,得到平面上的点数是6×6=36.(2)确定第二象限的点,可分两步完成:第一步确定a,由于a<0,所以有3种确定方法;第二步确定b,由于b>0,所以有2种确定方法.由分步乘法计数原理,得到第二象限点的个数是3×2=6.(3)点P(a,b)在直线y=x上的充要条件是a=b.因此a和b必须在集合M中取同一元素,共有6种取法,即在直线y=x 上的点有6个.由(1)得不在直线y=x上的点共有36-6=30个.例3(12分)现有高一四个班学生34人,其中一、二、三、四班各7人、8人、9人、10人,他们自愿组成数学课外小组.(1)选其中一人为负责人,有多少种不同的选法?(2)每班选一名组长,有多少种不同的选法?(3)推选二人作中心发言,这二人需来自不同的班级,有多少种不同的选法?解(1)分四类:第一类,从一班学生中选1人,有7种选法;第二类,从二班学生中选1人,有8种选法;第三类,从三班学生中选1人,有9种选法;第四类,从四班学生中选1人,有10种选法.所以,共有不同的选法N=7+8+9+10=34(种). 3分(2)分四步,第一、二、三、四步分别从一、二、三、四班学生中选一人任组长,所以共有不同的选法N=7×8×9×10=5 040(种). 6分(3)分六类,每类又分两步,从一、二班学生中各选1人,有7×8种不同的选法;从一、三班学生中各选1人,有7×9种不同的选法;从一、四班学生中各选1人,有7×10种不同的选法;从二、三班学生中各选1人,有8×9种不同的选法;从二、四班学生中各选1人,有8×10种不同的选法;从三、四班学生中各选1人,有9×10种不同的选法,10分所以共有不同的选法N=7×8+7×9+7×10+8×9+8×10+9×10=431(种). 12分1.从1到20这20个整数中,任取两个相加,使其和大于20,共有几种取法?解当一个加数是1时,另一个加数只能是20,1种取法.当一个加数是2时,另一个加数可以是19,20,2种取法.当一个加数是3时,另一个加数可以是18,19,20,3种取法.……当一个加数是10时,另一个加数可以是11,12,…,20,10种取法.当一个加数是11时,另一个加数可以是12,13,…,20,9种取法.……当一个加数是19时,另一个加数是20,1种取法.由分类加法计数原理可得共有1+2+3+…+10+9+8+…+1=100种取法.2.某体育彩票规定:从01到36共36个号中抽出7个号为一注,每注2元.某人想先选定吉利号18,然后从01至17中选3个连续的号,从19至29中选2个连续的号,从30至36中选1个号组成一注.若这个人要把这种要求的号全买下,至少要花多少元钱?解先分三步选号,再计算总钱数.按号段选号,分成三步.第一步从01至17中选3个连续号,有15种选法;第二步从19至29中选2个连续号,有10种选法;第三步从30至36中选1个号,有7种选法.由分步乘法计数原理可知,满足要求的号共有15×10×7=1 050(注),故至少要花1 050×2=2 100(元).3.某校高中部,高一有6个班,高二有7个班,高三有8个班,学校利用星期六组织学生到某厂进行社会实践活动.(1)任选1个班的学生参加社会实践,有多少种不同的选法?(2)三个年级各选一个班的学生参加社会实践,有多少种不同的选法?(3)选2个班的学生参加社会实践,要求这2个班不同年级,有多少种不同的选法?解(1)分三类:第一类从高一年级选1个班,有6种不同方法;第二类从高二年级选一个班,有7种不同方法;第三类从高三年级选1个班,有8种不同方法.由分类计数原理,共有6+7+8=21种不同的选法.(2)每种选法分三步:第一步从高一年级选一个班,有6种不同方法;第二步从高二年级选1个班,有7种不同方法;第三步从高三年级选1个班,有8种不同方法.由分步计数原理,共有6×7×8=336种不同的选法.(3)分三类,每类又分两步.第一类从高一、高二两个年级各选一个班,有6×7种不同方法;第二类从高一、高三两个年级各选1个班,有6×8种不同方法;第三类从高二、高三年级各选一个班,有7×8种不同的方法,故共有6×7+6×8+7×8=146种不同选法.一、选择题1.5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有()A.10种B.20种C.25种D.32种答案D2.某通讯公司推出一组手机卡号码,卡号的前七位数字固定,从“×××××××0000”到“×××××××9999”共10 000个号码,公司规定:凡卡号的后四位中带有数字“4”或“7”的一律作为优惠卡,则这组号码中“优惠卡”个数为()A.2 000B.4 096C.5 904D.8 320答案C3.从集合{1,2,3,…,10}中任意选出三个不同的数,使这三个数成等比数列,这样的等比数列的个数为()A.3B.4C.6D.8答案D4.如图所示,用五种不同的颜色分别给A、B、C、D四个区域涂色,相邻区域必须涂不同颜色,若允许同一种颜色多次使用,则不同的涂色方法共有()A.180种B.120种C.96种D.60种答案A5.一植物园参观路径如图所示,若要全部参观并且路线不重复,则不同的参观路线种数共有()A.6种B.8种C.36种D.48种答案D6.(2008·全国Ⅰ文,12)将1,2,3填入3×3的方格中,要求每行、每列都没有重复数字,右面是一种填法,则不同的填写方法共有()A.6种B.12种C.24种D.48种答案B二、填空题7.在2008年奥运选手选拔赛上,8名男运动员参加100米决赛.其中甲、乙、丙三人必须在1、2、3、4、5、6、7、8八条跑道的奇数号跑道上,则安排这8名运动员比赛的方式共有种.答案 2 8808.若一个m,n均为非负整数的有序数对(m,n),在做m+n的加法时各位均不会进位,则称(m,n)为“简单的”有序数对,m+n称为有序数对(m,n)的值,那么值为1 942的“简单的”有序数对的个数是 .答案300三、解答题9.(1)4名同学选报跑步、跳高、跳远三个项目,每人报一项,共有多少种报名方法?(2)4名同学争夺跑步、跳高、跳远三项冠军,共有多少种可能的结果?解(1)要完成的是“4名同学每人从三个项目中选一项报名”这件事,因为每人必报一项,四个都报完才算完成,于是按人分步,且分为四步,又每人可在三项中选一项,选法为3种,所以共有:3×3×3×3=81种报名方法.(2)完成的是“三个项目冠军的获取”这件事,因为每项冠军只能有一人获得,三项冠军都有得主,这件事才算完成,于是应以“确定三项冠军得主”为线索进行分步.而每项冠军是四人中的某一人,有4种可能的情况,于是共有:4×4×4=43=64种可能的情况.10.用5种不同的颜色给图中所给出的四个区域涂色,每个区域涂一种颜色,若要求相邻(有公共边)的区域不同色,那么共有多少种不同的涂色方法?解完成该件事可分步进行.涂区域1,有5种颜色可选.涂区域2,有4种颜色可选.涂区域3,可先分类:若区域3的颜色与2相同,则区域4有4种颜色可选.若区域3的颜色与2不同,则区域3有3种颜色可选,此时区域4有3种颜色可选.所以共有5×4×(1×4+3×3)=260种涂色方法.11.在平面直角坐标系内,点P(a,b)的坐标满足a≠b,且a,b都是集合{1,2,3,4,5,6}的元素,又点P到原点的距离|OP|≥5.求这样的点P的个数.解按点P的坐标a将其分为6类:(1)若a=1,则b=5或6,有2个点;(2)若a=2,则b=5或6,有2个点;(3)若a=3,则b=5或6或4,有3个点;(4)若a=4,则b=3或5或6,有3个点;(5)若a=5,则b=1,2,3,4,6,有5个点;(6)若a=6,则b=1,2,3,4,5,有5个点;∴共有2+2+3+3+5+5=20(个)点.12.将3种作物种植在如图所示的5块试验田里,每块种植一种作物且相邻的试验田不能种植同一种作物,不同的种植方法共有多少种?解设由左到右五块田中要种a,b,c三种作物,不妨先设第一块种a,则第二块可种b,c,有两种选法.同理,如果第二块种b,则第三块可种a和c,也有两种选法,由分步乘法计数原理共有1×2×2×2×2=16.其中要去掉ababa和acaca两种方法.故a种作物种在第一块田中时的种法数有16-2=14(种).同理b种或c种作物种在第一块田中时的种法数也都为14种.所以符合要求的种植方法共有3×(2×2×2×2-2)=3×(16-2)=42(种).§10.2 排列与组合1.从1,2,3,4,5,6六个数字中,选出一个偶数和两个奇数,组成一个没有重复数字的三位数,这样的三位数共有( )A .9个B .24个C .36个D.54个答案 D2.(2008·福建理,7)某班级要从4名男生、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为( )A .14B .24C .28D.48答案 A3.停车场每排恰有10个停车位.当有7辆不同型号的车已停放在同一排后,恰有3个空车位连在一起的排法有 ( )A .A 77B .A 37C .C 18A 77D.C 18A 37答案 C4.在100件产品中有6件次品,现从中任取3件产品,至少有1件次品的不同取法种数是( )A .C 16C 294B .C 16C 299C .C 3100-C 394D.A 3100-A 394答案 C5.(2008·上海理,12)组合数C r n (n >r ≥1,n 、r ∈Z )恒等于( )A .11++n r C 11--r nB .(n +1)(r +1)C 11--r nC .nr C 11--r nD.rn C 11--r n 答案 D例1 六人按下列要求站一横排,分别有多少种不同的站法? (1)甲不站两端; (2)甲、乙必须相邻; (3)甲、乙不相邻; (4)甲、乙之间间隔两人; (5)甲、乙站在两端; (6)甲不站左端,乙不站右端.解 (1)方法一 要使甲不站在两端,可先让甲在中间4个位置上任选1个,有A 14种站法,然后其余5人在另外5个位置上作全排列有A 55种站法,根据分步乘法计数原理,共有站法:A 14·A 55=480(种).方法二 由于甲不站两端,这两个位置只能从其余5个人中选2个人站,有A 25种站法,然后中间4人有A 44种站法,根据分步乘法计数原理,共有站法:A 25·A 44=480(种).方法三 若对甲没有限制条件共有A 66种站法,甲在两端共有2A 55种站法,从总数中减去这两种情况的排列数,即共有站 法:A 66-2A 55=480(种).基础自测(2)方法一先把甲、乙作为一个“整体”,看作一个人,和其余4人进行全排列有A55种站法,再把甲、乙进行全排列,有A22种站法,根据分步乘法计数原理,共有A55·A22=240(种)站法.方法二先把甲、乙以外的4个人作全排列,有A44种站法,再在5个空档中选出一个供甲、乙放入,有A15种方法,最后让甲、乙全排列,有A22种方法,共有A44·A15·A22=240(种).(3)因为甲、乙不相邻,中间有隔档,可用“插空法”,第一步先让甲、乙以外的4个人站队,有A44种站法;第二步再将甲、乙排在4人形成的5个空档(含两端)中,有A25种站法,故共有站法为A44·A25=480(种).也可用“间接法”,6个人全排列有A66种站法,由(2)知甲、乙相邻有A55·A22=240种站法,所以不相邻的站法有A66-A55·A22=720-240=480(种).(4)方法一先将甲、乙以外的4个人作全排列,有A44种,然后将甲、乙按条件插入站队,有3A22种,故共有A44·(3A22)=144(种)站法.方法二先从甲、乙以外的4个人中任选2人排在甲、乙之间的两个位置上,有A24种,然后把甲、乙及中间2人看作一个“大”元素与余下2人作全排列有A33种方法,最后对甲、乙进行排列,有A22种方法,故共有A24·A33·A22=144(种)站法.(5)方法一首先考虑特殊元素,甲、乙先站两端,有A22种,再让其他4人在中间位置作全排列,有A44种,根据分步乘法计数原理,共有A22·A44=48(种)站法.方法二首先考虑两端两个特殊位置,甲、乙去站有A22种站法,然后考虑中间4个位置,由剩下的4人去站,有A44种站法,由分步乘法计数原理共有A22·A44=48(种)站法.(6)方法一甲在左端的站法有A55种,乙在右端的站法有A55种,且甲在左端而乙在右端的站法有A44种,共有A66-2A55+A44=504(种)站法.方法二以元素甲分类可分为两类:①甲站右端有A55种站法,②甲在中间4个位置之一,而乙不在右端有A14·A14·A44种,故共有A55+A14·A14·A44=504(种)站法.例2(12分)男运动员6名,女运动员4名,其中男女队长各1人.选派5人外出比赛.在下列情形中各有多少种选派方法?(1)男运动员3名,女运动员2名;(2)至少有1名女运动员;(3)队长中至少有1人参加;(4)既要有队长,又要有女运动员.解(1)第一步:选3名男运动员,有C36种选法.第二步:选2名女运动员,有C24种选法.共有C36·C24=120种选法. 3分(2)方法一至少1名女运动员包括以下几种情况:1女4男,2女3男,3女2男,4女1男.由分类加法计数原理可得总选法数为C14C46+C24C36+C34C26+C44C16=246种. 6分方法二“至少1名女运动员”的反面为“全是男运动员”可用间接法求解.从10人中任选5人有C510种选法,其中全是男运动员的选法有C56种.所以“至少有1名女运动员”的选法为C510-C56=246种. 6分(3)方法一可分类求解:“只有男队长”的选法为C48;“只有女队长”的选法为C48;“男、女队长都入选”的选法为C38;所以共有2C48+C38=196种选法. 9分方法二间接法:从10人中任选5人有C510种选法.其中不选队长的方法有C58种.所以“至少1名队长”的选法为C510-C58=196种. 9分(4)当有女队长时,其他人任意选,共有C49种选法.不选女队长时,必选男队长,共有C48种选法.其中不含女运动员的选法有C45种,所以不选女队长时的选法共有C48-C45种选法.所以既有队长又有女运动员的选法共有C49+C48-C45=191种. 12分例3 4个不同的球,4个不同的盒子,把球全部放入盒内.(1)恰有1个盒不放球,共有几种放法?(2)恰有1个盒内有2个球,共有几种放法?(3)恰有2个盒不放球,共有几种放法?解(1)为保证“恰有1个盒不放球”,先从4个盒子中任意取出去一个,问题转化为“4个球,3个盒子,每个盒子都要放入球,共有几种放法?”即把4个球分成2,1,1的三组,然后再从3个盒子中选1个放2个球,其余2个球放在另外2个盒子内,由分步乘法计数原理,共有C14C24C13×A22=144种.(2)“恰有1个盒内有2个球”,即另外3个盒子放2个球,每个盒子至多放1个球,也即另外3个盒子中恰有一个空盒,因此,“恰有1个盒内有2个球”与“恰有1个盒不放球”是同一件事,所以共有144种放法.(3)确定2个空盒有C24种方法.4个球放进2个盒子可分成(3,1)、(2,2)两类,第一类有序不均匀分组有C 34C 11A 22种方法;第二类有序均匀分组有222224A C C ·A 22种方法. 故共有C 24( C 34C 11A 22+222224A C C ·A 22)=84种.1.用0、1、2、3、4、5这六个数字,可以组成多少个分别符合下列条件的无重复数字的四位数:(1)奇数;(2)偶数; (3)大于3 125的数.解 (1)先排个位,再排首位,共有A 13·A 14·A 24=144(个).(2)以0结尾的四位偶数有A 35个,以2或4结尾的四位偶数有A 12·A 14·A 24个,则共有A 35+ A 12·A 14·A 24=156(个). (3)要比3 125大,4、5作千位时有2A 35个,3作千位,2、4、5作百位时有3A 24个,3作千位,1作百位时有2A 13个,所以共有2A 35+3A 24+2A 13=162(个).2.某医院有内科医生12名,外科医生8名,现选派5名参加赈灾医疗队,其中 (1)某内科医生甲与某外科医生乙必须参加,共有多少种不同选法? (2)甲、乙均不能参加,有多少种选法? (3)甲、乙两人至少有一人参加,有多少种选法?(4)队中至少有一名内科医生和一名外科医生,有几种选法? 解 (1)只需从其他18人中选3人即可,共有C 318=816(种).(2)只需从其他18人中选5人即可,共有C 518=8 568(种).(3)分两类:甲、乙中有一人参加,甲、乙都参加,共有C 12C 418+C 318=6 936(种).(4)方法一 (直接法)至少一名内科医生一名外科医生的选法可分四类:一内四外;二内三外;三内二外;四内一外,所以共有C 112C 48+C 212C 38+C 312C 28+C 412C 18=14 656(种).方法二 (间接法)由总数中减去五名都是内科医生和五名都是外科医生的选法种数,得C 520-(C 58+C 512)=14656(种). 3.有6本不同的书按下列分配方式分配,问共有多少种不同的分配方式? (1)分成1本、2本、3本三组;(2)分给甲、乙、丙三人,其中一人1本,一人2本,一人3本; (3)分成每组都是2本的三组; (4)分给甲、乙、丙三人,每人2本.解 (1)分三步:先选一本有C 16种选法;再从余下的5本中选2本有C 25种选法;对于余下的三本全选有C 33种选法,由分步乘法计数原理知有C 16C 25C 33=60种选法.(2)由于甲、乙、丙是不同的三人,在(1)的基础上,还应考虑再分配的问题,因此共有C 16C 25C 33A 33=360种选法. (3)先分三步,则应是C 26C 24C 22种选法,但是这里面出现了重复,不妨记六本书为A 、B 、C 、D 、E 、F ,若第一步取了AB ,第二步取了CD ,第三步取了EF ,记该种分法为(AB ,CD ,EF ),则C 26C 24C 22种分法中还有(AB 、EF 、CD ),(CD 、AB 、EF )、(CD 、EF 、AB )、(EF 、CD 、AB )、(EF 、AB 、CD )共有A 33种情况,而且这A 33种情况仅是AB 、CD 、 EF 的顺序不同,因此,只算作一种情况,故分法有33222426A C C C =15种.(4)在问题(3)的工作基础上再分配,故分配方式有33222426A C C C ·A 33= C 26C 24C 22=90种.一、选择题1.用数字1,2,3,4,5组成没有重复数字的五位数,其中小于50 000的偶数共有( )A .60个B .48个C .36个D .24个答案 C2.将编号为1,2,3,4,5的五个球放入编号为1,2,3,4,5的五个盒子里,每个盒子内放一个球,若恰好有三个球的编号与盒子编号相同,则不同投放方法的种数为( )A .6B .10C .20D .30答案 B3.记者要为5名志愿者和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有( )A .1 440种B .960种C .720种D .480种答案 B4.在图中,“构建和谐社会,创美好未来”,从上往下读(不能跳读),共有不同的读法种数是( )A .250B .240C .252D .300答案 C5.(2008·天津理,10)有8张卡片分别标有数字1,2,3,4,5,6,7,8,从中取出6张卡片排成3行2列,要求3行中仅有中间行的两张卡片上的数字之和为5,则不同的排法共有 ( )A .1 344种B .1 248种C .1 056种D .960种答案 B6.(2008·安徽理,12)12名同学合影,站成了前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排,其他人的相对顺序不变,则不同调整方法的种数是( )A .C 28A 23B .C 28A 66C .C 28A 26D .C 28A 25答案C二、填空题7.(2008·海滨模拟)平面α内有四个点,平面β内有五个点,从这九个点中任取三个,最多可确定个平面,任取四点,最多可确定个四面体.(用数字作答).答案72 1208.(2008·浙江理,16)用1,2,3,4,5,6组成六位数(没有重复数字),要求任何相邻两个数字的奇偶性不同,且1和2相邻.这样的六位数的个数是 .(用数字作答)答案40三、解答题9.某外商计划在4个候选城市投资3个不同的项目,且在同一个城市投资的项目不超过2个,求该外商不同的投资方案有多少种?解可先分组再分配,据题意分两类,一类:先将3个项目分成两组,一组有1个项目,另一组有2个项目,然后再分配给4个城市中的2个,共有C23A24种方案;另一类1个城市1个项目,即把3个元素排在4个不同位置中的3个,共有A34种方案.由分类加法计数原理可知共有C23A24+A34=60种方案.10.课外活动小组共13人,其中男生8人,女生5人,并且男、女各指定一名队长,现从中选5人主持某种活动,依下列条件各有多少种选法?(1)只有一名女生;(2)两队长当选;(3)至少有一名队长当选;(4)至多有两名女生当选.解(1)一名女生,四名男生,故共有C15·C48=350(种).(2)将两队长作为一类,其他11人作为一类,故共有C22·C311=165(种).(3)至少有一名队长含有两类:有一名队长和两名队长.故共有:C12·C411+C22·C311=825(种).或采用间接法:C513-C511=825(种).(4)至多有两名女生含有三类:有两名女生、只有一名女生、没有女生.故选法为C25·C38+C15·C48+C58=966(种).11.已知平面α∥β,在α内有4个点,在β内有6个点.(1)过这10个点中的3点作一平面,最多可作多少个不同平面?(2)以这些点为顶点,最多可作多少个三棱锥?(3)上述三棱锥中最多可以有多少个不同的体积?解(1)所作出的平面有三类:①α内1点,β内2点确定的平面,有C14·C26个;②α内2点,β内1点确定的平面,有C24·C16个;③α,β本身.∴所作的平面最多有C14·C26+C24·C16+2=98(个).(2)所作的三棱锥有三类:①α内1点,β内3点确定的三棱锥,有C14·C36个;②α内2点,β内2点确定的三棱锥,有C 24·C 26个;α内3点,β内1点确定的三棱锥,有C 34·C 16个. ∴最多可作出的三棱锥有:C 14·C 36+C 24·C 26+C 34·C 16=194(个).(3)∵当等底面积、等高的情况下三棱锥的体积相等, 且平面α∥β,∴体积不相同的三棱锥最多有C 36+C 34+C 26·C 24=114(个).12.有两排座位,前排11个座位,后排12个座位,现安排2人就座,规定前排中间的3个座位不能坐,并且这2人不左右相邻,共有多少种不同排法? 解 ∵前排中间3个座位不能坐, ∴实际可坐的位置前排8个,后排12个.(1)两人一个前排,一个后排,方法数为C 18·C 112·A 22种; (2)两人均在后排左右不相邻,共A 212-A 22·A 111=A 211种;(3)两人均在前排,又分两类:①两人一左一右,共C 14·C 14·A 22种; ②两人同左同右,有2(A 24-A 13·A 22)种.综上可知,不同排法种数为C 18·C 112·A 22+A 211+C 14·C 14·A 22+2(A 24-A 13·A 22)=346种.§10.3 二项式定理1.在(1+x )n (n ∈N *)的二项展开式中,若只有x 5的系数最大,则n 等于( )A .8B .9C .10D .11答案 C2.在(a 2-2a 31)n 的展开式中,( )A .没有常数项B .当且仅当n =2时,展开式中有常数项 C.当且仅当n =5时,展开式中有常数项 D.当n =5k (k ∈N +)时,展开式中有常数项 答案 A3.若多项式0C n (x +1 n )-C 1n (x +1)n -1+…+(-1)r C r n (x +1)n -r +…+(-1)n C n n =a 0x n +a 1x n -1+…+a n -1x +a n ,则a 0+a 1+…+a n -1+a n 等于( )A .2nB .0C .-1D .1答案 D4.(2008·山东理,9)(x -31x)12展开式中的常数项为( )基础自测A .-1 320B .1 320C .-220D .220答案 C5.(2008·福建理,13)若(x -2)5=a 5x 5+a 4x 4+a 3x 3+a 2x 2+a 1x +a 0,则a 1+a 2+a 3+a 4+a 5= .(用数字作答) 答案 31例1 在二项式(x +421x)n 的展开式中,前三项的系数成等差数列,求展开式中的有理项和二项式系数最大的项.解 ∵二项展开式的前三项的系数分别是1,2n ,81n (n -1), ∴2·2n =1+81n (n -1), 解得n =8或n =1(不合题意,舍去),∴T k +1=C k 8x28k -k ⎪⎪⎭⎫ ⎝⎛421x =C k 82-k x 4-43k , 当4-43k ∈Z 时,T k +1为有理项, ∵0≤k ≤8且k ∈Z ,∴k =0,4,8符合要求. 故有理项有3项,分别是 T 1=x 4,T 5=835x ,T 9=2561x -2.∵n =8,∴展开式中共9项,中间一项即第5项的二项式系数最大.T 5=835x . 例2 已知(1-2x )7=a 0+a 1x +a 2x 2+…+a 7x 7. 求:(1)a 1+a 2+…+a 7; (2)a 1+a 3+a 5+a 7; (3)a 0+a 2+a 4+a 6;(4)|a 0|+|a 1|+|a 2|+…+|a 7|.解 令x =1,则a 0+a 1+a 2+a 3+a 4+a 5+a 6+a 7=-1 ①令x =-1,则a 0-a 1+a 2-a 3+a 4-a 5+a 6-a 7=37②(1)∵a 0=C 07=1,∴a 1+a 2+a 3+…+a 7=-2. (2)(①-②)÷2, 得a 1+a 3+a 5+a 7=2317--=-1 094. (3)(①+②)÷2,得a 0+a 2+a 4+a 6=2317+-=1 093.(4)∵(1-2x )7展开式中,a 0,a 2,a 4,a 6都大于零, 而a 1,a 3,a 5,a 7都小于零, ∴|a 0|+|a 1|+|a 2|+…+|a 7|=(a 0+a 2+a 4+a 6)-(a 1+a 3+a 5+a 7), ∴由(2)、(3)即可得其值为2 187.例3 (12分)(1)已知n ∈N +,求证:1+2+22+23+…+25n -1能被31整除;(2)求0.9986的近似值,使误差小于0.001. (1)证明 1+2+22+23+…+25n -1=21215--n =25n-1=32n -1 3分=(31+1)n -1=31n +C 1n ·31n -1+C 2n ·31n -2+…+C 1-n n ·31+1-1=31(31n -1+C 1n ·31n -2+…+C 1-n n )5分显然括号内的数为正整数, 故原式能被31整除.6分(2)解 ∵0.9986=(1-0.002)6=1-C 16(0.002)+C 26(0.002)2-C 36(0.002)3+…8分 第三项T 3=15×(0.002)2=0.000 06<0.001,以后各项更小,∴0.9986≈1-0.012=0.988.12分1.在(3x -2y )20的展开式中,求: (1)二项式系数最大的项; (2)系数绝对值最大的项; (3)系数最大的项.解 (1)二项式系数最大的项是第11项,T 11=C 1020310(-2)10x 10y 10=C 1020610x 10y 10.(2)设系数绝对值最大的项是第r +1项,于是⎪⎩⎪⎨⎧⋅⋅≥⋅⋅⋅⋅≥⋅⋅----+-+-1211202020119120202023C 23C 23C 23C r r r r r r r r r r r r ,化简得⎩⎨⎧≥--≥+r r r r 3)21(2)20(2)1(3,解得752≤r ≤852.所以r =8,即T 9=C 820312·28·x 12y 8是系数绝对值最大的项.(3)由于系数为正的项为奇数项,故可设第2r -1项系数最大,于是⎪⎩⎪⎨⎧⋅⋅≥⋅⋅⋅⋅≥⋅⋅----------rr r r r r r r r r r r 222022022222222042224422022222222023C 23C 23C 23C , 化简得⎪⎩⎪⎨⎧≥-+≤-+092416310007711431022r r r r .解之得r =5,即2×5-1=9项系数最大. T 9=C 820·312·28·x 12y 8.2.求x (1-x )4+x 2(1+2x )5+x 3(1-3x )7展开式中各项系数的和. 解 设x (1-x )4+x 2(1+2x )5+x 3(1-3x )7=a 0+a 1x +a 2x 2+…+a n x n在原式中,令x =1,则1×(1-1)4+12×(1+2)5+13×(1-3)7=115, ∴展开式中各项系数的和为115. 3.求证:3n >(n +2)·2n -1(n ∈N +,n >2).证明 利用二项式定理3n =(2+1)n 展开证明.因为n ∈N +,且n >2,所以3n =(2+1)n 展开后至少有4项.(2+1)n =2n +C 1n ·2n -1+…+C 1-n n ·2+1≥2n +n ·2n -1+2n +1>2n +n ·2n -1=(n +2)·2n -1,故3n >(n +2)·2n -1.一、选择题1.(1-2x )6=a 0+a 1x +a 2x 2+…+a 6x 6,则|a 0|+|a 1|+|a 2|+…+|a 6|的值为( )A .1B .64C .243D .729答案 D2.(2008·安徽理,6)设(1+x )8=a 0+a 1x +…+a 8x 8,则a 0,a 1,…,a 8中奇数的个数为( ) A .2 B .3 C .4 D .5答案 A3.(2008·全国Ⅱ理,7)(1-x )6(1+x )4的展开式中x 的系数是( )A .-4B .-3C .3D .4答案 B 4.已知(x -xa )8展开式中常数项为1 120,其中实数a 为常数,则展开式中各项系数的和为 ( )A .28B .38C .1或38D .1或28答案 C5.若(1+5x 2)n 的展开式中各项系数之和是a n ,(2x 3+5)n 的展开式中各项的二项式系数之和为b n ,则nn n b a 13+的值为( ) A .31B .21 C .1 D .3答案 A6.设m ∈N +,n ∈N +,若f (x )=(1+2x )m +(1+3x )n 的展开式中x 的系数为13,则x 2的系数为( )A .31B .40C .31或40D .不确定答案 C 二、填空题7.(1+x )6(1-x )4展开式中x 3的系数是 . 答案 -88.(2008·天津理,11)52⎪⎪⎭⎫ ⎝⎛-x x 的二项展开式中x 2的系数是 .(用数字作答) 答案 40 三、解答题 9.已知(x +22x)n (n ∈N +)的展开式中第5项的系数与第3项的系数之比为10∶1.求展开式中系数最大的是第几项?解 依题意,第5项的系数为C 4n ·24,第三项的系数为C 2n ·22,则有2244C 2C 2nn ⋅⋅=110,解得n =8. 设展开式中第r +1项的系数最大,则⎪⎩⎪⎨⎧⋅≥⋅⋅≥⋅++--118811882C 2C ,2C 2C r r rr r r r r 解得5≤r ≤6. ∴第6项和第7项的系数相等且最大, 即最大为56×25=7×28=1 792.10.已知(32x +3x 2)n 展开式中各项的系数和比各项的二项式系数和大992.求展开式中系数最大的项.解 令x =1,得各项的系数和为(1+3)n =4n ,而各项的二项式系数和为:C 0n +C 1n +…+C n n =2n ,∴4n =2n +992. ∴(2n -32)(2n +31)=0∴2n =32或2n =-31(舍去),∴n =5 设第r +1项的系数最大,则⎪⎩⎪⎨⎧≥≥++--;3C 3C ,3C 3C 11551155r r rr r r r r 即⎪⎪⎩⎪⎪⎨⎧+≥--≥;1351,613r r r r ∴27≤r ≤29,又r ∈Z ,∴r =4, ∴系数最大的项是T 5=C 45x 32(3x 2)4=405x326.11.(1)求(x 2-x21)9的展开式中的常数项; (2)已知(x a -2x )9的展开式中x 3的系数为49,求常数a 的值;(3)求(x 2+3x +2)5的展开式中含x 的项. 解 (1)设第r +1项为常数项,则T r +1=C r9(x 2)9-r ·(-x 21)r =(-21)r C r 9x r318- 令18-3r =0,得r =6,即第7项为常数项.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十章计数原理
第1讲
分类加法计数原理与分步乘法计数原理一、选择题
1.如图,用4种不同的颜色涂入图中的矩形A,B,C,D中,要求相邻的矩形涂色不同,则不同的涂法有( )
A.72种.48种
C.24种 D.12种
解析先分两类:一是四种颜色都用,这时A有4种涂法,B有3种涂法,C 有2种涂法,
D有1种涂法,共有4×3×2×1=24种涂法;二是用三种颜色,这时A,B,C的涂法有4×3×2=24种,D只要不与C同色即可,故D有2种涂法.故不同的涂法共有24+24×2=72种.
答案 A
2.如图,用6种不同的颜色把
图中A、B、C、D四块区域分开,若相邻区域
不能涂同一种颜色,则不同的涂法共有( ).
A.400种 B.460种
C.480种 D.496种
解析从A开始,有6种方法,B有5种,C有4种,D、A同色1种,D、A 不同色3种,∴不同涂法有6×5×4×(1+3)=480(种),故选C.
答案 C
3.某省高中学校自实施素质教育以来,学生社团得到迅猛发展,某校高一新生中的五名同学打算参加“春晖文学社”、“舞者轮滑俱乐部”、“篮球之
家”、“围棋苑”四个社团.若每个社团至少有一名同学参加,每名同学至少参加一个社团且只能参加一个社团.且同学甲不参加“围棋苑”,则不同的参加方法的种数为().A.72 B.108 C.180 D.216
解析设五名同学分别为甲、乙、丙、丁、戊,由题意,如果甲不参加“围棋苑”,有下列两种情况:
(1)从乙、丙、丁、戊中选一人(如乙)参加“围棋苑”,有C14种方法,然后从
甲与丙、丁、戊共4人中选2人(如丙、丁)并成一组与甲、戊分配到其他三个社团中,有C24A33种方法,故共有C14C24A33种参加方法;
(2)从乙、丙、丁、戊中选2人(如乙、丙)参加“围棋苑”,有C24种方法,甲
与丁、戊分配到其他三个社团中有A33种方法,这时共有C24A33种参加方法;
综合(1)(2),共有C14C24A33+C24A33=180种参加方法.
答案 C
4.有4位教师在同一年级的4个班中各教一个班的数学,在数学检测时要求每位教师不能在本班监考,则监考的方法有( )
A.8种 B.9种
C.10种 D.11种
解析分四步完成,共有3×3×1×1=9种.
答案 B
5.从6人中选4人分别到巴黎、伦敦、悉尼、莫斯科四个城市游览,要求每个城市有一人游览,每人只游览一个城市,且这6人中甲、乙两人不去巴黎游览,则不同的选择方案共有
().
A.300种B.240种C.144种D.96种
解析甲、乙两人不去巴黎游览情况较多,采用排除法,符合条件的选择方案有C46A44-C12A35=240.
6.4位同学从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同
选法有( ).
A.12种 B.24种 C.30种 D.36种
解析分三步,第一步先从4位同学中选2人选修课程甲.共有C2
4
种不同选法,第二步给第3位同学选课程,有2种选法.第三步给第4位同学选课程,
也有2种不同选法.故共有C2
4
×2×2=24(种).
答案 B
二、填空题
7.将数字1,2,3,4,5,6按第一行1个数,第二行2个数,第三行3个数的形式随机排列,设N i(i=1,2,3)表示第i行中最大的数,则满足N1<N2<N3的所有排列的个数是________.(用数字作答)
解析由已知数字6一定在第三行,第三行的排法种数为A1
3A2
5
=60;剩余的
三个数字中最大的一定排在第二行,第二
行的排法种数为A1
2A1
2
=4,由分步计数原理满足条件的排列个数是240.
答案240
8.数字1,2,3,…,9这九个数字填写在如图的9个空格中,
要求每一行从左到右依次增大,每列从上到下也依次增大,
当数字4固定在中心位置时,则所有填写空格的方法共有
________种.
解析必有1、4、9在主对角线上,2、3只有两种不同的填法,对于它们的每一种填法,5只有两种填法.对于5的每一种填法,6、7、8只有3种不同的填法,由分步计数原理知共有22×3=12种填法.
答案12
9.如果把个位数是1,且恰有3个数字相同的四位数叫做“好数”,那么在由1,2,3,4四个数字组成的有重复数字的四位数中,“好数”共有________个.解析当相同的数字不是1时,有C13个;当相同的数字是1时,共有C13C13个,由分类加法计数原理得共有“好数”C13+C13C13=12个.
10.给n个自上而下相连的正方形着黑色或白色.当n≤4时,在所有不同的着色方案中,黑色正方形互不相邻的着色方案如下图所示:
由此推断,当n=6时,黑色正方形互不相邻的着色方案共有__________种,至少有两个黑色正方形相邻的着色方案共有________种.(结果用数值表示)
答案 21;43
三、解答题
11.如图所示三组平行线分别有m、n、k条,在此图形中
(1)共有多少个三角形?
(2)共有多少个平行四边形?
解(1)每个三角形与从三组平行线中各取一条的取法
是一一对应的,由分步计数原理知共可构成m·n·k个三角形.
(2)每个平行四边形与从两组平行线中各取两条的取法是一一对应的,由分类
和分步计数原理知共可构成C2m C2n+C2n C2k+C2k C2m个平行四边形.
12.设集合M={-3,-2,-1,0,1,2},P(a,b)是坐标平面上的点,a,b∈M.
(1)P可以表示多少个平面上的不同的点?
(2)P可以表示多少个第二象限内的点?
(3)P可以表示多少个不在直线y=x上的点?
解(1)分两步,第一步确定横坐标有6种,第二步确定纵坐标有6种,经检验36个点均不相同,由分步乘法计数原理得N=6×6=36(个).
(2)分两步,第一步确定横坐标有3种,第二步确定纵坐标有2种,根据分步
乘法计数原理得N=3×2=6个.
(3)分两步,第一步确定横坐标有6种,第二步确定纵坐标有5种,根据分步
乘法计数原理得N=6×5=30个.
13.现安排一份5天的工作值班表,每天有一个人值班,共有5个人,每个人都可以值多天班或不值班,但相邻两天不准由同一个人值班,问此值班表共有多少种不同的排法?
解可将星期一、二、三、四、五分给5个人,相邻的数字不分给同一个人.星期一:可分给5人中的任何一人,有5种分法;
星期二:可分给剩余4人中的任何一人,有4种分法;星期三:可分给除去分到星期二的剩余4人中的任何一人,有4种分法;
同理星期四和星期五都有4种不同的分法,由分步计数原理共有5×4×4×4×4=1 280种不同的排法.
14.已知集合A={a1,a2,a3,a4},B={0,1,2,3},f是从A到B的映射.
(1)若B中每一元素都有原象,这样不同的f有多少个?
(2)若B中的元素0必无原象,这样的f有多少个?
(3)若f满足f(a1)+f(a2)+f(a3)+f(a4)=4,这样的f又有多少个?
解(1)显然对应是一一对应的,即为a1找象有4种方法,a2找象有3种方法,a
3
找象有2种方法,a4找象有1种方法,所以不同的f共有4×3×2×1=24(个).
(2)0必无原象,1,2,3有无原象不限,所以为A中每一元素找象时都有3种
方法.所以不同的f共有34=81(个).
(3)分为如下四类:
第一类,A中每一元素都与1对应,有1种方法;
第二类,A中有两个元素对应1,一个元素对应2,另一个元素与0对应,有
C2 4·C1
2
=12种方法;
第三类,A中有两个元素对应2,另两个元素对应0,有C24·C22=6种方法;
第四类,A中有一个元素对应1,一个元素对应3,另两个元素与0对应,有
C1 4·C1
3
=12种方法.
所以不同的f共有1+12+6+12=31(个).。

相关文档
最新文档