九年级数学下学期期中综合测试卷课件 (新版)湘教版

合集下载

九年级数学下册第1章二次函数小结与复习课件(新版)湘教版

九年级数学下册第1章二次函数小结与复习课件(新版)湘教版

和开口方向.【教材P37页】
y
3
1 y 1 x2
3
2
y 1 x 22
4
1
2 y 1 x 22
4
–4 –3 –2 –1 –1
x
1 23 4 5
–2
–3
y 1 x2
–4
3
2. 画出下列二次函数的图象, 并指出图象的对称轴、顶点坐标
y
和开口方向.【教材P37页】
5
3 y2x32 2
4
小结与复习
知识结构
二次函数
二次函数的概念 二次函数的图象与性质 不共线三点确定二次函数的表达式 二次函数与一元二次方程的联系 二次函数的应用
y
y = ax2(a>0)的图象与性质
沿 x 轴翻折
y = -ax2(a>0)的图象与性质
x O
y
y = ax2(a>0)的图象与性质
当h < 0时, 向左平移 |h| 个单位
3
3
y
x
7 2
2
2
4
y
x
7 2
2
2
2 1
–1 –1
–2
x
123456
y 2 x 32 2
3
2. 画出下列二次函数的图象, 并指出图象的对称轴、顶点坐标
和开口方向.【教材P37页】
y
3
y x2 10x 21
5yx27x11 2
1
6yx210x21
x
1 23 4 5 6 78
3
yax2x1
2
将点(0,-1)代入,得 a 1 2
y 1x2x1
2
顶点坐标

九年级数学上册第一学期期中综合测试卷(湘教版 2024年秋)

九年级数学上册第一学期期中综合测试卷(湘教版 2024年秋)

九年级数学上册第一学期期中综合测试卷(湘教版2024年秋)一、选择题(每题3分,共30分)题序12345678910答案1.若关于x 的方程(k -1)x 2+3x -2=0是一元二次方程,则k 的取值范围是()A .k ≠1B .k =1C .k ≠0D .k >12.下列各点在反比例函数y =-3x的图象上的是()A .(1,3)B .(-1,-3)C .(3,-1)D .(-3,-1)3.已知a b =34,则a +b b的值是()A .1B.43C.32D.744.用配方法解方程x 2-10x -1=0时,变形正确的是()A .(x -5)2=26B .(x +5)2=26C .(x -5)2=24D .(x +5)2=245.如图,已知AB ∥CD ∥EF ,AD ∶AF =3∶5,若BE =10,则CE 的长等于()A .4B .5C .6D .7(第5题)(第6题)6.如图,在四边形ABCD 中,已知∠ADC =∠BAC ,那么补充下列条件后不能判定△ADC 和△BAC 相似的是()A .CA 平分∠BCDB .AC 2=BC ·CDC .∠DAC =∠ABCD.AD AB =DC AC7.关于x 的一元二次方程x 2+kx +k -1=0的根的情况,下列说法中正确的是()A .有两个实数根B .有两个不相等的实数根C.有两个相等的实数根D.无实数根8.在同一坐标系中,函数y=-kx和y=kx+2的图象大致是()9.如图,某小区居民休闲娱乐中心是一块长方形(长60米,宽40米)的场地,被3条宽度相同的绿化带分为总面积为1750平方米的活动场所,设绿化带的宽度为x米,由题意可列方程为()(第9题)A.(60-x)(40-x)=1750B.(60-2x)(40-x)=1750C.(60-2x)(40-2x)=1750D.(60-x)(40-2x)=1750 10.如图,已知矩形ABCD与矩形BEFG是位似图形,原点O是位似中心,若点D的坐标为(-2,1),点F的坐标为(-8,2),则S矩形ABCD∶S矩形BEFG等于() A.1∶4B.1∶6C.1∶8D.1∶9(第10题)(第14题)二、填空题(每题3分,共18分)11.若函数y=(m+1)xm2-1是反比例函数,则m=________.12.若点A(-1,m),B(-2,n)在双曲线y=4x上,则m,n的大小关系是m________n. 13.若关于x的一元二次方程(k-2)x2-5x+k2-4=0有一个解为x=0,则k=________.14.三角尺在灯泡O的照射下在墙上形成的影子如图所示,若OA=25cm,AA′=50cm,则这个三角尺的周长与它在墙上的影子的周长的比是__________.15.已知m,n是方程x2+3x-6=0的两根,则(m-2)(n-2)的值为________.16.如图,反比例函数y=-6x在第二象限的图象上有两点A,B,它们的横坐标分别为-1,-3,直线AB与x轴交于点C,则△AOC的面积为________.(第16题)三、解答题(17~20题每题6分,21~23题每题8分,24~25题每题12分,共72分)17.解方程:(1)x(x+3)=7(x+3);(2)x2-4x-7=0.18.已知反比例函数y=2-kx的图象经过点A(3,-2).(1)求k的值;<x2,请(2)若点C(x1,y1),B(x2,y2)均在反比例函数y=2-kx的图象上,且0<x1直接写出y1,y2的大小关系.19.如图,O为原点,B,C两点的坐标分别为(3,-1),(2,1).(1)以O 为位似中心,在y 轴左侧将△OBC 放大2倍,得到△OB ′C ′,请画出图形(B ,C 两点的对应点分别为B ′,C ′);(2)分别写出点B ′,C ′的坐标;(3)已知M (x ,y )为△OBC 内部一点,写出点M 的对应点M ′的坐标.(第19题)20.如图,在平面直角坐标系xOy 中,菱形OABC 的顶点A 在x 轴的正半轴上,反比例函数y =12x(x >0)的图象经过点C (3,m ).(1)求菱形OABC 的周长;(2)求点B 的坐标.(第20题)21.当今社会,“直播带货”已经成为商家的一种新型的促销手段.小亮在直播间销售一种进价为每件10元的日用品,经调查发现,该日用品每天的销售量y(件)与销售单价x(元)满足一次函数关系,部分数据如下表:销售单价x/元202530销售量y/件200150100(1)求y与x之间的函数表达式;(2)该商家每天想获得2160元的利润,又要尽可能地减少库存,应将销售单价定为多少元?22.关于x的一元二次方程x2-(2k-1)x+k2+1=0有两个不相等的实数根x1,x2.(1)求实数k的取值范围;(2)若方程的两实数根x1,x2满足x1+x2=-x1x2,求k的值.23.如图①是一个台球桌,其桌面示意图如图②所示,矩形桌面ABCD中,AD =260cm,AB=130cm,球目前在点E的位置,AE=60cm.如果小丁瞄准BC 边上的点F将球打过去,经过反弹后,球刚好弹到点D的位置,求BF的长.(提示:台球的反弹原理是反射角等于入射角)(第23题)24.阅读以下文字并解答问题:在“测量物体的高度”活动中,某数学兴趣小组的3名同学选择了测量学校里的三棵树的高度,在同一时刻的阳光下,他们分别做了以下工作:(第24题)小芳:测得一根长为1米的竹竿的影长为0.8米,甲树的影长为4.08米(如图①).小华:发现乙树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如图②),墙壁上的影长为1.2米,落在地面上的影长为2.4米.小明:测得丙树落在地面上的影长为2.4米,落在坡面上的影长为3.2米(如图③).身高是1.6米的小明站在坡面上,影子也都落在坡面上,小芳测得他的影长为2米.(1)甲树的高度为________米,乙树的高度为________米;(2)请求出丙树的高度.25.已知△ABC为等边三角形,点D为直线BC上一动点(点D不与B,C重合),以AD为边作菱形ADEF(A,D,E,F按逆时针排列),使∠DAF=60°,直线EF与直线BC交于点H.(1)如图①,当点D在边BC上时,试说明:AD2=DH·AC;(2)如图②,当点D在边BC的延长线上且其他条件不变时,结论AD2=DH·AC是否还成立?若成立,请说明理由;若不成立,请写出AD、DH、AC之间存在的数量关系;(3)如图③,当点D在边CB的延长线上且其他条件不变时,补全图形,并直接写出AD、DH、AC之间存在的数量关系.(第25题)答案一、1.A 2.C 3.D 4.A 5.A 6.B7.A8.D9.B10.A二、11.012.<13.-214.1∶3思路点睛:先求出三角尺与影子的相似比,再根据相似三角形周长的比等于相似比解答即可.15.416.12点拨:因为反比例函数y=-6x在第二象限的图象上有两点A,B,它们的横坐标分别为-1,-3,所以易得A(-1,6),B(-3,2).设直线AB的表达式为y=kx+b k+b=6,3k+b=2,=2,=8,所以直线AB的表达式为y=2x+8,令y=0,则x=-4,所以CO=4,所以△AOC的面积为12×6×4=12.三、17.解:(1)移项,得x(x+3)-7(x+3)=0,所以(x+3)(x-7)=0,所以x+3=0或x-7=0,解得x1=-3,x2=7.(2)移项,得x2-4x=7,配方,得x2-4x+4=7+4,所以(x-2)2=11,所以x-2=±11,解得x1=11+2,x2=-11+2.18.解:(1)将点A(3,-2)的坐标代入y=2-kx,得-2=2-k3,解得k=8.(2)y1<y2.(第19题)19.解:(1)如图,△OB′C′即为所求.(2)B′(-6,2),C′(-4,-2).(3)点M′的坐标为(-2x,-2y).20.解:(1)因为反比例函数y=12x(x>0)的图象经过点C(3,m),所以m=4,所以C(3,4).作CD⊥x轴于点D,所以OD=3,CD=4,所以由勾股定理,得OC=OD2+CD2=5.所以菱形OABC的周长是4×5=20.(2)作BE⊥x轴于点E,因为四边形OABC是菱形,所以BC=OC=5,所以OE=OD+BC=3+5=8.因为BC∥OA,所以BE=CD=4,所以B(8,4).21.解:(1)根据题意可设y与x之间的函数表达式为y=kx+b,把(20,200),(25,150)代入,20k+b=200,25k+b=150,k=-10,b=400,故y与x之间的函数表达式为y=-10x+400.(2)根据题意可得(-10x+400)(x-10)=2160,整理得x2-50x+616=0,解得x1=28,x2=22.因为要减少库存,所以取x=22.答:应将销售单价定为22元.22.解:(1)根据题意,得Δ=[-(2k-1)]2-4×1×(k2+1)=-4k-3>0,解得k<-34.(2)因为x1+x2=2k-1,x1x2=k2+1,x1+x2=-x1x2,所以2k-1=-(k2+1),整理得k2+2k=0.解得k1=0,k2=-2,因为k<-34,所以k=-2.23.解:∵四边形ABCD 为矩形,∴∠EBF =∠FCD =90°,AD =BC =260cm ,AB =CD =130cm.过点F 作FG ⊥BC ,如图,易知∠EFG =∠DFG ,∴∠EFB =∠DFC ,∴△BEF ∽△CDF ,∴BE CD =BF CF.∵AE =60cm ,∴BE =AB -AE =70cm ,∴70130=BF 260-BF,解得BF =91cm.即BF 的长是91cm.(第23题)(第24题)24.解:(1)5.1;4.2(2)如图,假设AB 是丙树,BF 为丙树落在地面上的影长,FE 为丙树落在坡面上的影长,CD 为小明,CE 为小明落在坡面上的影长,则BF =2.4米,FE =3.2米,CD =1.6米,CE =2米.延长BF 交AE 于点H ,作FG ⊥BF ,交AE 于点G ,由小芳的测量方法易知FG FH =10.8=54.∵易知CD ∥FG ,∴△CDE ∽△FGE ,∴CD FG =CE FE ,∴1.6FG =23.2,∴FG =2.56米.∴FH =2.048米.∵易知GF ∥AB ,∴△FGH ∽△BAH ,∴FG BA =FH BH ,∴2.56BA = 2.0482.4+2.048,∴BA =5.56米,故丙树的高度为5.56米.25.解:(1)∵四边形ADEF 是菱形,∠DAF =60°,∴AD ∥EF ,∠DAF =∠E =60°,AD =DE ,∴∠ADC =∠DHE .∵△ABC 是等边三角形,∴∠ACD =60°,∴∠ACD =∠E ,∴△ACD ∽△DEH ,∴AD DH =AC DE ,即AD DH =ACAD,∴AD 2=DH ·AC .(2)成立.理由如下:∵四边形ADEF 是菱形,∠DAF =60°,∴AD ∥EF ,∠DAF =∠DEF =60°,AD =DE ,∴∠ADC =∠DHE ,∠DEH =120°.∵△ABC 是等边三角形,∴∠ACB =60°,11∴∠ACD =120°,∴∠ACD =∠DEH,(第25题)∴△ACD ∽△DEH ,∴AD DH =AC DE ,即AD DH =AC AD,则AD 2=DH ·AC .(3)补全图形如图,数量关系为AD 2=DH ·AC .。

湘教版九年级下册数学精品教学课件 第3章 投影与视图 小结与复习 (2)

湘教版九年级下册数学精品教学课件 第3章 投影与视图 小结与复习 (2)

例8 由一些大小相同的小正方体组成的几何体 三视图如图所示,那么,组成这个几何体的小正方体 的个数是( )
A.7
B.6
C.5
D.4
【解析】C 由主视图和俯视图可知,俯视图右边 两个方格的位置上各放置了一个正方体,所以在这两 个方格里分别填入数字 1 (如图);
由主视图和俯视图又知,俯视图左边一列上两个方
MO OP
即 MA 1.6 , 解得 MA = 5. 20+MA 8
同理,由 △NBD ∽ △NOP,
可得 NB = 1.5.
所以小明的身影变短了 5-1.5 = 3.5 (米).
考点三 圆锥的相关计算 例3 圆锥的侧面积为 6π cm2,底面圆的半径为 2 cm, 则这个圆锥的母线长为___3____cm.
1. 如图,小明与同学合作利用太阳光测量旗杆的高度, 身高 1.6 m 的小明落在地面上的影长为 BC = 2.4 m.
(1) 请你在图中画出旗杆在同一时刻阳光照射下落在地 面上的影子 EG;
(2) 若小明测得此刻旗杆
落在地面的影长 EG = 16 m,
请求出旗杆 DE 的高度.
解: (1) 影子 EG 如图所示. (2) ∵ DG∥AC, ∴∠G =∠C. ∴ Rt△ABC ∽ △Rt△DGE. ∴ AB BC ,即 1.6 2.4, DE EG DE 16
发出的,像这样的光线所形成的投影称为中心投影.
4. 平行投影与中心投影的区别与联系:
平行投影 中心投影
区别
投影线互相平行, 形成平行投影
投影线发自一点, 形成中心投影
联系
都是物体在光线的 照射下,在某个平 面内形成的影子. (即都是投影)
正投影
(1) 概念:投影线垂直于投影面产生的投影叫做正投影. (2) 性质:当物体的某个面平行于投影面时,这个面的

湖南省娄底市双峰县2024-2025学年九年级上学期11月期中数学试题(含答案)

湖南省娄底市双峰县2024-2025学年九年级上学期11月期中数学试题(含答案)

双峰县2024年下学期九年级期中考试数学试卷时量:120分钟 满分:120分考生注意:1.本学科试卷分试题和答题卡两部分,满分120分。

2.请在答题卡上作答,答在试卷上无效。

一.选择题(本题共10小题,每小题3分,共30分)1.下列方程中是一元二次方程的是( )A .B .C .D .2.若反比例函数的图象上有两点,则与的大小关系( )A .B .C .D .无法确定3.如果(其中),那么下列式子中不正确的是( )A .B .C .D .4.方程的解是( )A .B .C .D .5.关于反比例函数,下列说法中错误的是( )A .时,y 随x 的增大而减少B .当时,C .它的图像位于二、四象限D .当时,有最小值6.如图,若直线,且,则( )20ax bx c ++=2211x x +=()()121x x -+=223250x xy y --=1y x =()1213,,,2A y B y ⎫⎛-- ⎪⎝⎭1y 2y 12y y >12y y <12y y =a c b d=0,0b d >>a b c d b d ++=a b c d b d --=a c c b d d +=+a d b c=()2x x x -=3x =0x =120,3x x ==121,3x x ==3y x=0x >13x <<13y <<1x ≤-y 3-123l l l ∥∥:2:3,15DE EF AC ==BC =A .5B .6C .9D .107.新能源汽车已逐渐成为人们喜爱的交通工具,据某品牌新能源汽车经销商7月份至9月份统计,该品牌新能源汽车7月份销售1000辆,9月份销售1690辆.设月平均增长率为,根据题意,下列方程正确的是( )A .B .C .D .8.若是关于的方程的一个根,则的值是( )A .2022B .2026C .2020D .20199.验光师检测发现近视眼镜的度数(度)与镜片焦距(米)成反比例,关于的函数图象如图所示.经过一段时间的娇正治疗后,小雪的镜片焦距由0.25米调整到0.5米,则近视眼镜的度数减少了( )度.A .150B .200C .250D .30010.在古希腊时期,有一天毕达哥拉斯走在街上,在经过铁匠铺前他听到铁匠打铁的声音非常好听,于是驻足倾听,他发现铁匠打铁节奏很有规律,这个声音的比例被毕达哥拉斯用数学的方式表达出来,后来人们将这个数称为黄金分割数.设,记,,,,则的值为( )x 21690(1)1000x -=21000(1)1690x +=()1000121690x +=()1000121690x x ++=a x 2310x x --=2202462a a +-y x y x a b ==11111S a b =+++2221111S a b =+++3331111S a b =+++ 100100100111a 1b S =+++123100S S S S ++++A .B .C .100D .505二.填空题(本题共8小题,每小题3分,共24分)11.如果,则_________.12.若是一元二次方程的两个根,则_________.13.若关于的一元二次方程有两个实数根,则实数的取值范围是_________.14.已知函数是反比例函数,则的值为_________.15.一个长方体物体的一顶点所在三个面的面积比是,如果分别按、面朝上将此物体放在水平地面上,地面所受的压力产生的压强分别为、(压强的计算公式为),则_________.16.如图所示的两个四边形相似,则的度数是_________。

2024—2025学年 湘教版 九年级上册数学期中考试模拟试卷(含答案)

2024—2025学年 湘教版 九年级上册数学期中考试模拟试卷(含答案)

模拟卷【湘教版版】2024—2025学年秋季九年级上册数学期中考试模拟试卷注意事项:1.本试卷分第I卷(选择题)和第II卷(非选择题)两部分。

笞卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第I卷时,选出每小题答案后,把答案填写在答题卡上对应题目的位置,填空题填写在答题卡相应的位置写在本试卷上无效。

3.回答第II卷时,将答案写在第II卷答题卡上。

4.考试结束后,将本试卷和答题卡一并交回。

第I卷一、选择题1.点(﹣1,2)关于原点的对称点坐标是( )A.(﹣1,﹣2)B.(1,﹣2)C.(1,2)D.(2,﹣1)2.抛物线y=﹣x2+4x﹣4与坐标轴的交点个数为( )A.0B.1C.2D.33.下列二次根式中,和是同类二次根式的是( )A.B.C.D.4.若,则等于( )A.B.C.4D.5.已知a,b,c满足a+b+c=0,4a+c=2b,则二次函数y=ax2+bx+c(a≠0)的图象的对称轴为( )A.直线x=1B.直线x=﹣1C.直线x=D.直线x=﹣6.如图,在△AOC中,OA=3cm,OC=1cm,将△AOC绕点O顺时针旋转90°后得到△BOD ,则AC边在旋转过程中所扫过的图形的面积为( )cm2.A.B.2πC.πD.π7.若点A(﹣4,y1)、B(﹣2,y2)、C(2,y3)都在反比例函数y=﹣的图象上,则y1、y2、y3的大小关系是( )A.y1>y2>y3B.y3>y2>y1C.y2>y1>y3D.y1>y3>y28.如图,在平行四边形ABCD中AC,BD相交于点O,点E是OA的中点,连接BE并延长AD于点F,已知△AEF的面积=1,则平行四边形ABCD的面积是( )A.24B.18C.12D.99.如图,矩形ABCD中,对角线AC的垂直平分线EF分别交BC,AD于点E,F,若BE=3,AF=5,则AC的长为( )A.4B.4C.10D.810.《九章算术》勾股章有一问题,其意思是:现有一竖立着的木柱,在木柱上端系有绳索,绳索从木柱上端顺木柱下垂后,堆在地面的部分尚有3尺,牵着绳索退行,在离木柱根部8尺处时绳索用尽,请问绳索有多长?若设绳索长度为x尺,根据题意,可列方程为( )A.82+x2=(x﹣3)2B.82+(x+3)2=x2 C.82+(x﹣3)2=x2D.x2+(x﹣3)2=8211.若顺次连接四边形ABCD各边中点所得的四边形是矩形,则下列结论中正确的是( )A.AB∥CD B.AB⊥BC C.AC⊥BD D.AC=BD12xOyA与原点O轴的正半轴上,对角线AC、BD交于点M,点D、M恰好都在反比例函数y=(x>0)的图象上,则的值为( )A.B.C.2D.二、填空题13.16的平方根是 .14.已知圆锥的底面半径长为5,侧面展开后得到一个半圆,则该圆锥的母线长为________15.已知抛物线y=x2-x-2与x轴的一个交点为(m,0),则代数式m2-m+2025的值为.16.如图,在□ABCD中,∠D=100°,∠DAB的平分线AE交DC于点E,连接BE.若AE=AB,则∠EBC的度数为___________17.如图,⊙O的直径AB垂直于弦CD,垂足为E. 如果,AC=4,那么CD的长为.18.如图,点P(﹣2a,a)是反比例函数y=(k<0)与⊙O的一个交点,图中阴影部分的面积为5π,则反比例函数的解析式︒=∠60B第II 卷模拟卷【湘教版】2024—2025学年秋季九年级上册数学期中考试模拟试卷姓名:____________ 学号:_____________座位号:___________一、选择题题号123456789101112答案二、填空题13、_______ 14、______15、_______ 16、______17、_______ 18、______三、解答题19.计算:20.先化简,再求值:(x+2+)÷,其中x=2.兴趣班频数频率()()1202531131532-⎪⎭⎫ ⎝⎛--+-++-21.某市少年宫为小学生开设了绘画,音乐、舞蹈和跆拳道四类兴趣班.为了解学生对这四类兴趣班的喜爱情况,对学生进行了随机问卷调查(问卷调查表如图所示),将调查结果整理后绘制了一幅不完整的统计表.请你根据统计表中提供的信息回答下列问题:(1)统计表中的a = ,b = ;(2)根据调查结果,请你估计该市2000名小学生中最喜欢“绘画”兴趣班的人数;(3)王姀和李婴选择参加兴趣班,若她们每人从A 、B 、C 、D 四类兴趣班中随机选22.如图,海上观察哨所B 位于观察哨所A 正北方向,距离为25海里.在某时刻,哨所A 与哨所B 同时发现一走私船,其位置C 位于哨所A 北偏东53°的方向上,位于哨所B 南偏东37°的方向上.(1)求观察哨所A 与走私船所在的位置C 的距离;(2)若观察哨所A 发现走私船从C 处以16海里/小时的速度向正东方向逃窜,并立即派缉私艇沿北偏东76°的方向前去拦截,求缉私艇的速度为多少时,恰好在D 处成功拦截.(结果保留根号)(参考数据:sin37°=cos53°≈,cos37°=sin53°≈,tan37°≈,tan76°≈4)A0.35B 180.30C 15bD 6合计a123.已知AB是⊙O的直径,AM和BN是⊙O的两条切线,DC与⊙O相切于点E,分别交AM 、BN于D、C两点.(1)如图1,求证:AB2=4AD•BC;(2)如图2,连接OE并延长交AM于点F,连接CF.若∠ADE=2∠OFC,AD=1,求图中阴影部分的面积.24.在矩形ABCD中,AE⊥BD于点E,点P是边AD上一点.(1)若BP平分∠ABD,交AE于点G,PF⊥BD于点F,如图①,证明四边形AGFP是菱形;(2)若PE⊥EC,如图②,求证:AE•AB=DE•AP;(3)在(2)的条件下,若AB=1,BC=2,求AP的长.参考答案一、选择题1-6.BBBCDB 7-12.CAACCA 二、填空题13. 14.10 15. 16. 17. 18.三、解答题19.20.21.解:(1)a =18÷0.3=60,b =15÷60=0.25,故答案为:60、0.25;(2)估计该市2000名小学生中最喜欢“绘画”兴趣班的人数2000×0.35=700(人);(3)根据题意画树状图如下:共有16种等可能的结果,其中两人恰好选中同一类的结果有4种,∴两人恰好选中同一类的概率为=.22.解:(1)在△ABC 中,∠ACB =180°﹣∠B ﹣∠BAC =180°﹣37°﹣53°=90°.在Rt △ABC 中,sin B =,∴AC =AB •sin37°=25×=15(海里).答:观察哨所A 与走私船所在的位置C 的距离为15海里;(2)过点C 作CM ⊥AB 于点M ,由题意易知,D 、C 、M 在一条直线上.在Rt △AMC 中,CM =AC •sin ∠CAM =15×=12,AM =AC •cos ∠CAM =15×=9.在Rt △AMD 中,tan ∠DAM =,∴DM =AM •tan76°=9×4=36,∴AD ===9,4±20210304xy 8-=132--32-4CD=DM﹣CM=36﹣12=24.设缉私艇的速度为x海里/小时,则有=,解得x=6.经检验,x=6是原方程的解.答:当缉私艇的速度为6海里/小时时,恰好在D处成功拦截.23.(1)证明:连接OC、OD,如图1所示:∵AM和BN是它的两条切线,∴AM⊥AB,BN⊥AB,∴AM∥BN,∴∠ADE+∠BCE=180°∵DC切⊙O于E,∴∠ODE=∠ADE,∠OCE=∠BCE,∴∠ODE+∠OCE=90°,∴∠DOC=90°,∴∠AOD+∠COB=90°,∵∠AOD+∠ADO=90°,∴∠AOD=∠OCB,∵∠OAD=∠OBC=90°,∴△AOD∽△BCO,∴=,∴OA2=AD•BC,∴(AB)2=AD•BC,∴AB2=4AD•BC;(2)解:连接OD,OC,如图2所示:∵∠ADE=2∠OFC,∴∠ADO=∠OFC,∵∠ADO=∠BOC,∠BOC=∠FOC,∴∠OFC=∠FOC,∴CF=OC,∴CD垂直平分OF,在△COD和△CFD中,,∴△COD≌△CFD(SSS),∴∠CDO=∠CDF,∵∠ODA+∠CDO+∠CDF=180°,∴∠ODA=60°=∠BOC,∴∠BOE=120°,在Rt△DAO,AD=OA,Rt△BOC中,BC=OB,∴AD:BC=1:3,∵AD=1,∴BC=3,OB=,∴图中阴影部分的面积=2S△OBC﹣S扇形OBE=2×××3﹣=3﹣π.24.(1)证明:如图①中,∵四边形ABCD是矩形,∴∠BAD=90°,∵AE⊥BD,∴∠BAE+∠EAD=90°,∠EAD+∠ADE=90°,∴∠BAE=∠ADE,∵∠AGP=∠BAG+∠ABG,∠APD=∠ADE+∠PBD,∠ABG=∠PBD,∴∠AGP=∠APG,∴AP=AG,∵PA⊥AB,PF⊥BD,BP平分∠ABD,∴PA=PF,∴PF=AG,∵AE⊥BD,PF⊥BD,∴PF∥AG,∴四边形AGFP是平行四边形,∵PA=PF,∴四边形AGFP是菱形.(2)证明:如图②中,∵AE⊥BD,PE⊥EC,∴∠AED=∠PEC=90°,∴∠AEP=∠DEC,∵∠EAD+∠ADE=90°,∠ADE+∠CDE=90°,∴∠EAP=∠EDC,∴△AEP∽△DEC,∴=,∵AB=CD,∴AE•AB=DE•AP;(3)解:∵四边形ABCD是矩形,∴BC=AD=2,∠BAD=90°,∴BD==,∵AE⊥BD,∴S△ABD=•BD•AE=•AB•AD,∴AE=,∴DE==,∵AE•AB=DE•AP;∴AP==.。

29届湘教版九级数学下册课件期末综合测试卷共43张PPT[可修改版ppt]

29届湘教版九级数学下册课件期末综合测试卷共43张PPT[可修改版ppt]

A
B
C
D
7. (2018·南通)—个空间几何体的主视图和左视图都
是边长为 2 cm 的正三角形,俯视图是一个圆,那么这个
几何体的表面积是( B )
A.32π cm2
B.3π cm2
C.52π cm2
D.5π cm2
8. 如图,在⊙O 的内接四边形 ABCD 中,AB 是直 径,∠BCD=120°,过 D 点的切线 PD 与直线 AB 交于 点 P,则∠ADP 的度数为( C )
A.40° C.30°
B.35° D.45°
9. 如图,AB 是⊙O 的直径,弦 CD⊥AB,∠CDB =30°,CD=2 3,则阴影部分图形的面积为( D )
A.4π C.π
B.2π D.23π
10. (2018·恩施)抛物线 y=ax2+bx+c 的对称轴为直 线 x=-1,,部分图象如图所示,下列判断中:①abc>0; ②b2-4ac>0;③9a-3b+c=0;④若点(-0.5,y1),(- 2,y2)均在抛物线上,则 y1>y2;⑤5a-2b+c<0.
(1)求抛物线的解析式和顶点坐标; (2)请你写出一种平移的方法,使平移后抛物线的顶 点落在直线 y=-x 上,并写出平移后抛物线的解析式.
解:(1)抛物线解析式为 y=-(x-1)(x-3), 即 y=-x2+4x-3, 顶点坐标(2,1); (2)如:向下平移 3 个单位,得到的抛物线的解析式 为 y=-(x-2)2-2,平移后抛物线的顶点为(2,-2)落 在直线 y=-x 上.
其中正确的个数有( B )
A.2
B.3Βιβλιοθήκη C.4D.5【解析】∵抛物线对称轴 x=-1,经过(1,0),∴
-2ba=-1,a+b+c=0,∴b=2a,c=-3a,∵a>0,

初中数学湘教版测试卷

初中数学湘教版测试卷

一、选择题(每题3分,共30分)1. 下列数中,不是有理数的是()A. -2.5B. 3/4C. √2D. -1/32. 下列方程中,解为x=2的是()A. 2x - 1 = 3B. 2x + 1 = 3C. 2x - 1 = 1D. 2x + 1 = 13. 已知三角形的三边长分别为3、4、5,则这个三角形是()A. 直角三角形B. 等腰三角形C. 等边三角形D. 梯形4. 下列函数中,y是x的一次函数的是()A. y = x^2 + 1B. y = 2x + 3C. y = 3/xD. y = √x5. 已知等差数列的首项为2,公差为3,则第10项为()A. 25B. 28C. 31D. 346. 下列图形中,不是平行四边形的是()A. 矩形B. 菱形C. 平行四边形D. 梯形7. 已知圆的半径为r,则圆的面积为()A. πr^2B. 2πrC. πrD. 2π8. 下列命题中,正确的是()A. 所有的平行四边形都是矩形B. 所有的矩形都是平行四边形C. 所有的等腰三角形都是等边三角形D. 所有的等边三角形都是等腰三角形9. 已知正方形的对角线长为10cm,则正方形的边长为()A. 5cmB. 10cmC. 15cmD. 20cm10. 下列函数中,y是x的反比例函数的是()A. y = x + 1B. y = 2x + 3C. y = 3/xD. y = √x二、填空题(每题5分,共25分)11. 若a > b,则a - b的符号为______。

12. 若x^2 = 9,则x的值为______。

13. 等差数列的通项公式为______。

14. 正方形的面积公式为______。

15. 圆的周长公式为______。

三、解答题(每题10分,共30分)16. 解方程:3x - 5 = 2x + 1。

17. 已知等差数列的首项为3,公差为2,求第10项。

18. 已知一个等腰三角形的底边长为8cm,腰长为10cm,求这个三角形的面积。

九年级数学期中模拟卷(考试版A4)湘教版九上第一至第三章(反比例函数、一元二次方程、图形的相似)

九年级数学期中模拟卷(考试版A4)湘教版九上第一至第三章(反比例函数、一元二次方程、图形的相似)

2024-2025学年九年级数学上学期期中模拟卷(湖南省专用)(考试时间:120分钟 试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.测试范围:湘教版九年级上册第一章~第三章(反比例函数、一元二次方程、图形的相似)5.难度系数:0.75。

一、选择题(本题共10小题,每小题3分,共30分)1.下列函数中,y 是x 的反比例函数的是()A .5y x =B .21y x =-C .2xy =D .11y x =-+2.一元二次方程212302x x --=的一次项系数是( )A .2B .12C .12-D .-33.下列各组线段的长度成比例的是( )A .6cm 、2cm 、1cm 、4cmB .4cm 、5cm 、6cm 、7cmC .3cm 、4cm 、5cm 、6cmD .6cm 、3cm 、8cm 、4cm4.已知点()()121,,2,A y B y --在函数6y x=-的图象上,则12,y y 的大小关系是( )A .12y y <B .12y y >C .12y y =D .不能确定5.如图,在ABC V 中,DE BC ∥,23AD BD =,若10BC =,则DE 等于( )A .5B .4C .2.5D .26.已知a ,b 为一元二次方程2290x x +-=的两个根,那么2a a b +-的值( )A .0B .11C .7D .7-7.如图,小正方形的边长为1,则下列图中的三角形与ABC V 相似的是( )A .B .C .D .8.关于x 的函数y kx k =-和(0)k y k x=¹在同一坐标系中的图象大致是( )A .B .C .D .9.如图,某小区计划在一个长 80米,宽 36米的长方形场地 ABCD 上,修建三条同样宽的道路,使其中两条与 AB 平行,另一条与 AD 平行,其余部分种草,若使每块草坪的面积 都为 260平方米,求道路的宽度.设道路宽度为 x 米,则根据题意可列方程为( )A .(80-2x )(36-x )=260×6B .36×80-2×36x -80x=260×6C .(36-2x )(80-x )=260D .(80-2x )(36-x )=26010.如图,在Rt ABC V 中,90C Ð=°,10AB =,6BC =.点F 是边BC 上一动点,过点F 作//FD AB 交AC于点D ,E 为线段DF 的中点,当BE 平分ABC Ð时,AD 的长度为( )A .3011B .4011C .4811D .6011二、填空题(本题共8小题,每小题3分,共24分)11.已知函数25(1)n y n x -=+是反比例函数,且图象位于第一、三象限,则n =__________.12.已知x 2+6x =﹣1可以配成(x +p )2=q 的形式,则q =__________.13.设23a b =,那么2a b b+=__________.14.如图,在ABC V 中,5AB =,D ,E 分别是边AC 和AB 上的点,且AED C Ð=Ð,若252AD BC ×=,则DE 的长为__________.15.如图,点M 是反比例函数()0a y a x=¹的图象上一点,过M 点作x 轴、y 轴的平行线,若5S =阴影,则此反比例函数解析式为__________.16.某药品原价每盒25元,为了响应国家解决老百姓看病贵的号召,经过连续两次降价,现在售价每盒16元,则该药品平均每次降价的百分率是__________.17.若关于x 的方程()21220k x x -+-=有实数根,则k 的取值范围是__________.18.如图,P 为平行四边形ABCD 边AD 上一点,E 、F 分别为PB 、PC 的中点,V PEF 、V PDC 、V PAB的面积分别为S 、S 1、S 2.若S=2,则S 1+S 2=__________.三、解答题(本题共6小题,共66分,其中第19、20题各6分,第21、22题各8分,23、24题各9分,25、26题各10分)19.(6分)解方程∶(1)22(3)8x -=; (2)24630x x --=.20.(6分)已知352x y z ==,且5318x z -=,求234z y x -+的值.21.(8分)如图,一次函数1y ax b =+的图象与反比例函数2k y x=的图象交于点()1,6A 和点(),2B n -.(1)求反比例函数表达式.(2)P 为x 轴上的一点,若POB V 面积为16,求P 点坐标.22.(8分)已知关于x 的一元二次方程()2310x m x m ++++=.(1)求证:无论m 取何值时,原方程总有两个不相等的实数根;(2)若1x ,2x 是原方程的两根,且22124x x +=,求m 的值.23.(9分)如图,等边三角形ABC 的边长为3,点P 为BC 边上一点,且1BP =,点D 为AC 边上一点,若60APD Ð=°,求CD 的长.24.(9分)因粤港澳大湾区和中国特色社会主义先行示范区的双重利好,深圳已成为国内外游客最喜欢的旅游目的地城市之一,深圳著名旅游“网红打卡地”东部华侨城景区在2020年春节长假期间,共接待游客达20万人次,预计在2022年春节长假期间,将接待游客达28.8万人次.(1)求东部华侨城景区2020至2022年春节长假期间接待游客人次的平均增长率.(2)东部华侨城景区一奶茶店销售一款奶茶,每杯成本价为6元,根据销售经验,在旅游旺季,若每杯定价25元,则平均每天可销售300杯,若每杯价格降低1元,则平均每天可多销售30杯,2022年春节期间,店家决定进行降价促销活动,则当每杯售价定为多少元时,既能让顾客获得最大优惠,又可让店家在此款奶茶实现平均每天6300元的利润额?25.(10分)如图,在ABC V 中,90B Ð=°,P ,Q 两点分别从点A ,点B 同时出发,其中点P 从点A 开始沿AB 边向1cm/s 的速度移动,点Q 从B 点开始沿BC 边向点C 以2cm/s 的速度移动(当其中一点到达终点时,两点同时停止运动).设两点运动时间为t .当t 为何值时,PBQ V 的面积等于28cm ?PBQ V 的面积能达到210cm 吗?试说明理由.26.(10分)如图1,折叠矩形纸片ABCD,具体操作:①点E为AD边上一点(不与点A,D重合),把△ABE沿BE所在的直线折叠,A点的对称点为F点;②过点E对折∠DEF,折痕EG所在的直线交DC 于点G,D点的对称点为H点.(1)求证:△ABE∽△DEG.(2)若AB=3,BC=5,①点E在移动的过程中,求DG的最大值;②如图2,若点C恰在直线EF上,连接DH,求线段DH的长.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档