PID参数调节方法

合集下载

PID参数如何设定调节讲解

PID参数如何设定调节讲解

PID参数如何设定调节讲解PID(Proportional Integral Derivative)是一种常用的控制算法,广泛应用于自动化系统和过程控制中。

PID控制器根据被控对象的误差信号进行调整,通过调节比例、积分和微分这三个参数,可以有效地控制系统的稳定性和响应速度。

下面将详细讲解如何设置PID参数进行调节。

1. 比例参数(Proportional Gain,P):比例参数决定了输出调节量与误差信号之间的关系。

增大比例参数的值可以加快系统的响应速度,但过大的值会导致系统不稳定和超调。

通常的经验法则是,开始时可以设置一个较小的比例增益,然后逐渐增大直到系统开始出现振荡或超调为止。

根据实际情况,逐步调整比例参数,使系统具有准确的控制。

2. 积分参数(Integral Gain,I):积分参数用于处理系统的静态误差。

当系统的零偏较大或变化较慢时,可以适度增大积分参数,以减小系统的稳态误差。

但过大的积分参数会导致系统不稳定。

可以采用试验法来确定合适的积分参数:首先将比例和微分参数设置为零,然后逐渐增大积分参数直到系统开始超调。

然后逐渐减小积分参数直到系统达到最佳控制性能。

3. 微分参数(Derivative Gain,D):微分参数用于补偿系统的动态误差,主要用于抑制系统响应过程中出现的振荡。

过大或过小的微分参数都会导致系统不稳定。

微分参数的选择需要结合系统响应的快慢来进行调整。

通常情况下,较慢的系统需要较大的微分参数,而较快的系统需要较小的微分参数。

可以通过试验法或经验法来调整微分参数,以便使系统的响应与期望的响应曲线相适应。

4.调节顺序和迭代调节:在调节PID参数时,一般的建议是先从比例参数开始调节,然后再逐步加入积分和微分参数。

调节过程中应根据系统的实际情况进行迭代调节,通过反馈信息和实时数据不断调整参数,使系统的控制性能达到最佳状态。

在迭代调节过程中,可以采用逐步调整法,或者借助自动调节器进行优化。

PID参数的调整方法

PID参数的调整方法

PID参数的调整方法1. 经验调整法(Trial and Error Method):这是一种最简单、最常用的方法。

通过观察系统的响应特性,手动调整PID参数,直到满足要求的控制效果。

这种方法需要经验丰富的控制工程师,并且时间消耗较大。

2. Ziegler-Nichols 法则:该方法是由Ziegler和Nichols于1942年提出的,是一种经典的自整定方法。

该方法通过施加阶跃信号,观察系统的响应曲线,根据曲线的一些特性来确定PID参数。

包括:增益临界法(P-临界)、重频临界法(PI-临界)和周期振荡法(PID-临界)等三种方法。

3. 闭环试校法(Closed Loop Tuning Method):这是一种能够在线调整PID参数的方法。

通过在稳态和非稳态条件下,使系统自动识别其自身的响应特性,然后根据系统的性能指标进行PID参数调整。

常见的闭环试校方法有:积分分离法、自适应校正法、计算机仿真法等。

4. 频域设计法(Frequency Domain Design Method):这种方法主要是基于系统的频域特性进行PID参数的调整。

通过分析系统的频响曲线、相位裕度、增益裕度等参数,确定适合的PID参数。

常见的频域设计方法有:Nyquist曲线法、根轨迹法等。

值得注意的是,PID参数调整并不是一种一劳永逸的方法。

不同的系统、不同的控制目标需要不同的参数调整方法,而且系统的参数也可能随时间发生变化。

因此,需要控制工程师在实际的应用中,结合实际情况选择合适的PID参数调整方法,并根据系统的变化进行适时的参数调整,以保证系统的稳定性和性能。

PID调节参数及方法

PID调节参数及方法

PID调节参数及方法PID控制是一种常用的自动控制方法,它可以根据系统的实时反馈信息,即误差信号,来调整控制器的输出信号,从而实现系统的稳定性和性能优化。

PID调节参数是PID控制器中的比例系数、积分系数和微分系数。

调节这些参数可以达到所需的动态性能和稳态精度。

下面将介绍PID调节参数及常用的调节方法。

1.比例系数(Kp):比例系数用来调节控制器输出信号与误差信号的线性关系。

增大比例系数可以加快系统的响应速度,但可能会引起系统的超调和不稳定。

减小比例系数可以提高稳定性,但可能会导致系统的响应速度变慢。

调节比例系数的方法一般有经验法和试探法。

经验法:根据经验将比例系数初值设为1,然后逐渐增大或减小,观察系统的响应情况。

当增大比例系数时,如果系统的超调量明显增加,则应适当减小比例系数;相反,如果系统的超调量过小,则应适当增大比例系数。

反复调节,直到得到满意的响应。

试探法:根据系统的特性进行试探调节。

根据系统的频率响应曲线或步跃响应曲线,选择适当的比例系数初值,然后逐渐增大或减小,观察系统的响应。

如果系统的过冲量大,则应适当减小比例系数;如果系统的响应速度慢,则应适当增大比例系数。

反复试探调节,直到得到满意的响应。

2.积分系数(Ki):积分系数用来补偿系统的静差,增加系统的稳态精度。

增大积分系数可以减小系统的稳态误差,但可能会引起系统的震荡和不稳定。

减小积分系数可以提高稳定性,但可能会导致系统的静差增大。

调节积分系数的方法一般有试探法和校正法。

试探法:将积分系数初值设为0,然后逐渐增大,观察系统的响应。

如果系统的震荡明显增强,则应适当减小积分系数;相反,如果系统的响应速度慢,则应适当增大积分系数。

反复试探调节,直到得到满意的响应。

校正法:根据系统的静态特性进行校正调节。

首先将比例系数设为一个适当的值,然后减小积分系数,直到系统的静差满足要求。

这种方法通常用于对稳态精度要求较高的系统。

3.微分系数(Kd):微分系数用来补偿系统的过冲和速度变化,增加系统的相对稳定性。

PID调节方法

PID调节方法

PID调节方法PID调节是一种广泛应用于工业过程控制的方法,通过测量控制系统的输出与期望值之间的误差,并根据误差的大小来调整控制系统的输入,以使输出与期望值尽可能一致。

PID调节的主要目标是快速、准确地调整系统的响应速度、稳定性和稳态精度。

下面将详细介绍PID调节的原理、调参方法和一些常见的应用。

1.PID调节的原理\[Output = K_p \cdot Error + K_i \cdot \int{Error}\ dt + K_d \cdot \dfrac{d(Error)}{dt}\]其中,\(K_p\)、\(K_i\)和\(K_d\)分别是比例、积分和微分参数。

比例项(P)通过根据误差的大小来调整输出,具有快速的响应速度和较小的超调。

积分项(I)通过累积误差来减小稳态误差,具有消除静差的作用。

微分项(D)通过对误差变化率的控制,可以避免输出的过度波动。

通过调整三个参数的大小和比例,可以在控制系统中实现适当的响应速度、稳定性和稳态精度。

2.PID调节的调参方法调参是PID调节的关键步骤,合适的参数设置可以使系统达到最佳的控制效果。

常见的PID调参方法有经验法、试验法和优化算法。

(1)经验法:根据经验公式设置PID参数。

这种方法基于经验,适用于一些简单的控制系统。

常见的经验法有经验公式法、手动调参法和Ziegler-Nichols法。

其中,经验公式法是根据控制对象的性质和要求选择合适的参数;手动调参法是通过观察系统响应和对参数的手动调整来获得合适的参数;Ziegler-Nichols法是一种经验调参法,通过对系统进行临界增益试验来确定PID参数。

(2)试验法:基于试验和观察系统响应的方法。

通过改变PID参数的值,观察系统的响应和性能指标,如超调量、调整时间和稳态误差等,来判断参数的合适性。

这种方法需要多次试验调整,比较耗时。

(3)优化算法:使用数学方法和计算机算法来最佳的PID参数。

常见的优化算法有基于遗传算法、粒子群算法和模拟退火算法等。

pid参数设置方法

pid参数设置方法

pid参数设置方法PID参数设置是控制系统中的一项重要工作,它决定了系统对外界干扰和参考信号的响应速度和稳定性。

PID(比例-积分-微分)控制是一种基本的控制方法,通过调节比例、积分和微分三个参数,可以优化控制系统的性能。

本文将介绍三种常用的PID参数设置方法:经验法、试探法和自整定法。

一、经验法:经验法是一种基于经验和实际运行经验的参数设置方法。

它通常适用于对系统了解较多和试验数据比较丰富的情况下。

经验法的优点是简单易懂,但需要有一定的经验基础。

具体步骤如下:1.比例参数的设置:将比例参数设为一个较小的值,然后通过试验观察系统的响应情况。

如果系统的响应过冲很大,说明比例参数太大;如果响应过于迟缓,则说明比例参数太小。

根据这些观察结果,逐步调整比例参数的大小,直到系统的响应达到理想状态。

2.积分参数的设置:将积分参数设为一个较小的值,通过试验观察系统的响应情况。

如果系统存在静差,说明积分参数太小;如果系统过冲或振荡,说明积分参数太大。

根据这些观察结果,逐步调整积分参数的大小,直到系统的响应达到理想状态。

3.微分参数的设置:将微分参数设为0,通过试验观察系统的响应情况。

如果系统过冲或振荡,说明需要增加微分参数;如果系统响应过缓或不稳定,说明需要减小微分参数。

根据这些观察结果,逐步调整微分参数的大小,直到系统的响应达到理想状态。

二、试探法:试探法是一种通过试验获取系统频率响应曲线,然后根据曲线特点设置PID参数的方法。

具体步骤如下:1.首先进行一系列的试验,改变输入信号(如阶跃信号、正弦信号等)的幅值和频率,记录系统的输出响应。

2.根据试验数据,绘制系统的频率响应曲线。

根据曲线特点,选择合适的PID参数。

-比例参数:根据曲线的峰值响应,选择一个合适的比例参数。

如果曲线的峰值响应较小,比例参数可以增大;如果曲线的峰值响应较大,比例参数可以减小。

-积分参数:根据曲线的静态误差,选择一个合适的积分参数。

如果曲线存在静差,积分参数可以增大;如果曲线没有静差,积分参数可以减小。

pid调参数的技巧

pid调参数的技巧

pid调参数的技巧
PID调参是控制工程中常用的一种方法,它能够根据实时被控对象的反馈信息,自动调整控制器的参数,使得被控对象能够快速达到稳定状态,以满足控制要求。

在实际应用中,PID调参不仅需要依靠数学模型,还需要结合实际工程经验和工程技巧,才能够取得最优的调整效果。

下面是一些常见的PID调参技巧:
1. 初值设置:首先需要根据被控对象的特性和工作环境,选择合适的初值。

其中,P参数通常取被控对象运行速度的1/10-1/5,I 参数通常取运行速度的1/50-1/100,D参数通常取1-3的范围。

2. 慢启动:在调整PID参数之前,可以通过慢启动的方法,逐步增加控制器的输出,以便控制器逐渐适应被控对象的运行特性,防止因参数设置不当而引起的不稳定或震荡现象。

3. 逐步调整:当初值设置不够准确时,可以通过逐步调整的方法,逐渐增加或减小PID参数,观察被控对象的反馈效果,调整到最优状态。

4. 死区调整:在实际应用中,由于被控对象存在一定的惯性和滞后性,常常需要在控制器的输出量较小时,增加一定的死区或滞后量,以防止控制器频繁调整而引起的震荡或不稳定现象。

5. 预测控制:针对某些复杂的被控对象,可以采用预测控制的方法,将预测模型作为控制器的输入,从而实现更加精确的控制效果。

6. 考虑非线性:在控制非线性系统时,需要考虑非线性因素对PID参数的影响,如非线性饱和、死区等,以保证控制效果的稳定性
和精度。

7. 实验验证:最后,在完成PID参数调整后,需要通过实验验证,检验控制器的性能和可靠性,以便进一步优化PID参数。

PID调节方法

PID调节方法

1、先调节P值(I、D均为0),使其调节速度达到要求。

P值增减先按倍数处理(乘2或除2),直到超越了要求,再将前后两个值取平均值。

2、再根据调节偏差处理I的取值,该值从大往小试验,温度调节初始值可以从10min开始,而流量、压力可以从1min开始。

直到偏差小到符合要求。

3、D值只在超调量过大时采用,取值从小往大试验,以超差幅度小于允许值,又不发生震荡为度。

1. PID常用口诀: 参数整定找最佳,从小到大顺序查,先是比例后积分,最后再把微分加,曲线振荡很频繁,比例度盘要放大,曲线漂浮绕大湾,比例度盘往小扳,曲线偏离回复慢,积分时间往下降,曲线波动周期长,积分时间再加长,曲线振荡频率快,先把微分降下来,动差大来波动慢,微分时间应加长,理想曲线两个波,前高后低4比1,2. 一看二调多分析,调节质量不会低 2.PID控制器参数的工程整定,各种调节系统中P.I.D参数经验数据以下可参照:温度T:P=20~60%,T=180~600s,D=3-180s压力P: P=30~70%,T=24~180s, 液位L:P=20~80%,T=60~300s, 流量L: P=40~100%,T=6~60s。

PID控制原理与PID参数的整定方法PID是比例、积分、微分的简称,PID控制的难点不是编程,而是控制器的参数整定。

参数整定的关键是正确地理解各参数的物理意义,PID控制的原理可以用人对炉温的手动控制来理解。

阅读本文不需要高深的数学知识。

1.比例控制有经验的操作人员手动控制电加热炉的炉温,可以获得非常好的控制品质,PID控制与人工控制的控制策略有很多相似的地方。

下面介绍操作人员怎样用比例控制的思想来手动控制电加热炉的炉温。

假设用热电偶检测炉温,用数字仪表显示温度值。

在控制过程中,操作人员用眼睛读取炉温,并与炉温给定值比较,得到温度的误差值。

然后用手操作电位器,调节加热的电流,使炉温保持在给定值附近。

操作人员知道炉温稳定在给定值时电位器的大致位置(我们将它称为位置L),并根据当时的温度误差值调整控制加热电流的电位器的转角。

PID参数的调整方法

PID参数的调整方法

PID参数的调整方法PID控制器是一种广泛应用于工业自动化控制系统中的一种控制算法,通过对控制系统的反馈信号进行分析和调整,来实现对控制系统的稳定控制。

PID参数调整的目的是通过修改PID控制器的三个参数(比例增益P、积分时间Ti、微分时间Td),来达到最优的控制效果。

下面将介绍几种常见的PID参数调整方法。

1.经验法:经验法是一种直接根据经验经验的方法来调整PID参数的调整方法,是初学者常用的方法。

经验法的基本原理是通过系统的试验,根据实际的经验经验来进行参数的调整。

其流程主要包括以下几个步骤:1)选择一个适当的比例增益P,使系统能够快速而准确地响应,但不引起系统的振荡。

2)逐渐增加积分时间Ti,使系统的稳态误差趋于零。

3)逐渐增加微分时间Td,使系统的响应更加平稳。

2. Ziegler-Nichols 调参法:Ziegler-Nichols 调参法是一种基于试验的经验方法,适用于较简单的系统。

其主要思想是通过改变比例增益P、积分时间Ti、微分时间Td的值,找到系统的临界增益和周期,然后根据经验公式计算参数。

具体步骤如下:1)以较小的增量逐步增加比例增益P,使系统产生小幅振荡。

2)记录振荡周期Tosc和振幅Aosc。

3)根据经验公式计算PID参数:P = 0.6KoscTi = 0.5ToscTd = 0.125Tosc3. Chien-Hrones-Reswick 调参法:Chien-Hrones-Reswick 调参法是一种经验法,适用于非线性和阻滞比较大的系统。

该方法主要通过分析系统的特性来进行参数调整。

具体步骤如下:1)选择一个适当的比例增益P,使系统快速而准确地响应。

2)根据系统的阶跃响应曲线,确定时间常数τp(过程时间常数),并计算增益裕度Kr(Kr=τp/T p)。

3)根据Kr的值,选择合适的积分时间Ti和微分时间Td。

4.自整定法:自整定法是一种根据系统的特性自动调整PID参数的方法,适用于不断变化的复杂系统。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、PID参数调节口决
参数整定找最佳,从小到大顺序查,先是比例后积分,最后再把微分加,曲线振荡很频繁,比例度盘要放大,曲线漂浮绕大湾,比例度盘往小扳,曲线偏离回复慢,积分时间往下降,曲线波动周期长,积分时间再加长,曲线振荡频率快,先把微分降下来,动差大来波动慢,微分时间应加长,理想曲线两个波,前高后低4比1,2. 一看二调多分析,调节质量不会低2.PID控制器参数的工程整定,各种调节系统中P.I.D参数经验数据以下可参照:温度T: P=20~60%,T=180~600s,D=3-180s压力P: P=30~70%,T=24~180s, 液位L: P=20~80%,T=60~300s, 流量L: P=40~100%,T=6~60s。

3.PID控制的原理和特点在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节。

PID控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。

当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便。

即当我们不完全了解一个系统和被控对象﹐或不能通过有效的测量手段来获得系统参数时,最适合用PID控制技术。

PID控制,实际中也有PI和PD控制。

PID控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的。

比例(P)控制比例控制是一种最简单的控制方式。

其控制器的输出与输入误差信号成比例关系。

当仅有比例控制时系统输出存在稳态误差(Steady-state error)。

积分(I)控制在积分控制中,控制器的输出与输入误差信号的积分成正比关系。

对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态误差的或简称有差系统(System with Steady-state Error)。

为了消除稳态误差,在控制器中必须引入“积分项”。

积分项对误差取决于时间的积分,随着时间的增加,积分项会增大。

这样,即便误差很小,积分项也会随着时间的增加而加大,它推动控制器的输出增大使稳态误差进一步减小,直到等于零。

因此,比例+积分(PI)控制器,可以使系统在进入稳态后无稳态误差。

微分(D)控制在微分控制中,控制器的输出与输入误差信号的微分(即误差的变化率)成正比关系。

自动控制系统在克服误差的调节过程中可能会出现振荡甚至失稳。

其原因是由于存在有较大惯性组件(环节)或有滞后(delay)组件,具有抑制误差的作用,其变化总是落后于误差的变化。

解决的办法是使抑制误差的作用的变化“超前”,即在误差接近零时,抑制误差的作用就应该是零。

这就是说,在控制器中仅引入“比例”项往往是不够的,比例项
的作用仅是放大误差的幅值,而目前需要增加的是“微分项”,它能预测误差变化的趋势,这样,具有比例+微分的控制器,就能够提前使抑制误差的控制作用等于零,甚至为负值,从而避免了被控量的严重超调。

所以对有较大惯性或滞后的被控对象,比例+微分(PD)控制器能改善系统在调节过程中的动态特性。

相关文档
最新文档