六年级奥数基础练习题二报告

合集下载

小学六年级奥数练习题及参考答案

小学六年级奥数练习题及参考答案

小学六年级奥数练习题及参考答案小学六年级奥数练习题及参考答案篇一2、一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮流做,那么恰好用整数天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天。

已知乙单独做这项工程需17天完成,甲单独做这项工程要多少天完成?3、一批树苗,如果分给男女生栽,平均每人栽6棵;如果单份给女生栽,平均每人栽10棵。

单份给男生栽,平均每人栽几棵?4、一个池上装有3根水管。

甲管为进水管,乙管为出水管,20分钟可将满池水放完,丙管也是出水管,30分钟可将满池水放完。

现在先打开甲管,当水池水刚溢出时,打开乙,丙两管用了18分钟放完,当打开甲管注满水是,再打开乙管,而不开丙管,多少分钟将水放完?5、某工程队需要在规定日期内完成,若由甲队去做,恰好如期完成,若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,问规定日期为几天?参考答案:1、解:由题意知,1/4表示甲乙合作1小时的工作量,1/5表示乙丙合作1小时的工作量(1/4+1/5)×2=9/10表示甲做了2小时、乙做了4小时、丙做了2小时的工作量。

根据“甲、丙合做2小时后,余下的乙还需做6小时完成”可知甲做2小时、乙做6小时、丙做2小时一共的工作量为1。

所以1-9/10=1/10表示乙做6-4=2小时的工作量。

1/10÷2=1/20表示乙的工作效率。

1÷1/20=20小时表示乙单独完成需要20小时。

答:乙单独完成需要20小时。

2、解:由题意可知1/甲+1/乙+1/甲+1/乙+……+1/甲=11/乙+1/甲+1/乙+1/甲+……+1/乙+1/甲×0.5=1(1/甲表示甲的工作效率、1/乙表示乙的工作效率,最后结束必须如上所示,否则第二种做法就不比第一种多0.5天)1/甲=1/乙+1/甲×0.5(因为前面的工作量都相等)得到1/甲=1/乙×2又因为1/乙=1/17所以1/甲=2/17,甲等于17÷2=8.5天3、答案是15棵算式:1÷(1/6-1/10)=15棵4、答案45分钟。

小学六年级奥数训练题及答案大全

小学六年级奥数训练题及答案大全

小学六年级奥数训练题及答案大全1.小学六年级奥数训练题及答案大全篇一已知甲校学生数是乙校学生数的40%,甲校女生数是甲校学生数的30%,乙校男生数是乙校学生数的42%,那么,两校女生数占两校学生总数的百分之()。

考点:百分数的实际应用。

分析:40%和42%的单位“1”是乙校的人数,那么甲校人数就是40%,乙校女生人数就是1-42%;甲校女生数是甲校学生数的30%,那么甲校的女生数就是40%×30%;再用两校的女生人数除以两校的总人数。

解答:解:甲校的女生人数:40%×30%=12%,乙校的女生人数:1-42%=58%;(12%+58%)÷(1+40%),=70%÷140%,=50%;答:两校女生数占两校学生总数的百分之50%。

故答案为:50%。

2.小学六年级奥数训练题及答案大全篇二已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?考点:列方程解含有两个未知数的应用题;差倍问题。

专题:和倍问题;列方程解应用题。

分析:设一把椅子的价格是x元,则一张桌子的价格就是10x元,根据等量关系:“一张桌子比一把椅子多288元”,列出方程即可解答.解答:解:设一把椅子的价格是x元,则一张桌子的价格就是10x元,根据题意可得方程:10x﹣x=288,9x=288,x=32;则桌子的价格是:32×10=320(元),答:一张桌子320元,一把椅子32元。

点评:此题也可以用算术法计算:由已知条件可知,一张桌子比一把椅子多的288元,正好是一把椅子价钱的(10﹣1)倍,由此可求得一把椅子的价钱。

再根据椅子的价钱,就可求得一张桌子的价钱,所以:一把椅子的价钱:288÷(1 0﹣1)=32(元)一张桌子的价钱:32×10=320(元);答:一张桌子320元,一把椅子32元。

3.小学六年级奥数训练题及答案大全篇三某工程,由甲、乙两队承包,2.4天可以完成,需支付1800元;由乙、丙两队承包,3+3/4天可以完成,需支付1500元;由甲、丙两队承包,2+6/7天可以完成,需支付1600元。

小学六年级奥数题及答案(全面)

小学六年级奥数题及答案(全面)

小学六年级奥数题及答案(全面)【注意】本文仅供参考学习使用,严禁用于商业目的。

小学六年级奥数题及答案(全面)第一题:计算题1. 求100以内所有偶数的和。

解答:要求100以内所有偶数的和,我们可以从2开始,每次递增2,直到100。

然后将这些偶数相加即可。

2 + 4 + 6 + 8 + ... + 98 + 100 = 2550因此,100以内所有偶数的和为2550。

第二题:几何题2. 在平面直角坐标系内,A(2, 3)和B(-1, -5)为两个点,求线段AB 的长度。

解答:根据两点间距离公式,可以计算出线段AB的长度。

线段AB的长度= √((x2 - x1)² + (y2 - y1)²)代入点的坐标:线段AB的长度= √((-1 - 2)² + (-5 - 3)²)= √((-3)² + (-8)²)= √(9 + 64)= √73因此,线段AB的长度为√73。

第三题:代数题3. 若x² + 5x + 6 的值为15,求x。

解答:根据题意,我们可以列出方程:x² + 5x + 6 = 15将方程转化为标准形式:x² + 5x + 6 - 15 = 0x² + 5x - 9 = 0然后,我们可以使用因式分解或配方法求解此方程。

通过因式分解,可以得到:(x + 3)(x - 2) = 0根据零乘法,我们可以得到两个解:x + 3 = 0 或 x - 2 = 0解方程得到:x = -3 或 x = 2因此,方程的解为x = -3 或 x = 2。

第四题:逻辑题4. 小明、小李、小张三人坐在一个长凳上,从左到右依次是:小明、小李、小张。

已知:- 小明比旁边坐的人大一岁;- 小李比小张大两岁;- 小明的年龄是10岁。

问:小张的年龄是多少岁?解答:根据题意,我们可以列出以下等式:小明的年龄 = 小明旁边坐的人的年龄 + 1小李的年龄 = 小张的年龄 + 2小明的年龄 = 10带入已知条件,我们可以得到以下等式:10 = 小明旁边坐的人的年龄 + 1小李的年龄 = 小张的年龄 + 2根据第一个等式,可以得到:小明旁边坐的人的年龄 = 10 - 1= 9根据第二个等式,可以得到:小张的年龄 = 小李的年龄 - 2此时,我们需要知道小李的年龄。

小学奥数全国推荐最新六年级奥数通用学案附带练习题解析答案2计算综合(二)

小学奥数全国推荐最新六年级奥数通用学案附带练习题解析答案2计算综合(二)

年 级 六年级 学 科 奥数 版 本 通用版 课程标题计算综合(二)繁分数的运算有时会涉及分数与小数的定义新运算问题,以及综合性较强的计算问题。

一般情况下,进行分数的乘、除运算时使用真分数或假分数,而不使用带分数,所以需将带分数化为假分数。

某些时候将分数线视为除号,可使繁分数的运算更加直观。

对于定义新运算,我们只需按题中的定义进行运算即可。

常见的计算公式:1. n ×(n +1)=[n ×(n +1)×(n +2)-(n -1)×n ×(n +1)]÷32. 从1开始连续n 个自然数的平方和的计算公式:()()222211231216n n n n ++++=⨯⨯+⨯+ 3. 平方差公式:a 2-b 2=(a +b )(a -b )例1. 计算:21+65+1211+2019+3029+4241 【分析与解】观察后发现,每个加数都和1相差一个分数单位,即21=1-21 65=1-61 1211=1-121 2019=1-201 3029=1-301 4241=1-421,那么, 原式=(1-21)+(1-61)+(1-121)+(1-201)+(1-301)+(1-421) =1×6-(21+61+121+201+301+421)=6-(761651541431321211⨯+⨯+⨯+⨯+⨯+⨯) =6-(1-21+21-31+ +61-71) =6-(1-71) =6-76 =715例2. 计算:2008-20081-20082-20083- -20082008 【分析与解】本题可以先计算分数部分,即20081+20082+20083+ +20082008。

原式=2008-(20081+20082+20083+ +20082008) =2008-20082008321++++ =2008-()20082200820081÷⨯+ =2008-22009 =1003.5例3. 计算:(1+21+31+41)×(21+31+41+51)-(1+21+31+41+51)×(21+31+41) 【分析与解】4个括号内均含有相同的部分,可把相同的部分用字母表示出来。

小学奥数基础教程附练习题和答案六年级讲全册版

小学奥数基础教程附练习题和答案六年级讲全册版

小学数学奥数基础教程(六年级)本教程共30讲比较分数的大小同学们从一开始接触数学,就有比较数的大小问题。

比较整数、小数的大小的方法比较简单,而比较分数的大小就不那么简单了,因此也就产生了多种多样的方法。

对于两个不同的分数,有分母相同,分子相同以及分子、分母都不相同三种情况,其中前两种情况判别大小的方法是:分母相同的两个分数,分子大的那个分数比较大;分子相同的两个分数,分母大的那个分数比较小。

第三种情况,即分子、分母都不同的两个分数,通常是采用通分的方法,使它们的分母相同,化为第一种情况,再比较大小。

由于要比较的分数千差万别,所以通分的方法不一定是最简捷的。

下面我们介绍另外几种方法。

1.“通分子”。

当两个已知分数的分母的最小公倍数比较大,而分子的最小公倍数比较小时,可以把它们化成同分子的分数,再比较大小,这种方法比通分的方法简便。

如果我们把课本里的通分称为“通分母”,那么这里讲的方法可以称为“通分子”。

2.化为小数。

这种方法对任意的分数都适用,因此也叫万能方法。

但在比较大小时是否简便,就要看具体情况了。

3.先约分,后比较。

有时已知分数不是最简分数,可以先约分。

4.根据倒数比较大小。

5.若两个真分数的分母与分子的差相等、则分母(子)大的分数较大;若两个假分数的分子与分母的差相等,则分母(子)小的分数较大。

也就是说,6.借助第三个数进行比较。

有以下几种情况:(1)对于分数m和n,若m>k,k>n,则m>n。

(2)对于分数m和n,若m-k>n-k,则m>n。

前一个差比较小,所以m<n。

(3)对于分数m和n,若k-m<k-n,则m>n。

注意,(2)与(3)的差别在于,(2)中借助的数k小于原来的两个分数m和n;(3)中借助的数k大于原来的两个分数m和n。

(4)把两个已知分数的分母、分子分别相加,得到一个新分数。

新分数一定介于两个已知分数之间,即比其中一个分数大,比另一个分数小。

利用这一点,当两个已知分数不容易比较大小,新分数与其中一个已知分数容易比较大小时,就可以借助于这个新分数。

小学生6年级数学奥数试题与答案.pdf

小学生6年级数学奥数试题与答案.pdf
④共用了多少小时?
习题一 1.一项工程,甲单独做 12 天可以完成.如果甲单独做 3 天,余下工 作由乙去做,乙再用 6 天可以做完.问若甲单独做 6 天,余下工作乙要做 几天? 2.一条水渠,甲乙两队合挖 30 天完工.现在合挖 12 天后,剩下的 由乙队挖,又用 24 天挖完.这条水渠由乙单独挖,需要多少天? 3.客车与货车同时从甲、乙两站相对开出,经 2 小时 24 分钟相遇, 相遇时客车比货车多行 9.6 千米.已知客车从甲站到乙站行 4 小时 30 分 钟,求客车与货车的速度各是多少? 4.水箱上装有甲、乙两个注水管.单开甲管 20 分钟可以注满全箱.现
甲 1 天能完成全工程的几分之几?
乙 1 天可完成全工程的几分之几?
这批零件共多少个?
答:这批零件共 360 个.
例 10 一项工程,甲单独做要 12 小时完成,乙单独做要 18 小时完 成.若甲先做 1 小时,然后乙接替甲做 1 小时,再由甲接替乙做 1 小时,…, 两人如此交替工作,问完成任务时,共用了多少小时?
分析 要求共用多少小时?可以设想把这些小时重新分配:甲做 1 小 时,乙做 1 小时,它们相当于合作 1 小时,也即是每 2 小时,相当于合做 1 小时.这样先大致算一下一共进行了多少个这样的 2 小时,余下部分问 题就好解决了.
解:①若甲、乙两人合作共需多少小时?
②甲、乙两人各单独做 7 小时后,还剩多少?
好排完.
一 半,最后余下的部分由甲、乙合作,还需要多少时间才能完成?
分析 这道题是工程问题与分数应用题的复合题.解题时先要分别求 出甲、乙工作效率,再把余下的工作量转化为占单位“1”(总工作量) 的几分之几?
如 果二人一起干,完成任务时乙比甲多植树 36 棵,这批树一共多少棵?

六年级奥数题及答案(五篇)

六年级奥数题及答案(五篇)

六年级奥数题及答案(五篇)六年级奥数题及答案 1某造纸厂在100天里共生产2024吨纸,开始阶段,每天只能生产10吨纸.中间阶段由于改进了技术,每天的产量提高了一倍.最后阶段由于购置了新设备,每天的产量又比中间阶段提高了一倍半.已知中间阶段生产天数的2倍比开始阶段多13天,那么最后阶段有几天?中间阶段每天的产量:10×2=20吨,最后阶段每天的产量:20×(1+1.5)=50吨,因为在100天里共生产2024吨,*均每天产量:2024÷100=20吨,最后阶段每天可以补开始阶段(50-20=30吨),这样,最后阶段时间与开始阶段时间比是1:3最后阶段时间:(100-13÷2)÷(1+3+3/2)=17天中间阶段每天的产量:10×2=20吨,最后阶段每天的产量:20×(1+1.5)=50吨,因为在100天里共生产2024吨,*均每天产量:2024÷100=20吨,最后阶段每天可以补开始阶段(50-20=30吨),这样,最后阶段时间与开始阶段时间比是1:3最后阶段时间:(100-13÷2)÷(1+3+3/2)=17天六年级奥数题及答案 2从花城到太阳城的公路长12公里.在该路的2千米处有个铁道路口,是每关闭3分钟又开放3分钟的.还有在第4千米及第6千米有交通灯,每亮2分钟红灯后就亮3分钟绿灯.小糊涂驾驶电动车从花城到太阳城,出发时道口刚刚关闭,而那两处交通灯也都刚刚切换成红灯.已知电动车速度是常数,小糊涂既不刹车也不加速,那么在不违反交通规则的情况下,他到达太阳城最快需要多少分钟?答案与解析:画出反映交通灯红绿情况的s-t图,可得出小糊涂的行车图像不与实线相交情况下速度最大可以是0.5千米/分钟,此时恰好经过第6千米的红绿灯由红转绿的点,所以他到达太阳城最快需要24分钟.六年级奥数题及答案 3分母不大于60,分子小于6的'最简真分数有____个?答案与解析:分类讨论:(1)分子是1,分母是2~60的最简真分数有59个:(2)分子是2,分母是3~60,其中非2、的倍数有58-58÷2=29(个);(3)分子是3,分母是4~60,其中非3的倍数有57-57÷3-38(个);(4)分子是4,分母是5~60,其中非2的倍数有56-56÷2-28c个);(5)分子是5,分母是6~60,其中非5的倍数有55-55÷5―44(个).这样,分子小于6,分母不大于60的最简真分数一共有59+29+38+28+44=198(个).六年级奥数题及答案 4甲、乙、丙三人依次相距280米,甲、乙、丙每分钟依次走90米、80米、72米.如果甲、乙、丙同时出发,那么经过几分钟,甲第一次与乙、丙的距离相等?答案与解析:甲与乙、丙的距离相等有两种情况:一种是乙追上丙时;另一种是甲位于乙、丙之间.⑴乙追上丙需:280(80-72)=35(分钟).⑵甲位于乙、丙之间且与乙、丙等距离,我们可以假设有一个丁,他的速度为乙、丙的速度的*均值,即(80+72)2=76(米/分),且开始时丁在乙、丙之间的中点的位置,这样开始时丁与乙、丙的距离相等,而且无论经过多长时间,乙比丁多走的路程与丁比丙多走的路程相等,所以丁与乙、丙的距离也还相等,也就是说丁始终在乙、丙的中点.所以当甲遇上丁时甲与乙、丙的距离相等,而甲与丁相遇时间为:(280+2802)(90-76)=30(分钟).经比较,甲第一次与乙、丙的距离相等需经过30分钟.六年级奥数题及答案 5王师傅驾车从甲地开往乙地交货.如果他往返都以每小时60千米的速度行驶,正好可以按时返回甲地.可是,当到达乙地时,他发现从甲地到乙地的速度只有每小时50千米.如果他想按时返回甲地,他应以多大的速度往回开?答案与解析:本题相当于去的时候速度为每小时50千米,而整个行程的*均速度为每小时60千米,求回来的时候的速度.根据例题中的分析,可以假设甲地到乙地的路程为300千米,那么往返一次需时间__*2=10(小时),现在从甲地到乙地花费了时间__=6(小时),所以从乙地返回到甲地时所用的时间是10-6=4(小时).如果他想按时返回甲地,他应以3004=75(千米/时)的速度往回开.。

六年级奥数练习题及答案【三篇】

六年级奥数练习题及答案【三篇】

六年级奥数练习题及答案【三篇】教案是教师为顺利而有效地开展教学活动,根据课程标准,教学大纲和教科书要求及学生的实际情况,以课时或课题为单位,对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书,包括教材简析和学生分析、教学目的、重难点、教学准备、教学过程及练习设计等,下面是由小编为大家整理的范文模板,仅供参考,欢迎大家阅读.芬芳袭人花枝俏,喜气盈门捷报到。

心花怒放看通知,梦想实现今日事,喜笑颜开忆往昔,勤学苦读最美丽。

在学习中学会复习,在运用中培养能力,在总结中不断提高。

以下是小编为大家整理的《六年级奥数练习题及答案【三篇】》供您查阅。

【第一篇:追击敌人】我人民解放军追击一股逃窜的敌人,敌人在下午_点开始从甲地以每小时_千米的速度逃跑,解放军在晚上_点接到命令,以每小时30千米的速度开始从乙地追击。

已知甲乙两地相距60千米,问解放军几个小时可以追上敌人?解答案与解析:是[__(_-6)]千米,甲乙两地相距60千米。

由此推知追及时间=[__(_-6)+60]÷(30-_)=2_÷_=_(小时)答:解放军在_小时后可以追上敌人。

【第二篇:相遇问题】甲、乙、丙三辆汽车在环形马路上同向行驶,甲车行一周要36分钟,乙车行一周要30分钟,丙车行一周要48分钟,三辆汽车同时从同一个起点出发,问至少要多少时间这三辆汽车才能同时又在起点相遇?答案与解析:要求多少时间才能在同一起点相遇,这个时间必定同时是36、30、48的倍数。

因为问至少要多少时间,所以应是36、30、48的最小公倍数。

36、30、48的最小公倍数是7_。

答:至少要7_分钟(即_小时)这三辆汽车才能同时又在起点相遇。

【第三篇:求边长】一张硬纸板长60厘米,宽56厘米,现在需要把它剪成若干个大小相同的的正方形,不许有剩余。

问正方形的边长是多少?答案与解析:硬纸板的长和宽的公约数就是所求的边长。

60和56的公约数是4。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

六年级奥数基础练习题二报告
关于六年级奥数基础练习题二报告
1.计划展出10幅不同的画,其中1幅水彩画、4幅油画、5幅国画,排成一行陈列,要求同一品种的画必须连在一起,那么不同的.陈列方式有种.
2. (1)将18个人排成一排,不同的排法有少种;
(2)将18个人排成两排,每排9人,不同的排法有种;
(3)将18个人排成三排,每排6人,不同的排法有种.
3. 5人站成一排,(1)其中甲、乙两人必须相邻,有种不同的排法;
(2)其中甲、乙两人不能相邻,有种不同的排法;
(3)其中甲不站排头、乙不站排尾,有种不同的排法.
4. 5名学生和1名老师照相,老师不能站排头,也不能站排尾,共有种不同的站法.
5. 4名学生和3名老师排成一排照相,老师不能排两端,且老师必须要排在一起的不同排法有种.
6. 停车场有7个停车位,现在有4辆车要停放,若要使3个空位连在一起,则停放的方法有种.
7. 在7名运动员中选出4名组成接力队参加4×100米比赛,那么甲、乙都不跑中间两棒的安排方法有种.
8. 一个口袋内装有大小相同的7个白球和1个黑球.(1)从口袋内取出3个球,共有种取法;
(2)从口袋内取出3个球,使其中含有1个黑球,有种取法;
(3)从口袋内取出3个球,使其中不含黑球,有种取法.
9. 甲,乙,丙,丁4个足球队举行单循环赛:
(1)共需比赛场;
(2)冠亚军共有种可能.
10. 按下列条件,从12人中选出5人,有种不同选法.
(1)甲、乙、丙三人必须当选;
(2)甲、乙、丙三人不能当选;
(3)甲必须当选,乙、丙不能当选;
(4)甲、乙、丙三人只有一人当选;
(5)甲、乙、丙三人至多2人当选;
(6)甲、乙、丙三人至少1人当选;
11. 某歌舞团有7名演员,其中3名会唱歌,2名会跳舞,2名既会唱歌又会跳舞,现在要从7名演员中选出2人,一人唱歌,一人跳舞,到农村演出,问有种选法.
12. 从6名男生和4名女生中,选出3名男生和2名女生分别承担A,B,C,D,E五项工作,一共有种不同的分配方法.。

相关文档
最新文档