铸件超声波探伤基础知识

合集下载

铝铸件超声波探伤标准

铝铸件超声波探伤标准

铝铸件超声波探伤标准
铝铸件超声波探伤标准可参考以下两个标准:
1. GB/T 50719-2012《超声波探伤检测技术规程》
这个标准主要规定了超声波探伤的通用技术要求,适用于各种材料的超声波探伤,包括铝铸件。

2. JB/T 4730-2005《承压设备无损检测》
这个标准针对承压设备的无损检测,其中包括了铝铸件的超声波探伤技术要求和评定方法。

铝铸件超声波探伤时,需根据实际情况选择合适的标准,并确保探伤过程符合相关技术要求。

在进行探伤操作时,应充分了解铝铸件的特性以及可能存在的缺陷类型,从而选择合适的探头、频率和探测方法。

此外,探伤人员需要具备相应的专业知识和技能,以确保探伤结果的准确性。

铸铁件超声波探伤标准

铸铁件超声波探伤标准

铸铁件超声波探伤标准铸铁件超声波探伤是指利用超声波探伤技术对铸铁件进行缺陷检测和评定的一种方法。

在铸铁件生产和使用过程中,超声波探伤技术具有重要的应用价值,可以有效地检测铸铁件内部的缺陷,提高铸铁件的质量和安全性。

本文将对铸铁件超声波探伤的标准进行详细介绍,以便广大从业人员能够更好地理解和应用这一技术。

一、超声波探伤原理。

超声波探伤是利用超声波在材料中传播的特性来检测材料内部的缺陷的一种无损检测方法。

当超声波遇到材料内部的缺陷时,会发生反射、折射等现象,通过对超声波的接收和分析,可以确定材料内部的缺陷位置、大小和形状。

在铸铁件超声波探伤中,通常会采用脉冲回波法或者多普勒效应来实现对铸铁件内部缺陷的检测。

二、超声波探伤标准。

1. 检测设备标准。

铸铁件超声波探伤所使用的超声波探伤设备应符合国家相关标准,设备应具备合格的探头、仪器和显示屏,能够清晰地显示铸铁件内部的缺陷情况。

2. 操作规程标准。

进行铸铁件超声波探伤的操作人员应具备相关的资质和经验,按照操作规程进行操作,保证检测的准确性和可靠性。

操作规程应包括设备的使用方法、检测的步骤、数据的记录和分析等内容。

3. 缺陷评定标准。

对于检测到的铸铁件内部缺陷,应按照相关标准进行评定。

评定标准应考虑缺陷的类型、大小、位置对铸铁件性能的影响,以及铸铁件的使用环境和要求等因素。

4. 报告标准。

对于每次进行的铸铁件超声波探伤,应编制相应的探伤报告。

报告应包括铸铁件的基本信息、探伤设备的信息、操作人员的信息、检测结果和评定结论等内容,报告应具备完整性和可追溯性。

三、应用范围。

铸铁件超声波探伤适用于各种类型的铸铁件,包括铸铁管、铸铁板、铸铁轮等。

在铸铁件的生产、加工和使用过程中,可以通过超声波探伤技术对铸铁件进行定期检测,及时发现和处理铸铁件内部的缺陷,确保铸铁件的质量和安全性。

四、注意事项。

在进行铸铁件超声波探伤时,应注意以下事项:1. 确保操作人员具备相关的资质和经验;2. 确保超声波探伤设备的正常运行和准确性;3. 对检测到的缺陷进行合理的评定和处理;4. 编制完整的探伤报告,保留相关的记录和数据。

第八章 锻件与铸件超声波探伤

第八章 锻件与铸件超声波探伤
f
D f
空心圆柱体:
20 lg
PB 2x d 20 lg 10 lg ( x 3N ) Pf D D f 2
试块调节法(用于X<3N) : 要求CSⅠ试块上Φ2平底孔声程等于或大于锻件厚度; 当试块平底孔声程小于工件时要进行计算求得声程引起的回波高差进 行修正得到检测灵敏度。
• 试块CSⅠ
试块序号 L D
CSⅠ-1 50 50
CSⅠ-2 100 60
CSⅠ-3 150 80
CSⅠ-4 200 80
试块CSⅡ
试块序号 CSⅡ-1
孔径 φ2
检测距离L 1 2 3 4 5 6 7 8 9
CSⅡ-2
CSⅡ-3 CSⅡ-4
φ3
φ4 φ6
5
10
15
20
25
30
35
40
45
试块CS Ⅲ

• • •
检测面选择:应符合JB/T4730标 准的要求。 原则上应从两个相互垂直的方向 进行检测,尽可能地检测到锻件 的全体积。主要检测 斜探头:周向、轴向各正、反二 个方向。 注:↑为应检测方向; ※为参考 检测方向 锻件厚度超过400mm时,应从相 对两端面进行100%的扫查。 检测时机:检测原则上应安排在 热处理后,孔、台等结构机加工 前进行,检测面的表面粗糙度 Ra≤6.3μm。 材质衰减测定
8.2 铸件超声波探伤
8.2.6 距离—波幅曲线测试与灵敏度调整 1)纵波直探头距离—波幅曲线制作 2)纵波双晶探头 3)横波斜探头 8.2.7 缺陷的判别与测定 1)缺陷判别 缺陷回波幅度大于或等于距离—波幅曲线位置; 底面回波幅度降低量≥12dB的位置; 不论缺陷回波幅大小,凡出现线状和片状特征缺陷显示的位置。 2)缺陷测定 平面型缺陷:对具有线状和片状特征的缺陷显示,用6dB法画出缺陷范 围,测出长度、面积; 非平面型缺陷:缺陷回波幅度等于或大于距离—波幅曲线者用6dB法在 探伤面画出缺陷范围; 用底面回波降低量≥12dB时,以底面回波降低12dB为条件作为缺陷边 界,划出探伤面上位置。

铝铸件超声波探伤标准

铝铸件超声波探伤标准

铝铸件超声波探伤标准超声波探伤是一种非常有效的无损检测技术,广泛应用于工业领域。

对于铝铸件这样的重要零部件,超声波探伤尤其重要。

本文将介绍铝铸件超声波探伤的标准和要求。

一、超声波探伤的目的铝铸件超声波探伤的目的是检测和评估铝铸件中的内部缺陷或不均匀性,以确定铸件的质量和可用性。

通过超声波探伤可以发现铸件中的气孔、夹杂物、裂纹等缺陷,对铝铸件的质量进行全面评估。

二、超声波探伤的方法常用的超声波探伤方法包括脉冲回波法和光栅频谱法。

脉冲回波法主要适用于探测铝铸件中的大型缺陷,如气孔和裂纹;光栅频谱法主要用于检测小型缺陷和不均匀性。

三、超声波探伤的设备和参数铝铸件超声波探伤的设备应选择频率适当、功率稳定,并采用合适的探头和耦合剂。

常用的频率范围为2-10 MHz。

超声波的传播速度和衰减系数是评估铝铸件质量的重要参数,应按照标准要求进行测定。

四、超声波探伤的标准和要求 1. 缺陷的评估要按照国际标准进行,包括缺陷的尺寸、形状、位置、数量等方面的评估。

2. 对于铝铸件中的气孔缺陷,应按照国际标准分类,并根据其尺寸和位置进行定级。

3. 对于铝铸件中的夹杂物缺陷,除了评估其尺寸、形状和位置外,还应评估其类型和数量。

4. 对于铝铸件中的裂纹缺陷,应评估其长度、深度、宽度和形状,并根据其特征进行分类。

5. 对于铝铸件的不均匀性,应评估其厚度、密度和声速的分布情况,确保其在规定范围内。

五、超声波探伤的操作要求 1. 操作人员应经过专业培训,熟悉超声波探伤设备的使用和操作。

2. 在进行超声波探伤前,需要对探头和样品进行校准,保证探头的灵敏度和精度。

3. 超声波探伤应按照标准的检测路径和扫描方式进行,确保全面覆盖铝铸件的各个部位。

4. 探测到缺陷后,应进行记录和标记,包括缺陷的位置、尺寸和形状等信息。

六、超声波探伤的结果评估超声波探伤结果的评估应根据标准要求进行,对于超过规定尺寸和数量的缺陷,铝铸件应被判定为不合格,并采取相应的措施修复或淘汰。

铸、锻件的超声波探伤检测方法

铸、锻件的超声波探伤检测方法


斜探头——晶片面积为140mm2~
400mm2,频率为2.5MHZ。探测与表面垂
直缺陷宜用K1(45°),必要时用.表面要求与耦合剂:
• 表面要求:检测面表面要求平整,最好经 机加工,表面粗糙度Ra应小于6.3μm,□ 工件表面应去除氧化皮、污物等附着物。
• 耦合剂:机油、浆糊、甘油等。

dB 20lg 2—X2 —实心园柱体,上、下底面平
行(锻件)

dB
20 lg
2X 2
10(lg r 空心园锻件) R
• 要求:X≥3N “+”外园径向探测内孔凸柱面 反射,“-”内孔径向探测外园
• 凹柱面反射。实际调节时,将探头置于工 件表面,使底面回波调至基准波高,再提 高按上述相应公式计算得到△dB数,即调 好了检测灵敏度。
• (二)比例作图法的进行步骤
• 1.起始测定点的选择
• 如果探头在工件的某一部位发现了缺陷则 左右移动探头,若缺陷信号均由最高趋向 消失,这时就取缺陷消失的某一点为起始 测定点。如果探测对象为实心轴,当探头 沿整个圆周移动时,缺陷波均不消失,那 就任选一点作起始测定点。
• 2.逐点测量
• 从起始测定点开始,沿着出现缺陷波方向, 以一间隔选择测量点,进行逐点测量。间 隔选取越小,测定点越多,准确性越高。
射波幅均大于某一特当量基准反射波幅 (如均大于Φ2平底孔当量)。
• GB/T6402-91钢锻件超声波检验方法(国 标)定义为:在边长50mm立方体内,有5 个以上缺陷波高,超过产品技术条件规定 值的-6dB。
• 4. 游动回波
• 定义:当探头在工件表面探测移动时,荧 光屏扫描线上缺陷波会随之游动,这说明 缺陷波相对于检测点至缺陷反射面位置 (即深度或声程)在不断变化,这种波称 游动回波,在轴类工件中常见。

铸件超声波探伤标准

铸件超声波探伤标准

铸件超声波探伤标准铸件超声波探伤是一种常用的无损检测方法,它能够有效地检测出铸件内部的缺陷和异物,对铸件的质量控制起着至关重要的作用。

本文将介绍铸件超声波探伤的标准,以及在实际应用中的注意事项和技术要点。

首先,铸件超声波探伤的标准主要包括国家标准、行业标准和企业标准。

国家标准是对铸件超声波探伤的技术要求和检测方法进行规范,确保其检测结果的准确性和可靠性。

行业标准是在国家标准的基础上,针对具体行业的特殊要求进行制定的,例如航空航天、汽车制造等行业都有相应的行业标准。

而企业标准则是根据企业自身的生产特点和技术水平进行制定的,旨在提高产品质量和生产效率。

其次,铸件超声波探伤的标准主要包括以下几个方面,探伤设备的选择和校准、探伤人员的培训和资质认证、探伤工艺的规范和操作流程、探伤结果的评定和记录等。

在实际应用中,需要严格按照标准的要求进行操作,确保探伤结果的准确性和可靠性。

另外,铸件超声波探伤的标准还包括对不同类型铸件的不同要求。

例如,对于铸铁件、铸钢件和铝合金铸件,其超声波探伤的技术要点和操作规程都有所不同。

在实际应用中,需要根据具体的铸件材质和结构特点,选择合适的探伤方法和参数,以确保对铸件内部缺陷的有效检测。

最后,铸件超声波探伤标准的制定和实施对于提高铸件质量、保障产品安全具有重要意义。

通过严格遵守标准的要求,可以有效地减少铸件内部缺陷的产生,提高产品的合格率和可靠性,降低因质量问题而造成的损失和风险。

综上所述,铸件超声波探伤标准是保障铸件质量和产品安全的重要保障,其制定和实施对于提高铸件质量、降低生产风险具有重要意义。

在实际应用中,需要严格遵守标准的要求,确保铸件超声波探伤工作的准确性和可靠性,为企业的可持续发展提供有力支持。

锻件与铸件超声波探伤详细教程(附实例解析)重点讲义资料

锻件与铸件超声波探伤详细教程(附实例解析)重点讲义资料

第六章锻件与铸件超声波探伤第六章锻件与铸件超声波探伤锻件和铸件是各种机械设备及锅炉压力容器的重要毛坯件。

它们在生产加工过程中常会产生一些缺陷,影响设备的安全使用。

一些标准规定对某些锻件和铸件必须进行超声波探伤。

由于铸件晶粒粗大、透声性差,信噪比低,探伤困难大,因此本章重点计论锻件探伤问题,对铸件探伤只做简单介绍。

第一节锻件超声波探伤一、锻件加工及常见缺陷锻件是由热态钢锭经锻压变形而成。

锻压过程包括加热、形变和冷却。

锻件的方式大致分为镦粗、拔长和滚压。

镦粗是锻压力施加于坯料的两端,形变发生在横截面上。

拔长是锻压力施加于坯料的外圆,形变发生在长度方向。

滚压是先镦粗坯料,然后冲孔再插入芯棒并在外圆施加锻压力。

滚压既有纵向形变,又有横向形变。

其中镦粗主要用于饼类锻件。

拔长主要用于轴类锻件,而简类锻件一般先镦粗,后冲孔,再镦压。

为了改善锻件的绍织性能,锻后还要进行正火、退火或调质等热处理。

锻件缺陷可分为铸造缺陷、锻造缺陷和热处理缺陷。

铸造缺陷主要有:缩孔残余、疏松、夹杂、裂纹等。

锻造缺陷主要有:折叠、白点、裂纹等。

热处理缺陷主要有:裂纹等。

缩孔残余是铸锭中的缩孔在锻造时切头量不足残留下来的,多见于锻件的端部。

疏松是钢锭在凝固收缩时形成的不致密和孔穴,锻造时因锻造比不足而末全焊合,主要存在于钢锭中心及头部。

夹杂有内在夹杂、外来菲金属夹杂栩金属夹杂。

内在夹杂主要集中于钢锭中心及头部。

裂纹有铸造裂纹、锻造裂纹和热处理裂纹等。

奥氏体钢轴心晶间裂纹就是铸造引起的裂纹。

锻造和热处理不当,会在锻件表面或心部形成裂纹。

白点是锻件含氢最较高,锻后冷却过快,钢中溶解的氢来不及逸出,造成应力过大引起的开裂,白点主要集中于锻件大截面中心。

合金总量超过3.5~4.0%和Cr、Ni、Mn的合金钢大型锻件容易产生白点。

白点在钢中总是成群出现。

二、探伤方法概述按探伤时间分类,锻件探伤可分为原材料探伤和制造过程中的探伤,产品检验及在役检验。

铸铁探伤标准

铸铁探伤标准

铸铁探伤标准一、目的本标准旨在规定铸铁件的无损探伤方法、程序和要求,以确保铸件的质量和安全性。

二、适用范围本标准适用于各种类型的铸铁件,包括灰口铸铁、球墨铸铁、可锻铸铁等。

三、探伤方法1. 射线探伤(RT)射线探伤是利用X射线或γ射线对铸件进行无损检测的方法。

通过观察不同材料对射线的吸收程度,可以判断铸件内部是否存在缺陷。

射线探伤适用于各种形状和大小的铸件,但检测成本较高。

2. 超声波探伤(UT)超声波探伤是利用超声波在材料中传播的特性,检测铸件内部是否存在缺陷的方法。

超声波探伤具有检测速度快、灵敏度高、操作简便等优点,但不适用于形状复杂的铸件。

3. 磁粉探伤(MT)磁粉探伤是利用磁粉在铸件表面形成的磁痕,检测铸件表面是否存在缺陷的方法。

磁粉探伤适用于形状复杂的铸件,但不适用于非磁性材料。

四、探伤程序1. 预处理对铸件进行清洗、干燥和打磨等处理,以去除表面杂质和氧化层,确保探伤结果的准确性。

2. 探伤操作根据铸件的大小和形状选择合适的探伤方法,按照探伤设备的操作规程进行探伤操作。

在操作过程中应注意以下几点:a) 确定合适的探伤灵敏度;b) 确保探头与铸件表面紧密贴合;c) 合理选择扫描速度和角度;d) 记录探伤过程中的异常现象。

3. 结果判定和处理根据探伤结果进行判断和处理,包括以下几种情况:a) 合格:铸件内部无缺陷或缺陷在允许范围内,可以判定为合格;b) 不合格:铸件内部存在超出允许范围的缺陷,应判定为不合格;c) 让步接收:对于某些小缺陷,在不影响使用和安全性能的情况下,可考虑让步接收;d) 返修或报废:对于不合格的铸件,应进行返修或报废处理。

返修后应重新进行探伤检测。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7.冷隔
这是铸件中特有的一种分层性缺陷,主要与铸件的浇铸工艺设计有关,它是在浇注液态金属时,由于飞溅、翻浪、浇注中断,或者来自不同方向的两股(或多股)金属流相遇等原因,因为液态金属表面冷却形成的半固态薄膜留在铸件本体内而形成一种隔膜状的面积型缺陷。
8.翻皮
这是炼钢时从钢包向锭模浇注钢锭时,因为浇注中断、停顿等原因,先浇入的液态金属表面在空气中迅速冷却形成氧化膜,在继续浇注时新浇入的液态金属将其冲破翻入钢锭体内而形成的一种分层性(面积型)缺陷,它在后续的钢锭开坯锻造中是无法锻合消除的。见图5.30所示。
6.铸造裂纹
铸件中的裂纹主要是由于金属冷却凝固时的收缩应力超过了材料的极限强度而引起的,它与铸件的形状设计和铸造工艺有关,也与金属材料中一些杂质含量较高而引起的开裂敏感性有关(例如硫含量高时有热脆性,磷含量高时有冷脆性等)。在钢锭中也会产生轴心晶间裂纹,在后续的开坯锻造中如果不能锻合,将留在锻件中成为锻件的内部裂纹。
熔炼过程中的熔渣或熔炉炉体上的耐火材料剥落进入液态金属中,在浇注时被卷入铸件或钢锭本体内,就形成了夹渣缺陷。夹渣通常不会单一存在,往往呈密集状态或在不同深度上分散存在,它类似体积型缺陷然而又往往有一定线度。
4.夹杂
熔炼过程中的反应生成物(如氧化物、硫化物等)-非金属夹杂,如图5.1和5.6,或金属成分中某些成分的添加料未完全熔化而残留下来形成金属夹杂,如高密度、高熔点成分-钨、钼等,如图5.29,也有如图5.24所示钛合金棒材中的纯钛偏析。
图5.31
2.缩孔与疏松
铸件或钢锭冷却凝固时,体积要收缩,在最后凝固的部分因为得不到液态金属的补充而会形成空洞状的缺陷。大而集中的空洞称为缩孔,细小而分散的空隙则称为疏松,它们一般位于钢锭或铸件中心最后凝固的部分,其内壁粗糙,周围多伴有许多杂质和细小的气孔。由于热胀冷缩的规律,缩孔是必然存在的,只是随加工工艺处理方法不同而有不同的形态、尺寸和位置,当其延伸到铸件或钢锭本体时就成为缺陷。钢锭在开坯锻造时如果没有把缩孔切除干净而带入锻件中就成为残余缩孔(缩孔残余、残余缩管),如图5.3、5.4、5.5所示。
图5.30
工件名称:锻模毛坯
形状:
矩形方块
材料牌号:3Cr3Mo3VNb
状态:
锻后退火,黑皮
超声纵波探伤发现的缺陷:翻皮
横向低倍照片
纵向断口照片
9.各向异性
铸件或钢锭冷却凝固时,从表面到中心的冷却速度是不同的,因而会形成不同的结晶组织,表现为力学性能的各向异性,也导致了声学性能的各向异性,亦即从中心到表面有不同的声速与声衰减。这种各向异性的存在,对铸件超声检测时评定缺陷的大小与位置会产生不良影响。图5.31示出的是3Cr3Mo3VNb电弧炉冶炼的630Kg钢锭的纵向低倍照片和钢锭结晶情况示意图。
如果铸件的型模设计不当、浇注工艺不当等,也会在铸件与型模接触的部位产生疏松,如图5.28所示。断口照片中的黑色部分即为疏松部位,其呈现黑色是因为该工件已经过退火处理,使得疏松部位被氧化和渗入机油所致。
图5.28
W18钢铸件-用作铣刀齿,采用超声纵波垂直入射多次底波衰减法发现的疏松
断口照片
断口照片
3.夹渣
铸件超声波探伤基础知识
铸件中常见的主要缺陷有:
1.气孔
这是金属凝固过程中未能逸出的气体留在金属内部形成的小空洞,其内壁光滑,内含气体,对超声波具有较高的反射率,但是又因为其基本上呈球状或椭球状,亦即为点状缺陷,影响其反射波幅。钢锭中的气孔经过锻造或轧制后被压扁成面积型缺陷而有利于被超声检测所发现,如图5.2所示。
图5.29 BT9钛合金锻制饼坯中的钼夹杂
(a)剖面低倍照片
(b)X射线照相底片
(c)C扫描显示(图中四个白色点状显示为同一个缺陷,是使用水浸点聚焦探头以不同灵敏度检测的结果,其他分散细小的白色点状为与该缺陷无关的杂波显示)
(d)B扫描显示
(3D显示
(d)
(a)
(b)
(c)
(e)
5.偏析
铸件或钢锭中的偏析主要指冶炼过程中或金属的熔化过程中因为成分分布不均而形成的成分偏析,有偏析存在的区域其力学性能有别于整个金属基体的力学性能,差异超出允许标准范围就成为缺陷,如图5.23和5.24、5.27所示。
相关文档
最新文档