固体物理总结材料能带理论完全版

合集下载

固体物理chapter 5 固体能带论

固体物理chapter 5  固体能带论

VheiGhx VheiGh xa
h
h
倒格矢Gh
2
a
h
, eiGha 1
i 2 hx
V x V0 Vhe a
h0
其中
a
Vh
1 a
2
V
-a
x
i 2 hx
e a dx
2
a
V0
1 a
2
V
-a
x
dx
0
2
V x傅立展式 V x
i 2 hx
Vhe a
h0
2、处于周期性势场中的电子
波函数为
选择原点,
1
1 e ikx L
1 e ikx L
1
i h x
ea
L
1
i h x
e a
L
2
1 e ikx L
1 e ikx i L
2 sin h x
La
2 cos h x
La
三、近自由电子能量的讨论
E
自由电子 E ~ K 关系
E 2 k 2
2m
近自由电子 E ~ K 关系讨论
2 aa
a
(小量 变量)
a
aa
a
k h h h 1
aa
a
令Th
2 2m
h
a
2
Ek0
2 2m
h
a
1
2
Th 1
2
Ek0
2 2m
h
a
1
2
Th 1
2
代入(2)式得
[ ] [ ] E (k)
1 2
E
0
k
Ek0
1 2

固体物理基础-能带理论

固体物理基础-能带理论
NZ
e j 1 j i 4 0 ri r j
NZ
1
2
NZ ve ri i 1
1 ve ri 2
e2 j 1 j i 4 0 ri r j
NZ
1
2)单电子近似
• 电子体系的哈密顿量变为:
ˆ T Rm Rn r Rm Rn r 又 ˆ T ˆ r r T R Rm Rn m Rn Rm Rn Rm Rn 将Rn =e Rn 带入得 Rm Rn = Rn + Rm , 仅当 是Rn的线性函数 时满足,因此取 Rn =k Rn , 则
Bloch定理说明
ik Rn r Rn e r
i k r k r e uk r , uk r Rn uk r
用Bloch波函数描述的电子,或遵从周期势单电子薛 定谔方程的电子,称为Bloch电子; 布洛赫波的特征:周期性条幅的平面波;当平移晶 ik R 格矢量 ������ ������ 时,波函数只变化一个相位因子 e n • 表明在不同原胞的对应点上,波函数只相差一个相 位因子,波函数的大小相同,所以电子出现在不同 原胞的对应点上几率是相同的。这是晶体周期性的 反映。
将使矢量 ������ 平移 ������ ������ ,即
ˆ f r f r R T n Rn
各平移算符之间互相对易
ˆ T ˆ f r T ˆ f r R f r R R T m n m Rn Rn Rm ˆ T ˆ f r T ˆ f r R f r R R T n m n R R Rm m n ˆ T ˆ f r T ˆ T ˆ f r T ˆ T ˆ T ˆ T ˆ T Rm Rn Rn Rm Rm Rn Rn Rm ˆ ,T ˆ 0 T Rn Rm

固体物理-第四章 能带理论

固体物理-第四章 能带理论

V* , v, V分别是倒易原胞,晶格原胞和整个晶体的 体积, N = N1N2N3是原胞总数。
k-空间中单位体积中的状态密度为V/(2p)3 .每个 布里渊区k的数目为: V*/(V*/N)=N
4.1.基本概念
4.1.4.定态微扰简述 处于定态的粒子体系,受到一个微小的恒定的扰动后体 系的状态和能量等发生微小的变化。对于简并和非简并 情况处理方法不同。 1.非简并微扰 体系的哈密顿算符为 Ĥ=Ĥ0+ĥ (4.1.4.1) Ĥ0的本征值和本征函数是已知的或者可以精确求解的且 不存在简并。Ĥ0的本征方程为: Ĥ0y n (0) = En (0)y n (0) (4.1.4.2) n能级序号,ĥ 微扰项。为便于比较,令ĥ=lĤ’ , l<<1, Ĥ’ 的作用相当于Ĥ0,但Ĥ’不等于Ĥ0。。于是 Ĥ=Ĥ0+ lĤ’
第四章 能带理论

4.1.基本概念 4.2.近自由电子近似 4.3.紧束缚近似 4.4.晶体中电子的速度、准动量及有效质量 4.5.固体导电性能的能带理论解释 4.6.晶体中电子的态密度 4.7.能带理论的局限性
4.1.基本概念
4.1.1.能带理论的基本假定 晶体由离子实(原子核+内层电子)和外层的价电子组成。 价电子的哈密顿量应该考虑:价电子的动能,离子实的动 能,价电子之间,离子实之间,价电子与离子实之间的相 互作用势能。 为了简化用单个电子在静止的周期势场中的运动,来描述 晶体中所有等同电子的状态. 在上述假定下,晶体中价电子的哈密顿算符 Ĥ=-ħ22/2m +V(r) ( 4.1.1.1) 其中, V(r+Rn)=V(r), 它包含代替价电子相互作用的平均势 与离子实的周期势。 格矢,Rn=n1a1+ n2a2 + n3a3, n1, n2, n3为整数, a1,a2 ,a3 为晶胞 的单位矢量. r ,电子的位矢.

固体物理6-2 能带理论

固体物理6-2 能带理论

波矢群中的对称操作 4z,mx,my,σ1,σ2 2z, mx,my 4z,mx,my,σ1,σ2 my
σ2
mx
简单立方晶格Oh (m3m)点群:
特殊位置 Γ点 R S ΔT X Γ Z Σ M Λ X点 M点 R点 Δ轴 Z轴 Σ轴 S轴 T轴 Λ轴 k (0, 0, 0) (π/a, 0, 0) (π/a, π/a, 0) (π/a, π/a, π/a) (k, 0, 0) (π/a, k, 0) (k, k, 0) (π/a, k, k) (π/a, π/a, k) (k, k, k) β群 Oh (m3m) D4h (4/mmm) D4h (4/mmm) Oh (m3m) C4V (4mm) C2V (mm2) C2V (mm2) C2V (mm2) C4V (4mm) C3V (3m)
T (α )ψ n ,k ( r ) = T (α ) eikr un ,k ( r )
=e
ik α 1r
un ,k (α 1r )
′ = eiα kr un ,α k ( r ) = ψ n ,α k ( r )
un ,k (α 1r ) 仍以格矢Rl为周期, 由于
可以改写为 由于α是正交变换,
∴ k α 1r = α k r
V = 2 3 8π
∫∫
等能面
dSdk⊥
dE = k E dk⊥
dZ V ∴N (E) = = 3 dE 4π
2. 近自由电子的能态密度 对于自由电子:
∫∫
dS k E
h2k 2 E (0) ( k ) = 2m
的球面
2mE 能量为E的等能面是半径为 k = h2
在球面上
dE h 2 k E = = k dk m

固体物理总结能带理论完全版

固体物理总结能带理论完全版

固体物理总结能带理论完全版目录一、本章难易及掌握要求 (1)二、基本内容 (1)1、三种近似 (1)2、周期场中的布洛赫定理 (2)1)定理的两种描述 (2)2)证明过程: (2)3) 波矢k的取值及其物理意义 (3)3、近自由电子近似 (3)A、非简并情况下 (4)B、简并情况下 (5)C、能带的性质 (6)4、紧束缚近似 (6)5、赝势 (9)6、三种方法的比较 (10)7、布里渊区与能带 (11)8、能态密度及费米面 (11)三、常见习题 (14)简答题部分 (14)计算题部分 (15)一、本章难易及掌握要求要求重点掌握:1)理解能带理论的基本假设与出发点;2)布洛赫定理的描述及证明;3)一维近自由电子近似的模型、求解及波函数讨论,明白三维近自由电子近似的思想;4)紧束缚近似模型及几个典型的结构的计算;5)明白简约布里渊区的概念与能带的意义及应用;6)会计算能态密度及明白费米面的概念。

本章难点:1)对能带理论的思想理解,以及由它衍生出来的的模型的应用。

比如将能带理论应用于区分绝缘体,导体,半导体; 2)对三种模型的证明推导。

了解内容:1)能带的成因及对称性;2)费米面的构造;3)赝势方法;4)旺尼尔函数概念;5)波函数的对称性。

二、基本内容1、三种近似在模型中它用到已经下假设:1)绝热近似:由于电子质量远小于离子质量,电子的运动速度就比离子要大得多。

故相对于电子,可认为离子不动,或者说电子的运动可随时调整来适合离子的运动。

多体问题化为了多电子问题。

2)平均场近似:在上述多电子系统中,可把多电子中的每一个电子,瞧作就是在离子场及其它电子产生的平均场中运动,这种考虑叫平均场近似。

多电子问题化为单电子问题。

3)周期场近似:假定所有离子产生的势场与其它电子的平均势场就是周期势场,其周期为晶格所具有的周期。

单电子在周期性场中。

2、周期场中的布洛赫定理1)定理的两种描述当晶体势场具有晶格周期性时,电子波动方程的解具有以下性质:形式一:()()nik R n r R e r ψψ⋅+=r u u r r v u u v ,亦称布洛赫定理,反映了相邻原包之间的波函数相位差形式二:()()ik rr e u r ψ⋅=r r r r ,亦称布洛赫函数,反映了周期场的波函数可用受)(r u k ϖ调制的平面波表示、其中()()n u r u r R =+r v u u v ,nR ρ取布拉 菲格子的所有格矢成立。

第五章 固体的能带

第五章   固体的能带
2
二、近自由电子的等能曲线和状态密度: 近自由电子的等能曲线和状态密度:
1. 近自由电子状态下在布里渊区出现禁带,电子不能在禁 近自由电子状态下在布里渊区出现禁带, 带中填充,禁带中电子的状态密度为零。 带中填充,禁带中电子的状态密度为零。 2. 同一长度的波矢在不同方向上接近布区边界的程度是不 同的。( )方向最先接近,( )方向最后接近。 同的。(10)方向最先接近,(11)方向最后接近。 。( ,( 3. 远离布区时,近自由电子的等能线和自由电子一样,是 远离布区时,近自由电子的等能线和自由电子一样, 一组同心圆。 一组同心圆。 4. 圆形等能面在 圆形等能面在(10)方向接近布区时,(11)方向仍然远离布 方向接近布区时, 方向接近布区时 方向仍然远离布 方向仍为圆形, 区,故(11)方向仍为圆形,而(10)发生变化。 方向仍为圆形 )发生变化。 5. (10)方向等能面接近布区时,自由电子的波矢长度小 )方向等能面接近布区时, 于近自由电子,状态密度增大,等能线向布区弯曲。 于近自由电子,状态密度增大,等能线向布区弯曲。 6. 当等能线在 当等能线在(10)方向和布区相切,状态密度最大,同时等 方向和布区相切, 方向和布区相切 状态密度最大, 能线破裂,分成四段。此后状态密度随E增加而减小 增加而减小。 能线破裂,分成四段。此后状态密度随 增加而减小。 7. 当等能线在 当等能线在(11)方向与布区相交时,状态密度为零。 方向与布区相交时, 方向与布区相交时 状态密度为零。
3
(一)、近自由电子的等能曲线: )、近自由电子的等能曲线: 近自由电子的等能曲线
二维正方晶格近自由电子的色散关系( )和等能曲线( ) 二维正方晶格近自由电子的色散关系(a)和等能曲线(b)
4
(二)、近自由电子的状态密度: )、近自由电子的状态密度: 近自由电子的状态密度

能带理论-固体物理理论

能带理论-固体物理理论

三 倒格子
基矢+法线取向 周期性的点 米勒指数 倒格子 晶面族 基矢 P点的位矢: 光程差 正格矢
衍射极大值条件 令 则
令 则 倒格矢
若倒格矢写为:
倒格矢和正格矢之间的关系:
反比 倒格矢是电子在市场傅立叶展开的元函数。
四 布里渊区
Wigner-Seitz原胞(WS):以晶格中某一格点为中心, 作其与近邻的所有格点连线的垂直平分面,这些平 面所围成的以该点为中心的凸多面体即为该点的WS 原胞。
周期边界条件(Born-Von Karman)
边界上原子的振动对于晶格振动的色散关系的影响是很小的。 1.固定边界条件 即固定两端的原子不动,得到驻波解。 2.周期边界条件 行波解
波矢是量子化的
七一维双原子链
色散关系
色散关系
声学支 光学支
禁带
光学波&声学波
主要依据长波极限下的性质
&
极化波
长光学波可以利用光波的电磁场激发
假定,所有离子产生的势场和其他电子饿 平均场是周期势场,其周期为晶格的周期。 单电子的薛定谔方程为:
Bloch定理: 周期势场的平移对称性
周期势场中粒子波函数的形式为: 即,波函数不再是平面波,而是调幅的平面波,幅度周期性变化。 另外一种形式:
它表明在不同原胞的对应点上,波函数相差一个位相因子 , 所以不同原胞对应点上,电子出现的几率是相同的,这是晶体周期性的反映。
声子
晶格的振动是一种集体运动形式,表现为不同模式的格波
简正变化,消除交叉项
晶格振动的总Hamiltonian
晶格振动系统的总能量为 能量是量子化的
声子:
特点: 1.准粒子:不是真实的粒子,不能游离于固体之外 2.准动量: 3.Bose子:

固体物理(第14课)能带理论

固体物理(第14课)能带理论
i k Rn
根据布洛定理,有 k ( r Rn ) e e e 因而有:
k (r)
e uk ( r ) uk ( r )
i k Rn i k r i k ( Rn r )
uk ( r Rn ) uk ( r )
i k r
上式表明,在周期场中 运动的单电子,其能量 本征函数
l1、l2、l3 Z
为了确定本征值,引入玻恩-卡门边界条件
( r ) ( r N1a1 ), ( r ) ( r N 2a2 ), ( r ) ( r N 3a3 ),
N1
N N1 N 2 N 3
( r N1a1 ) T1 ( r ) 1 ( r ),
(r) u(r) eikr
比较
势场为0
正离子
周期势场 正离子
电子波函数
周期性势场
势场中电子的波函数
6.1.1 布洛赫定理的证明
平移对称性
晶体势场的周期性是晶格平移对称性的反映,即晶格 在平移对称操作下是不变的。 T(Rn)平移算符表示使r到r+Rn的平移操作相当的算符。 其意义是使T(Rn)作用在任意函数f(r)上产生新的函数 f(Rn+r)。 T(Rn) f(r)= f(Rn+r) 晶体中的平移算符共有N1×N2×N3种 平移算符彼此对易,即:
k ( r N1a1 N 2a2 N 3a3 ) eik( N a N a N a ) k ( r ) 因此有:N1a1 N 2a2 N 3a3 2 n
1 1 2 2 3 3
l1 l2 l3 而此仅当 k b1 b2 b3 N1 N2 N3 时才能满足。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

标准文案目录一、本章难易及掌握要求 (1)二、基本容 (1)1、三种近似 (1)2、周期场中的布洛赫定理 (2)1)定理的两种描述 (2)2)证明过程: (2)3)波矢k的取值及其物理意义 (3)3、近自由电子近似 (3)A、非简并情况下 (4)B、简并情况下 (5)C、能带的性质 (6)4、紧束缚近似 (6)5、赝势 (9)6、三种方法的比较 (10)7、布里渊区与能带 (11)8、能态密度及费米面 (11)三、常见习题 (14)简答题部分 (14)计算题部分 (15)一、本章难易及掌握要求要求重点掌握:1)理解能带理论的基本假设和出发点;2)布洛赫定理的描述及证明;3)一维近自由电子近似的模型、求解及波函数讨论,明白三维近自由电子近似的思想;4)紧束缚近似模型及几个典型的结构的计算;5)明白简约布里渊区的概念和能带的意义及应用;6)会计算能态密度及明白费米面的概念。

本章难点:1)对能带理论的思想理解,以及由它衍生出来的的模型的应用。

比如将能带理论应用于区分绝缘体,导体,半导体;2)对三种模型的证明推导。

了解容:1)能带的成因及对称性;2)费米面的构造;3)赝势方法;4)旺尼尔函数概念;5)波函数的对称性。

二、基本容1、三种近似在模型中它用到已经下假设:1)绝热近似:由于电子质量远小于离子质量,电子的运动速度就比离子要大得多。

故相对于电子,可认为离子不动,或者说电子的运动可随时调整来适合离子的运动。

多体问题化为了多电子问题。

2)平均场近似:在上述多电子系统中,可把多电子中的每一个电子,看作是在离子场及其它电子产生的平均场中运动,这种考虑叫平均场近似。

多电子问题化为单电子问题。

3)周期场近似:假定所有离子产生的势场和其它电子的平均势场是周期势场,其周期为晶格所具有的周期。

单电子在周期性场中。

2、周期场中的布洛赫定理1)定理的两种描述当晶体势场具有晶格周期性时,电子波动方程的解具有以下性质:形式一:()()nik R n r R e r ψψ⋅+=,亦称布洛赫定理,反映了相邻原包之间的波函数相位差形式二:()()ik r r e u r ψ⋅=,亦称布洛赫函数,反映了周期场的波函数可用受)(r u k调制的平面波表示.其中()()n u r u r R =+,n R 取布拉菲格子的所有格矢成立。

2)证明过程:a. 定义平移算符T,)()()()(332211321a T a T a T R T m m m m=b . 证明T 与ˆH 的对易性。

ααHT H T = c.代入周期边界条件,求出T 在T 与ˆH共同本征态下的本征值λ。

即⎪⎩⎪⎨⎧+=+=+=)()(()()()(332211a N r r a N r r a N r r ψψψψψψ321321,,a k i a k i a k i eee⋅⋅⋅===λλλd. 将λ代入T 的本征方程中,注意T 定义,可得布洛赫定理。

)()(321321r R r m m m m ψλλλψ=+)()(332211r ea m a m a m k i ψ++⋅=)()(r u e r k rk i⋅=!3) 波矢k 的取值及其物理意义333222111b N l b N l b N l k++= (2)2j j j N l N ≤<-,k 是第一布里渊区的波失,称简约波矢。

其是平移算符本征值量子数,而)()()(m m R r r R T +=ψψ)(r e mR k i ψ⋅=反映了原胞之间电子波函数位相的变化。

同时也可以得出如果一个势场是周期场,那么可以把其波函数设为布洛赫函数。

3、 近自由电子近似1)思想:假设将周期场的周期起伏看作自由电子稳定势场的微扰 2)条件要求:原子的动能大于势能以使电子可以自由运动,势函数的的起伏很小,以满足微扰论适用,外层电子以满足电子可以自由运动。

3)模型建立过程:首先,在零级近似下,考虑到周期性边界条件得到了波矢的允许取值,推出了能量的准连续性;其次,由于考虑到二级微扰,而推出能量在布区边界处分裂,且发生了能级间的“排斥作用”,于是形成能带和带隙。

A 、非简并情况下1)由假设1>,2>可得系统的哈密顿量和薛定谔方程:'0H H H +=,V dxd m H +-=22202 , 微扰项:V V x V H ∆=-=)(',满足的方程式: ψψE H =.2)利用微扰论方法有设:.)2()1(0 +++=k k k k E E E E ,其中:V m k E k +=2220 ,0|'|)1(>==<k H k E k ,∑-><='0'02)2(|'|'k k k k E E k H k E (K K ≠') 设:.)()()()1(0 ++=x x x k k k ψψψ 其中:ikx k e Lx 1)(0=ψ, 0'''0)1(|'|'k k k k k E E k H k ψψ∑-><= (K K ≠') 4)结论:能量本征值:∑+-++=nn k an k k m V V m k E ])2([2'22222220π 波函数:xani nnikxikxk eank k m V eLeLx ππψ2222])2([211)(∑+-+=5)波函数的意义:第一项是波矢为k 的前进的平面波,第二项是平面波受到周期性势场作用产生的散射波 再令xani nnk eank k m V x u ππ2222])2([21)(∑+-+= ,则有)(1)(x u e Lx k ikx k =ψ具有布洛赫函数形式,其中用到)()(x u ma x u k k =+B 、简并情况下1)n k k V E E >>-0'0此时波矢k 离an π-较远,k 状态的能量和状态k ’差别较大把3*按2002'4()nk k V E E -泰勒级数展开得20'00'2000'n k k k n k k k V E E E E V E E E ±⎧+⎪-⎪=⎨⎪-⎪-⎩ 由于能级间“排斥作用”,量子力学中微扰作用下,两个相互影响的能级总是原来较高的能量提高了,原来较低的能量降低了2)n k k V E E <<-0'0时,波矢k 非常接近an π-,k 状态的能量和k ’能量差别很小按将3*式220'04)(nk k V E E -泰勒级数展开得00200''()1{2}24k k k k n nE E E E E V V ±-=+±+ 代入相应的 0k E ,0'k E 得222(1)2(1)n n n n n n n n n n T V T V T V E T V T V T V ±⎧+++∆+⎪⎪=⎨⎪+--∆-⎪⎩ 22)(2an m T n π =可得如下结论两个相互影响的状态k 和k ’微扰后,能量变为E+和E-,原来能量高的状态能量提高,原来能量低的状态能量降低。

周期性 ()()n n n E k E k G =+ [周期为倒格矢,由晶格平移对称性决定] 反演对称性 ()()n n E k E k =-[()n E k 是个偶函数 ]宏观对称性 ()()n n E k E k α=[ α为晶体的一个点群对称操作]C 、能带的性质简约波矢的取值被限制在简约布里渊区,要标志一个状态需要表明:1)它属于哪一个能带(能带标号) 2)它的简约波矢 k 是什么?3) 能带底部,能量向上弯曲;能带顶部,能量向下弯曲 2) 禁带出现在波矢空间倒格矢的中点处 3) 禁带的宽度n g V V V V E 2,2,2,2321 =4)各能带之间是禁带, 在完整的晶体中,禁带没有允许的能级 5)计入自旋,每个能带中包含2N 个量子态 4、紧束缚近似1)紧束缚近似的假设:电子在原子附近,主要受该原子势场作用,其它原子势场视为微扰作用。

故此时不能用自由电子波函数,而用所有原子的同一电子波函数的线性组合来表示。

不考虑不同原子态间的作用。

它一般要求原子之间的距离较大。

2)模型实现对于简单格子电子在格矢332211a m a m a m R m++=处原子附近运动)(rψ满足的薛定谔方程:)()()](2[22r E r r U mψψ=+∇- )(r U是晶体的周期性势场___所有原子的势 场之和。

对方程进行变换有)()()]()([)()](2[22r E r R r V r U r R r V m m mψψψ=--+-+∇-)()(m R r V r U--即是微扰作用。

设晶体中电子的波函数∑-=mm i m R r a r )()(ϕψ(此法的本质),代入上得:∑∑-=---+mm i m mm i m i m R r a E R r R r V r U a )()()]()([ ϕϕε考虑到当原子间距比原子半径大时,不同格点的)(m i R r-ϕ重叠很有 ,nm n i m ir d R r R r δϕϕ=--⎰ )()(*用)(*n i R r-ϕ左乘上面方程5*,得到∑⎰-=----mn i m im n i m a E r d R r R r V r U R r a )()()]()()[(*εϕϕ)()()]()()][([*m n i m n iR R J d V U R R--=---⎰ξξϕξξξϕ则得∑-=--m n i m n m a E R R J a )()(ε,考虑到周期性的势场,应有mR k i m Cea ⋅=,(k 是任意常数矢量),则有∑⋅--=-sR k i s i s e R J E )(ε,m n s R R R-=利用归一化条件则得:晶体中电子的波函数∑-=⋅mm i R k i k R r eNr m)(1)(ϕψ考虑用简约波失表示有])([1)()(∑-=-⋅-⋅mm i R r k i r k i k R r e e N r mϕψ,由此可得 对于确定k ,∑⋅--=sRk i s i s e R J k E )()(ε,而且实现了N 个晶体中的电子波函数与束缚态的波函数的幺正变换换:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛⋅⋅⋅⋅⋅⋅⋅⋅⋅)()()(,,,12121222121211121N ii i R k i R k i R k i R k i R k i R k i R k i R k i R k i k k k R r R r R r e e ee e e e e e N N N N N NNNϕϕϕψψψ 3)模型简化:考虑ξξϕξξξϕ d V U R R J i s i s })()]()()[()(*⎰--=-的化简:当)()(*ξϕξϕi s iR 和-有重叠时,积分不为0。

相关文档
最新文档