(完整word版)复试材料力学重点知识点总结(二轮主要)
(完整word版)材料力学知识点总结

材料力学总结一、基本变形二、还有:(1)外力偶矩:)(9549m N nNm •= N —千瓦;n —转/分 (2)薄壁圆管扭转剪应力:tr T22πτ=(3)矩形截面杆扭转剪应力:hb G Th b T 32max ;βϕατ==三、截面几何性质(1)平行移轴公式:;2A a I I ZC Z += abA I I c c Y Z YZ += (2)组合截面: 1.形 心:∑∑===ni ini cii c AyA y 11; ∑∑===ni ini cii c AzA z 112.静 矩:∑=ci i Z y A S ; ∑=ci i y z A S 3. 惯性矩:∑=i Z Z I I )( ;∑=i y y I I )(四、应力分析:(1)二向应力状态(解析法、图解法)a . 解析法: b.应力圆:σ:拉为“+”,压为“-” τ:使单元体顺时针转动为“+”α:从x 轴逆时针转到截面的 法线为“+”ατασσσσσα2sin 2cos 22x yx yx --++=ατασστα2cos 2sin 2x yx +-=yx xtg σστα--=220 22minmax 22x y x yx τσσσσσ+⎪⎪⎭⎫⎝⎛-±+=c :适用条件:平衡状态(2)三向应力圆:1max σσ=; 3min σσ=;231max σστ-=x(3)广义虎克定律:[])(13211σσνσε+-=E [])(1z y x x E σσνσε+-=[])(11322σσνσε+-=E [])(1x z y y E σσνσε+-=[])(12133σσνσε+-=E [])(1y x z z E σσνσε+-=*适用条件:各向同性材料;材料服从虎克定律(4)常用的二向应力状态 1.纯剪切应力状态:τσ=1 ,02=σ,τσ-=32.一种常见的二向应力状态:223122τσσσ+⎪⎭⎫⎝⎛±=2234τσσ+=r2243τσσ+=r五、强度理论*相当应力:r σ11σσ=r ,313σσσ-=r ,()()()][212132322214σσσσσσσ-+-+-=r σxσ六、材料的力学性质脆性材料 δ<5% 塑性材料 δ≥5%低碳钢四阶段: (1)弹性阶段(2)屈服阶段 (3)强化阶段 (4)局部收缩阶段 强度指标 σσb s ,塑性指标 δψ,E tg ==σα七.组合变形ε八、压杆稳定欧拉公式:2min2)(l EI P cr μπ=,22λπσE cr =,应用范围:线弹性范围,σcr <σp ,λ>λp柔度:iul =λ;ρρσπλE=;ba s σλ-=0,柔度是一个与杆件长度、约束、截面尺寸、 形状有关的数据,λ↑P cr ↓σcr ↓λ>λp ——大柔度杆:22λπσE cr =λo <λ<λp ——中柔度杆:σcr=a-b λλ<λ0——小柔度杆:σcr =σs稳定校核:安全系数法:w I cr n P P n ≥=,折减系数法:][σϕσ≤=AP提高杆件稳定性的措施有:1、减少长度2、选择合理截面3、加强约束4、合理选择材料九、交变应力金属疲劳破坏特点:应力特征:破坏应力小于静荷强度; 断裂特征:断裂前无显著塑性变形; 断口特征:断口成光滑区和粗糙区。
材料力学II复习要点(1)

《材料力学Ⅱ》复习要点第一章 绪论材料力学的任务及研究对象;变形固体的基本假设;外力与内力、截面法、应力应变的基本概念;杆件变形的基本形式。
第二章 拉伸、压缩与剪切轴向拉伸、压缩的概念;轴力和轴力图的画法;横截面和斜截面上的应力计算以及拉(压)杆的变形计算、胡克定律;材料在拉伸、压缩时的力学性质;强度条件的应用、应力集中的概念;拉(压)杆的超静定问题的应用;应变能和比能;剪切的概念、剪切和挤压的实用计算。
第三章 扭转扭转概念,扭矩及扭矩图的画法;剪切胡克定律;圆轴扭转时的应力与应变的计算;扭转强度及刚度条件的应用。
第四章 弯曲内力平面弯曲的概念;剪力、弯矩方程及相应的剪力、弯矩图的画法;M F q S --的微分关系;可以利用微分关系画出梁的剪力、弯矩图;刚架内力图的画法。
第五章 弯曲应力纯弯曲和横力弯曲梁横截面上各点正应力的计算,梁按正应力的强度条件及应用;矩形截面梁的弯曲剪应力计算;提高梁弯曲强度的措施。
第六章 弯曲变形梁的挠度及转角概念;挠曲线近似微分方程,位移边界条件与连续条件,积分法、叠加法求梁变形计算;简单超静定梁的应用;梁的刚度校核,提高梁弯曲刚度的措施。
第七章 应力和应变分析 强度理论点的应力状态的概念;平面应力状态下应力分析的解析法及图解法的应用;广义胡克定律,体积应变的概念;体积胡克定律;强度理论的概念;四种常见的强度理论及其相当应力。
第八章 组合变形拉伸(压缩)与弯曲组合、扭转与弯曲组合的应力计算及强度条件的应用。
第九章 压杆稳定压杆稳定性的概念;两端铰支中心受压细长压杆的临界力公式,杆端不同约束时的临界压力公式;临界应力、欧拉公式的适用范围;细长临界应力求解、欧拉公式的应用;提高压杆稳定性措施。
第十章 动载荷动静法的应用;自由落体冲击时,构件动相应的计算。
第十一章 交变应力掌握交变应力下杆件的受力及变形。
第十三章 能量方法应变能,功的互等定理,卡氏第二定理;虚功原理的概念与单位载荷法的应用;图乘法的应用。
材料力学知识点归纳总结(完整版)

材料力学知识点归纳总结(完整版)1.材料力学:研究构件(杆件)在外力作用下内力、变形、以及破坏或失效一般规律的科学,为合理设计构件提供有关强度、刚度、稳定性等分析的基本理论和方法。
2.理论力学:研究物体(刚体)受力和机械运动一般规律的科学。
3.构件的承载能力:为保证构件正常工作,构件应具有足够的能力负担所承受的载荷。
构4.件应当满足以下要求:强度要求、刚度要求、稳定性要求5.变形固体的基本假设:材料力学所研究的构件,由各种材料所制成,材料的物质结构和性质虽然各不相同,但都为固体。
任何固体在外力作用下都会发生形状和尺寸的改变——即变形。
因此,这些材料统称为变形固体。
第二章:内力、截面法和应力概念1.内力的概念:材料力学的研究对象是构件,对于所取的研究对象来说,周围的其他物体作用于其上的力均为外力,这些外力包括荷载、约束力、重力等。
按照外力作用方式的不同,外力又可分为分布力和集中力。
2.截面法:截面法是材料力学中求内力的基本方法,是已知构件外力确定内力的普遍方法。
已知杆件在外力作用下处于平衡,求m-m截面上的内力,即求m-m截面左、右两部分的相互作用力。
首先假想地用一截面m-m截面处把杆件裁成两部分,然后取任一部分为研究对象,另一部分对它的作用力,即为m-m截面上的内力N。
因为整个杆件是平衡的,所以每一部分也都平衡,那么,m-m截面上的内力必和相应部分上的外力平衡。
由平衡条件就可以确定内力。
例如在左段杆上由平衡方程N-F=0 可得N=F3.综上所述,截面法可归纳为以下三个步骤:1、假想截开在需求内力的截面处,假想用一截面把构件截成两部分。
2、任意留取任取一部分为究研对象,将弃去部分对留下部分的作用以截面上的内力N来代替。
3、平衡求力对留下部分建立平衡方程,求解内力。
4.应力的概念:用截面法确定的内力,是截面上分布内力系的合成结果,它没有表明该分布力系的分布规律,所以,为了研究相伴的强度,仅仅知道内力是不够的。
(完整版)材料力学各章重点内容总结

材料力学各章重点内容总结第一章 绪论一、材料力学中工程构件应满足的3方面要求是:强度要求、刚度要求和稳定性要求。
二、强度要求是指构件应有足够的抵抗破坏的能力;刚度要求是指构件应有足够的抵抗变形的能力;稳定性要求是指构件应有足够的保持原有平衡形态的能力。
三、材料力学中对可变形固体进行的3个的基本假设是:连续性假设、均匀性假设和各向同性假设。
第二章 轴向拉压一、轴力图:注意要标明轴力的大小、单位和正负号。
二、轴力正负号的规定:拉伸时的轴力为正,压缩时的轴力为负。
注意此规定只适用于轴力,轴力是内力,不适用于外力。
三、轴向拉压时横截面上正应力的计算公式:N F Aσ= 注意正应力有正负号,拉伸时的正应力为正,压缩时的正应力为负。
四、斜截面上的正应力及切应力的计算公式:2cos ασσα=,sin 22αστα=注意角度α是指斜截面与横截面的夹角。
五、轴向拉压时横截面上正应力的强度条件[],maxmax N F A σσ=≤六、利用正应力强度条件可解决的三种问题:1.强度校核[],maxmax N F A σσ=≤一定要有结论 2.设计截面[],maxN F A σ≥ 3.确定许可荷载[],max N F A σ≤七、线应变l l ε∆=没有量纲、泊松比'εμε=没有量纲且只与材料有关、 胡克定律的两种表达形式:E σε=,N F l l EA∆= 注意当杆件伸长时l ∆为正,缩短时l ∆为负。
八、低碳钢的轴向拉伸实验:会画过程的应力-应变曲线,知道四个阶段及相应的四个极限应力:弹性阶段(比例极限p σ,弹性极限e σ)、屈服阶段(屈服极限s σ)、强化阶段(强度极限b σ)和局部变形阶段。
会画低碳钢轴向压缩、铸铁轴向拉伸和压缩时的应力-应变曲线。
九、衡量材料塑性的两个指标:伸长率1100l l lδ-︒=⨯︒及断面收缩率1100A A Aϕ-︒=⨯︒,工程上把5δ︒≥︒的材料称为塑性材料。
十、卸载定律及冷作硬化:课本第23页。
材料力学主要知识点归纳

材料力学主要知识点一、基本概念1、构件正常工作的要求:强度、刚度、稳定性。
2、可变形固体的两个基本假设:连续性假设、均匀性假设。
另外对于常用工程材料(如钢材),还有各向同性假设。
3、什么是应力、正应力、切应力、线应变、切应变。
杆件截面上的分布内力集度,称为应力。
应力的法向分量σ称为正应力,切向分量τ称为切应力。
杆件单位长度的伸长(或缩短),称为线应变;单元体直角的改变量称为切应变。
4、低碳钢工作段的伸长量与荷载间的关系可分为以下四个阶段:弹性阶段、屈服阶段、强化阶段、局部变形阶段。
5、应力集中:由于杆件截面骤然变化(或几何外形局部不规则)而引起的局部应力骤增现象,称为应力集中。
6、强度理论及其相当应力(详见材料力学ⅠP229)。
7、截面几何性质A 、截面的静矩及形心①对x 轴静矩⎰=A x ydA S ,对y 轴静矩⎰=Ay xdA S ②截面对于某一轴的静矩为0,则该轴必通过截面的形心;反之亦然。
B 、极惯性矩、惯性矩、惯性积、惯性半径① 极惯性矩:⎰=A P dA I 2ρ② 对x 轴惯性矩:⎰=A x dA y I 2,对y 轴惯性矩:⎰=A y dA x I 2 ③ 惯性积:⎰=Axy xydA I ④ 惯性半径:A I i x x =,A I i y y =。
C 、平行移轴公式: ① 基本公式:A a aS I I xc xc x 22++=;A b bS I I yc yc y 22++= ;a 为x c 轴距x 轴距离,b为y c 距y 轴距离。
② 原坐标系通过截面形心时A a I I xc x 2+=;A b I I yc y 2+=;a 为截面形心距x 轴距离,b 为截面形心距y 轴距离。
二、杆件变形的基本形式1、轴向拉伸或轴向压缩:A 、应力公式 AF =σ B 、杆件伸长量EA F N l l =∆,E 为弹性模量。
C 、应变公式E σε=D 、对于偏心拉压时,通常将荷载转换为轴心受力与偏心矩进行叠加。
材料力学复习总结知识点

A、30 B、 35 C、 40 D、 70
基工本字变 形形截面方拉:校(形压核) 主销应力将扭。转两块等弯曲厚度的板连接在一起,上面的板中同时
根据弯矩图判断可能的危险截面为:A和D左截面,可能的危险点为:A截面的上边缘点和D左截面的下边缘点产生最大的拉应力,D左
存在拉应力σ、剪应力τ、挤压应力σ ,比较其数值大小 截已面知的 轴上的边许缘用点剪产应生力最为大[τ]的=压60应MP力a,. 剪变模量为G=80GPa,许用转角为[θ]=20/mb。s
m ax [ ]
二、应力状态
1. 平面应力状态: 解析法(公式)
2. 三向应力状态:
ma x1, ma x1 23
3. 广义胡克定律:
1
1 E
[ 1
( 2
3 )]
2
1 E
[ 2
( 3
1 )]
3
1 E
[ 3
( 1
2 )]
4. 强度理论:建立复杂应力状态下的强度条件
r [] 其中
r1, r2, r3, r4
三、压杆稳定
1. 欧拉公式:
Fcr
2 EI ( l)2
(适用范围:细长杆)
2. 压杆的柔度:
细长杆
P
cr
2E 2
中长杆
0 P
cr ab
长度因数(反应约况 束) 情
l
i
i l
截面形状、大小 杆长
σ σcr=σs
临界应力总图
σs
A
粗短杆
σcr=a−bλ
可得( ) 基本变形 拉(压)
扭转
弯曲
基本变形 拉(压) 扭转
弯曲
材料力学的两项基本任务:
BC杆为正方形截面,边长a=70mm,C端也是球铰。
(完整版)材料力学复习重点汇总

6.有效裂纹长度:将原有的裂纹长度与松弛后的塑性区相重合并得到的裂纹长度【新P74;旧P86】。
五、试述应力场强度因子的意义及典型裂纹 的表达式
答:应力场强度因子 :表示应力场的强弱程度。 在裂纹尖端区域各点的应力分量除了决定于位置外,尚与强度因子 有关,对于某一确定的点,其应力分量由 确定, 越大,则应力场各点应力分量也越大,这样 就可以表示应力场的强弱程度,称 为应力场强度因子。 “I”表示I型裂纹。 几种裂纹的 表达式,无限大板穿透裂纹: ;有限宽板穿透裂纹: ;有限宽板单边直裂纹: 当b a时, ;受弯单边裂纹梁: ;无限大物体内部有椭圆片裂纹,远处受均匀拉伸: ;无限大物体表面有半椭圆裂纹,远处均匀受拉伸:A点的 。
六、试述冲击载荷作用下金属变形和断裂的特点。
冲击载荷下,瞬时作用于位错的应力相当高,结果使位错运动速率增加,因为位错宽度及其能量与位错运动速率有关,运动速率越大,则能量越大,宽度越小,故派纳力越大。结果滑移临界切应力增大,金属产生附加强化。
由于冲击载荷下应力水平比较高,将使许多位错源同时开动,增加了位错密度和滑移系数目,出现孪晶,减少了位错运动自由行程的平均长度,增加了点缺陷的浓度。这些原因导致金属材料在冲击载荷作用下塑性变形极不均匀且难以充分进行,使材料屈服强度和抗拉强度提高,塑性和韧性下降,导致脆性断裂。
4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。
6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。
9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。
(完整版)材料力学知识点总结

一、基本变形材料力学总结变形现象: 平面假设: 应变规律: = d ∆l = 常数dx变形现象:平面假设: 应变规律:=d = dx变形现象:平面假设: 应变规律:= y= N =T= T = MyI Z = M max WZ= QS * z I z b = QS max max I bz max W= E (单向应力状态) = G(纯剪应力状态)=⎛ N ⎫≤ []maxA ⎪ ⎝ ⎭max[]=un塑材:u=s 脆材:u =bmax= ⎛ T ⎫ ≤ [] ⎪ ⎝ W t ⎭max弯曲正应力 1. [t ]= [c ]max≤ []2. [t ]≠ [c ] t max ≤ [t ] cmac ≤ [c ]弯曲剪应力=Q max S max ≤ [] max I bz轴向拉压扭转弯曲刚度条=T ⋅180 ≤[]max GIP注意:单位统一ymax≤[y]max≤[]件变形d∆l=N ; ∆L =NLdx EA EAEA—抗拉压刚度=d=Tdx GIZ=TLGIPGI p—抗扭刚度1=M (x)(x) EIy '' =M (x)EIEI—抗弯刚度应用条件应力在比例极限圆截面杆,应力在比例极限小变形,应力在比例极限矩形A=bhbh 3bh 2IZ=12;WZ=6实心圆A= d 24d4d3IP=32;Wt=16d4d3IZ=64;WZ=32空心圆D 2A =(1-2)4d44IP=32(1 -)d 3W =(1 -4)t16d 4I =(1-4)Z64d34WZ=32(1-)其(1)'剪切(1)强度条件:=Q≤[]A—剪切面积A(2)挤压条件:=P bs ≤[]bs A bsJA j—挤压面积矩形:=3Qmax 2 A圆形:=4Qmax 3A环形:= 2Qmax Amax均发生在中性轴上它公(2)GE式2(1 )二、还有:(1)外力偶矩:m = 9549 N (N •m)n(2)薄壁圆管扭转剪应力:=TN—千瓦;n—转/分2r 2t(3)矩形截面杆扭转剪应力:max =Tb2h;=TG b3hDB c AD 'Z ZC c cn n三、截面几何性质(1)平行移轴公式:I =I +a 2A;(2)组合截面:IYZ=IZ Y+abA1.形心:y c∑A i y ci=i =1 ;∑A ii =1∑A i z ciz =i =1∑A ii =12.静矩:S Z =∑A i y ci ;S y =∑A i z ci3.惯性矩:I Z =∑(I Z ) i ;I y =∑(I y ) i四、应力分析:(1)二向应力状态(解析法、图解法)a.解析法: b.应力圆:n σ:拉为“+”,压为“-”xτ:使单元体顺时针转动为“+”x yx y cos 2sin 2α:从x 轴逆时针转到截面的法线为“+”2 2 xx y sin 2cos 22 xtg22xmaxminxx yy2c:适用条件:平衡状态(2)三向应力圆:;; 1 3max 1 min 3 max 2nn2x y22xyxc121223311(3) 广义虎克定律:1(1 (1E 123xE xyz1 ( 1(2E 231yE yzx1(1(3E3 1 2zExy*适用条件:各向同性材料;材料服从虎克定律(4) 常用的二向应力状态 31. 纯剪切应力状态:1,20 ,3x2. 一种常见的二向应力状态:132r 3r 4五、强度理论破坏形式脆性断裂塑性断裂强度理论 第一强度理论(最大拉应力理论)莫尔强度理论 第三强度理论 (最大剪应力理论) 第四强度理论(形状改变比能理论) 破坏主要因素 单元体内的最大拉应力单元体内的最大剪应力单元体内的改变比能破坏条件 1 = bmax =su f = u fs强度条件 1 ≤ [] 1-3≤ []适用条件 脆性材料 脆性材料 塑性材料 塑性材料*相当应力:r,,]r 11r 313r 4222242232r=2+42≤[]=2+32≤[]4r22(M +N ) + 4≤ []r3 =r=(M+N)2+32≤[]WM 2 +T 2r3 =圆截面WM 2 + 0.75T 2r4=(M+N)2 + 4(T)2W Z A W t(M+N)2 + 4(T)2W Z A W t α 中性轴ZMpr3 =≤ []r 4 =≤ []i 2I Z*y =-=-ZAe y e ytg=y=-I ZtgZ I y中性轴Z≤ []Z≤ []A W≤ []P Mmax =±max ±max≤ []sincos( +)W Z W y=max maxM强度条件43=±P ±MA W)I yI Z=M (y c os+z s in公式简图弯扭拉(压)弯扭拉(压)弯斜弯曲类型六、材料的力学性质脆性材料<5%塑性材料≥5%低碳钢四阶段:(1)弹性阶段(2)屈服阶段(3)强化阶段(4)局部收缩阶段b强度指标s ,b e sα塑性指标,tg E七.组合变形只有σs,无σbb剪断断口垂直轴线拉断断口与轴夹角45ºb45º拉断铸铁断口垂直轴线剪断s b 滑移线与轴线45︒,剪45低碳钢扭压拉八、压杆稳定欧拉公式: P=2EI min,=2E,应用范围:线弹性范围,σ<σ ,λ>λcr(l ) 2cr2crpp柔度:=ul;=E;0 =a -s, σib柔度是一个与杆件长度、约束、截面尺寸、形状有关的数据,λ↑P cr ↓σcr ↓λ>λp ——大柔度杆:cr =2E2临界应力λo <λ<λp ——中柔度杆:σcr=a-b λλ<λ0——小柔度杆:σcr =σsλoλPλ稳定校核:安全系数法: n P c rP I n w ,折减系数法:P []A提高杆件稳定性的措施有: 1、减少长度2、选择合理截面3、加强约束4、合理选择材料九、交变应力金属疲劳破坏特点:应力特征:破坏应力小于静荷强度; 断裂特征:断裂前无显著塑性变形; 断口特征:断口成光滑区和粗糙区。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复试面试材力重点总结一. 材料力学的一些基本概念1. 材料力学的任务:解决安全可靠与经济适用的矛盾。
研究对象:杆件强度:抵抗破坏的能力刚度:抵抗变形的能力稳定性:细长压杆不失稳。
2. 材料力学中的物性假设连续性:物体内部的各物理量可用连续函数表示。
均匀性:构件内各处的力学性能相同。
各向同性:物体内各方向力学性能相同。
3. 材力与理力的关系, 内力、应力、位移、变形、应变的概念 材力与理力:平衡问题,两者相同;理力:刚体,材力:变形体。
内力:附加内力。
应指明作用位置、作用截面、作用方向、和符号规定。
应力:正应力、剪应力、一点处的应力。
应了解作用截面、作用位置(点)、作用方向、和符号规定。
正应力⎩⎨⎧拉应力压应力应变:反映杆件的变形程度⎩⎨⎧角应变线应变变形基本形式:拉伸或压缩、剪切、扭转、弯曲。
4. 物理关系、本构关系虎克定律;剪切虎克定律:⎪⎩⎪⎨⎧==∆=Gr EA Pl l E τεσ夹角的变化。
剪切虎克定律:两线段——拉伸或压缩。
拉压虎克定律:线段的 适用条件:应力~应变是线性关系:材料比例极限以内。
5. 材料的力学性能(拉压):一张σ-ε图,两个塑性指标δ、ψ,三个应力特征点:b s p σσσ、、,四个变化阶段:弹性阶段、屈服阶段、强化阶段、颈缩阶段。
拉压弹性模量E ,剪切弹性模量G ,泊松比v ,)(V E G +=12 塑性材料与脆性材料的比较:6. 安全系数、 许用应力、工作应力、应力集中系数安全系数:大于1的系数,使用材料时确定安全性与经济性矛盾的关键。
过小,使构件安全性下降;过大,浪费材料。
许用应力:极限应力除以安全系数。
塑性材料 []ss n σσ= s σσ=0 脆性材料 []bb n σσ= b σσ=07. 材料力学的研究方法 1) 所用材料的力学性能:通过实验获得。
2) 对构件的力学要求:以实验为基础,运用力学及数学分析方法建立理论,预测理论应用的未来状态。
3) 截面法:将内力转化成“外力”。
运用力学原理分析计算。
8.材料力学中的平面假设寻找应力的分布规律,通过对变形实验的观察、分析、推论确定理论根据。
1) 拉(压)杆的平面假设实验:横截面各点变形相同,则内力均匀分布,即应力处处相等。
2) 圆轴扭转的平面假设实验:圆轴横截面始终保持平面,但刚性地绕轴线转过一个角度。
横截面上正应力为零。
3) 纯弯曲梁的平面假设实验:梁横截面在变形后仍然保持为平面且垂直于梁的纵向纤维;正应力成线性分布规律。
9 小变形和叠加原理小变形:①梁绕曲线的近似微分方程②杆件变形前的平衡③切线位移近似表示曲线④力的独立作用原理叠加原理:①叠加法求内力②叠加法求变形。
10 材料力学中引入和使用的的工程名称及其意义(概念)1) 荷载:恒载、活载、分布荷载、体积力,面布力,线布力,集中力,集中力偶,极限荷载。
2) 单元体,应力单元体,主应力单元体。
3) 名义剪应力,名义挤压力,单剪切,双剪切。
4) 自由扭转,约束扭转,抗扭截面模量,剪力流。
5) 纯弯曲,平面弯曲,中性层,剪切中心(弯曲中心),主应力迹线,刚架,跨度, 斜弯曲,截面核心,折算弯矩,抗弯截面模量。
6) 相当应力,广义虎克定律,应力圆,极限应力圆。
7) 欧拉临界力,稳定性,压杆稳定性。
8)动荷载,交变应力,疲劳破坏。
二. 杆件四种基本变形的公式及应用1. 四种基本变形:2. 四种基本变形的刚度,都可以写成:刚度 = 材料的物理常数×截面的几何性质1)物理常数:某种变形引起的正应力:抗拉(压)弹性模量E;某种变形引起的剪应力:抗剪(扭)弹性模量G。
2)截面几何性质:拉压和剪切:变形是截面的平移:取截面面积 A;扭转:各圆截面相对转动一角度或截面绕其形心转动:取极惯性矩ρI;I。
梁弯曲:各截面绕轴转动一角度:取对轴的惯性矩Z3. 四种基本变形应力公式都可写成:应力=截面几何性质内力 对扭转的最大应力:截面几何性质取抗扭截面模量max ρ=ρI W p对弯曲的最大应力:截面几何性质取抗弯截面模量maxy I W Z Z =4. 四种基本变形的变形公式,都可写成:变形=刚度长度内力⨯因剪切变形为实用计算方法,不考虑计算变形。
弯曲变形的曲率 221dxy d x ±=ρ)(,一段长为 l 的纯弯曲梁有: z x EI l M x l =ρ=θ)(补充与说明:1、关于“拉伸与压缩”指简单拉伸与简单压缩,即拉力或压力与杆的轴线重合;若外荷载作用线不与轴线重合,就成为拉(压)与弯曲的组合变形问题;杆的压缩问题,要注意它的长细比λ(柔度)。
这里的简单压缩是指“小柔度压缩问题”。
2、关于“剪切”实用性的强度计算法,作了剪应力在受剪截面上均匀分布的假设。
要注意有不同的受剪截面:a.单面受剪:受剪面积是铆钉杆的横截面积;b.双面受剪:受剪面积有两个:考虑整体结构,受剪面积为2倍销钉截面积;运用截面法,外力一分为二,受剪面积为销钉截面积。
c.圆柱面受剪:受剪面积以冲头直径d为直径,冲板厚度t 为高的圆柱面面积。
3.关于扭转表中公式只实用于圆形截面的直杆和空心圆轴。
等直圆杆扭转的应力和变形计算公式可近似分析螺旋弹簧的应力和变形问题是应用杆件基本变形理论解决实际问题的很好例子。
4.关于纯弯曲纯弯曲,在梁某段剪力Q=0时才发生,平面假设成立。
横力弯曲(剪切弯曲)可以视作剪切与纯弯曲的组合,因剪应力平行于截面,弯曲正应力垂直于截面,两者正交无直接联系,所以由纯弯曲推导出的正应力公式可以在剪切弯曲中使用。
5.关于横力弯曲时梁截面上剪应力的计算问题为计算剪应力,作为初等理论的材料力学方法作了一些巧妙的假设和处理,在理解矩形截面梁剪应力公式时,要注意以下几点:1) 无论作用于梁上的是集中力还是分布力,在梁的宽度上都是均匀分布的。
故剪应力在宽度上不变,方向与荷载(剪力)平行。
2) 分析剪应力沿梁截面高度分布变化规律时,若仅在截面内,有Q bdh h n =τ⎰)(,因 )(h τ=τ 的函数形式未知,无法积分。
但由剪应力互等定理,考虑微梁段左、右内力的平衡,可以得出:b I QS z Z *=τ剪应力在横截面上沿高度的变化规律就体现在静矩*z S 上,*z S 总是正的。
剪应力公式及其假设:a.矩形截面假设1:横截面上剪应力τ与矩形截面边界平行,与剪应力Q 的方向一致;假设2:横截面上同一层高上的剪应力相等。
剪应力公式:b I y QS y z z )()(*=τ ,⎥⎦⎤⎢⎣⎡-=22*22y y b y S Z)()( 平均ττ2323max=⋅=bh Q b. 非矩形截面积 假设1: 同一层上的剪应力τ作用线通过这层两端边界的切线交点,剪应力的方向与剪力的方向。
假设2:同一层上的剪应力在剪力Q 方向上的分量y τ相等。
剪应力公式:z z y I y b y QS y )()()(*=τ2322*)(32)(y R y S z -=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-ℜ•=222134)(R y Q y y πτ 平均ττ34max =c.薄壁截面假设1:剪应力τ与边界平行,与剪应力谐调。
假设2:沿薄壁t ,τ均匀分布。
剪应力公式:z z tI QS *=τ学会运用“剪应力流”概念确定截面上剪应力的方向。
三.梁的内力方程,内力图,挠度,转角☐ 遵守材料力学中对剪力 Q 和弯矩 M 的符号规定。
☐在梁的横截面上,总是假定内力方向与规定方向一致,从统一的坐标原点出发划分梁的区间,且把梁的坐标原点放在梁的左端(或右端),使后一段的弯矩方程中总包括前面各段。
☐ 均布荷载 q 、剪力Q 、弯矩M 、转角θ、挠度 y 间的关系:由: ,M dxy d EI =22 Q dx dM =, q dx dQ = 有 )()(x q dxy d EI x Q dx dM dx y d EI ===4433 设坐标原点在左端,则有:q : q dxy d EI =44, q 为常值 Q : A qx dxy d EI +=33 :M B Ax x q dxy d EI ++=2222 :θ C Bx x A x q dx dy EI +++=2326 :y D Cx x B x A x q y EI ++++=⋅2342624 其中A 、B 、C 、D 四个积分常数由边界条件确定。
例如,如图示悬臂梁:则边界条件为:430080600000l q D y l q C B M A Q l x l x x x =→=-=→=θ=→==→=====||||8624434ql x ql x q y EI +-=⋅ EI ql yx 840==截面法求内力方程: 内力是梁截面位置的函数,内力方程是分段函数,它们以集中力偶的作用点,分布的起始、终止点为分段点;1) 在集中力作用处,剪力发生突变,变化值即集中力值,而弯矩不变;2) 在集中力偶作用处,剪力不变,弯矩发生突变,变化值即集中力偶值;3) 剪力等于脱离梁段上外力的代数和。
脱离体截面以外另一端,外力的符号同剪力符号规定,其他外力与其同向则同号,反向则异号;4)弯矩等于脱离体上的外力、外力偶对截面形心截面形心的力矩的代数和。
外力矩及外力偶的符号依弯矩符号规则确定。
梁内力及内力图的解题步骤:1)建立坐标,求约束反力;2)划分内力方程区段;3)依内力方程规律写出内力方程;4)运用分布荷载q、剪力Q、弯矩M的关系作内力图;关系:()()()()()()⎪⎩⎪⎨⎧+=+====⎰⎰dcdcCDCDxdxQMMxdxqQQxQdxdMxqdxdQdxMd,22规定:①荷载的符号规定:分布荷载集度q向上为正;②坐标轴指向规定:梁左端为原点,x轴向右为正。
剪力图和弯矩图的规定:剪力图的Q轴向上为正,弯矩图的M轴向下为正。
5)作剪力图和弯矩图:①无分布荷载的梁段,剪力为常数,弯矩为斜直线;Q>0,M图有正斜率(﹨);Q<0,有负斜率(/);②有分布荷载的梁段(设为常数),剪力图为一斜直线,弯矩图为抛物线;q<0,Q图有负斜率(﹨),M 图下凹(︶);q>0,Q图有正斜率(/),M图上凸(︵);③ Q=0的截面,弯矩可为极值;④ 集中力作用处,剪力图有突变,突变值为集中力之值,此处弯矩图的斜率也突变,弯矩图有尖角;⑤ 集中力偶作用处,剪力图无变化,弯矩图有突变,突变值为力偶之矩;⑥ 在剪力为零,剪力改变符号,和集中力偶作用的截面(包括梁固定端截面),确定最大弯矩(max M );⑦ 指定截面上的剪力等于前一截面的剪力与该两截面间分布荷载图面积值的和;指定截面积上的弯矩等于前一截面的弯矩与该两截面间剪力图面积值的和。
共轭梁法求梁的转角和挠度:要领和注意事项:1) 首先根据实梁的支承情况,确定虚梁的支承情况2) 绘出实梁的弯矩图,作为虚梁的分布荷载图。