倒立摆模型
(完整版)一级倒立摆系统分析

一级倒立摆的系统分析一、倒立摆系统的模型建立如图1-1所示为一级倒立摆的物理模型图1-1 一级倒立摆物理模型对于上图的物理模型我们做以下假设:M:小车质量m:摆杆质量b:小车摩擦系数l:摆杆转动轴心到杆质心的长度I:摆杆惯量F:加在小车上的力x:小车位置ɸ:摆杆与垂直向上方向的夹角θ:摆杆与垂直向下方向的夹角(考虑到摆杆初始位置为竖直向下)图1-2是系统中小车和摆杆的受力分析图。
其中,N和P为小车与摆杆相互作用力的水平和垂直方向的分量。
注意:实际倒立摆系统中的检测和执行装置的正负方向已经完全确定,因而矢量方向定义如图所示,图示方向为矢量正方向。
图1-2 小车及摆杆受力分析分析小车水平方向受力,可以得到以下方程:M ẍ=F-bẋ-N (1-1)由摆杆水平方向的受力进行分析可以得到以下方程:N =md 2dt 2(x +l sin θ) (1-2)即: N =mẍ+mlθcos θ−mlθ2sin θ (1-3)将这个等式代入式(1-1)中,可以得到系统的第一个运动方程: (M +m )ẍ+bẋ+mlθcos θ−mlθ2sin θ=F (1-4)为推出系统的第二个运动方程,我们对摆杆垂直方向上的合力进行分析,可以得出以下方程: P −mg =md 2dt 2(l cos θ) (1-5)P −mg =− mlθsin θ−mlθ2cos θ (1-6) 利用力矩平衡方程可以有:−Pl sinθ−Nl cosθ=Iθ (1-7)注意:此方程中的力矩方向,由于θ=π+ɸ,cosɸ=−cosθ,sinɸ=−sinθ,所以等式前面含有负号。
合并两个方程,约去P和N可以得到第二个运动方程:(I+ml2)θ+mgl sinθ=−mlẍcosθ (1-8)设θ=π+ɸ,假设ɸ与1(单位是弧度)相比很小,即ɸ<<1,则可以进行近似处理:cosθ=−1,sinθ=−ɸ,(dθdt )2=0。
用u来代表被控对象的输入力F,线性化后的两个运动方程如下:{(I+ml2)ɸ−mglɸ=mlẍ(M+m)ẍ+bẋ−mlɸ=u(1-9)假设初始条件为0,则对式(1-9)进行拉普拉斯变换,可以得到:{(I+ml2)Φ(s)s2−mglΦ(s)=mlX(s)s2(M+m)X(s)s2+bX(s)s−mlΦ(s)s2=U(s) (1-10) 由于输出为角度ɸ,求解方程组的第一个方程,可以得到:X(s)=[(I+ml2)ml −gs2]Φ(s) (1-11)或改写为:Φ(s)X(s)=mls2(I+ml2)s2−mgl(1-12)如果令v=ẍ,则有:Φ(s)V(s)=ml(I+ml2)s2−mgl(1-13)如果将上式代入方程组的第二个方程,可以得到:(M+m)[(I+ml2)ml −gs]Φ(s)s2+b[(I+ml2)ml+gs2]Φ(s)s−mlΦ(s)s2=U(s) (1-14) 整理后可得传递函数:Φ(s) U(s)=mlqs2s4+b(I+ml2)qs3−(M+m)mglqs2−bmglqs(1-15)其中q=[(M+m)(I+ml2)−(ml)2]假设系统状态空间方程为:X=AX+Buy=CX+Du (1-16) 方程组对ẍ,ɸ解代数方程,可以得到解如下:{ẋ=ẋẍ=−(I+ml2)bI(M+m)+Mml2ẋ+m2gl2I(M+m)+Mml2ɸ+(I+ml2)I(M+m)+Mml2uɸ=ɸɸ=−mlbI(M+m)+Mml2ẋ+mgl(M+m)I(M+m)+Mml2ɸ+mlI(M+m)+Mml2u(1-17)整理后可以得到系统状态空间方程:[ẋẍɸɸ]=[01000−(I+ml2)bI(M+m)+Mml2m2gl2I(M+m)+Mml200010−mlbI(M+m)+Mml2mgl(M+m)I(M+m)+Mml20][xẋɸɸ]+[(I+ml2)I(M+m)+Mml2mlI(M+m)+Mml2]uy=[xɸ]=[10000010][xẋɸɸ]+[0]u(1-18)由(1-9)的第一个方程为:(I+ml2)ɸ−mgl ɸ=mlẍ对于质量均匀分布的摆杆可以有:I=13ml2于是可以得到:(13ml2+ml2)ɸ−mgl ɸ=mlẍ化简可以得到:ɸ=3g4l ɸ+34lẍ(1-19)设X={x, ẋ, ɸ , ɸ},u=ẍ则有:[ẋẍɸɸ]=[010000000001003g4l0][xẋɸɸ]+[134l]uy=[xɸ]=[10000010][xẋɸɸ]+[0]u(1-20)以上公式推理是根据牛顿力学的微分方程验证的。
倒立摆姿态控制模型

倒立摆倒立摆百度文库解释:倒立摆系统的输入为小车的位移(即位置)和摆杆的倾斜角度期望值,计算机在每一个采样周期中采集来自传感器的小车与摆杆的实际位置信号,与期望值进行比较后,通过控制算法得到控制量,再经数模转换驱动直流电机实现倒立摆的实时控制。
直流电机通过皮带带动小车在固定的轨道上运动,摆杆的一端安装在小车上,能以此点为轴心使摆杆能在垂直的平面上自由地摆动。
作用力u平行于铁轨的方向作用于小车,使杆绕小车上的轴在竖直平面内旋转,小车沿着水平铁轨运动。
当没有作用力时,摆杆处于垂直的稳定的平衡位置(竖直向下)。
为了使杆子摆动或者达到竖直向上的稳定,需要给小车一个控制力,使其在轨道上被往前或朝后拉动。
倒立摆系统简介倒立摆是机器人技术、控制理论、计算机控制等多个领域、多种技术的有机结合,其被控系统本身又是一个绝对不稳定、高阶次、多变量、强耦合的非线性系统,可以作为一个典型的控制对象对其进行研究。
最初研究开始于二十世纪50 年代,麻省理工学院(MIT)的控制论专家根据火箭发射助推器原理设计出一级倒立摆实验设备。
近年来,新的控制方法不断出现,人们试图通过倒立摆这样一个典型的控制对象,检验新的控制方法是否有较强的处理多变量、非线性和绝对不稳定系统的能力,从而从中找出最优秀的控制方法。
倒立摆系统作为控制理论研究中的一种比较理想的实验手段,为自动控制理论的教学、实验和科研构建一个良好的实验平台,以用来检验某种控制理论或方法的典型方案,促进了控制系统新理论、新思想的发展。
由于控制理论的广泛应用,由此系统研究产生的方法和技术将在半导体及精密仪器加工、机器人控制技术、人工智能、导弹拦截控制系统、航空对接控制技术、火箭发射中的垂直度控制、卫星飞行中的姿态控制和一般工业应用等方面具有广阔的利用开发前景。
平面倒立摆可以比较真实的模拟火箭的飞行控制和步行机器人的稳定控制等方面的研究。
倒立摆分类倒立摆已经由原来的直线一级倒立摆扩展出很多种类,典型的有直线倒立摆,环形倒立摆,平面倒立摆和复合倒立摆等,倒立摆系统是在运动模块上装有倒立摆装置,由于在相同的运动模块上可以装载不同的倒立摆装置,倒立摆的种类由此而丰富很多,按倒立摆的结构来分,有以下类型的倒立摆:1) 直线倒立摆系列直线倒立摆是在直线运动模块上装有摆体组件,直线运动模块有一个自由度,小车可以沿导轨水平运动,在小车上装载不同的摆体组件,可以组成很多类别的倒立摆,直线柔性倒立摆和一般直线倒立摆的不同之处在于,柔性倒立摆有两个可以沿导轨滑动的小车,并且在主动小车和从动小车之间增加了一个弹簧,作为柔性关节。
倒立摆模型

摆杆/小车铰接点与摆杆质心的距离
l 0.25m
摆杆绕其质心的转动惯量
I 0.0034kg m2
备注:可忽略了空气阻力以及小车与摆杆之间铰接点上的摩擦力矩。
表 1. 实验装置参数
现基于现代控制理论,按照如下步骤实现对研究直线一级倒立摆的控制方 法:1)建立直线一级倒立摆的运动方程;2)推导状态空间方程;3)分析能控
F
M
g
a. 小车的受力分析
b. 摆杆的受力分析
图2. 小车与摆杆的受力分析
小车在水平方向运动,则通过对小车的水平受力分析,可以得到以下方程:
(1) 摆杆作平面运动,可以分解为质心的平动和绕质心转动,由水平方向的受力 分析,可以得到下式:
即,
(2)
带入方程(1)得:
(3) 再由摆杆的垂直方向的受力分析,得到下式:
即, 又由摆杆对质心的力矩平衡方程有:
2
(4) (5)
直线一级倒立摆控制方法
由于
,所以等式左边有负号。最后,整理方程 (4),(5),可得: (6)
由于 ,则有
. 用 u 代表输入,也就是作用在
小车上的作用力,整理方程(3),(6)可以得到一级倒立摆的运动方程
(7) 2. 系统的状态空间方程
为求系统的状态空间方程,对方程(7)进行拉氏变换,得到:
1
直线一级倒立摆控制方法
及能观性;4)计算状态反馈矩阵及状态观测矩阵;5)通过离线仿真分析验证上 述控制算法的有效性;6)通过上机实验观察其实际控制效果。 1. 建立直线一级倒立摆的运动方程
对小车和摆杆进行受力分析如图 2,其中,N 和 P 为小车与摆杆相互作用力 的水平和垂直两个方向的分量。
N
P
二级倒立摆的数学模型推导

二级倒立摆的数学模型推导一、二级倒立摆系统的结构二级倒立摆系统的结构如图1如示,机械部分主要有小车、下摆、上摆、导轨、皮带轮、传动皮带等,控制对象由小车、下摆、上摆组成,电气部分由电机、晶体管直流功率放大器、传感器以及保护电路组成。
图1 二级倒立摆结构示意图二、二级倒立摆的数学模型 (一)假设条件为了简化二级倒立摆的数学模型,作如下假设:1. 小车与导轨间的摩擦力与小车速度成正比;电机摩擦转矩与电机转矩成正比;上、下摆连接处摩擦力矩与二摆相对角速度成正比;下摆与小车连接处摩擦力矩与下摆相对角速度成正比。
2. 整个对象系统除皮带外视为刚体。
3. 皮带伸长忽略不计且传递作用力的延迟忽略不计。
4. 电路系统的传递延迟及功率放大器的非线性忽略不计。
5. 电机电感忽略不计。
6. 检测电位器设为线性的,即设检测信号分别为与r 、1θ、21θθ-成正比的电信号,且假设标定完全准确。
(二)系统参数说明推导中各符号的意义如下:0M :小车、皮带、电机转子、皮带轮归算到小车运动上的等效质量; 1M :下摆质量; 2M :上摆质量;1J :下摆转动惯量; 2J :上摆转动惯量;r :小车位移;1θ:下摆角位移;2θ:上摆角位移;1L :下摆全长(轴心到轴心); 1l :下摆质心与小车——下摆连接轴心距离; 2l :上摆质心与上摆——下摆连接轴心距离;'0F :小车与导轨间摩擦力,电机机械摩擦转矩,皮带轮摩擦转矩归算到小车运动上的等效摩擦系数,由下式定义等效摩擦力:'00f F r =⋅1F :下摆与小车摩擦力矩的等效摩擦系数,由下式定义等效摩擦力矩:111T F θ=⋅2F :上、下摆间摩擦力矩的等效摩擦系数,由下式定义等效摩擦力矩:2221()T F θθ=⋅-P :电机提供的控制力;U :电机外加电压即功率放大器输出电压; E :电机反电势; I :电机电流;R :电机等效电阻;i R :功率放大器等效输出电阻;d :皮带轮直径;θ:电机转速(/rad s );n 电机转速(转/分);K :功率放大器电压增益 ;e K :电势系数; t K :转矩系数;e :功率放大器的输入电压;参阅相关资料后,对各参数的取如下值:0M =1.328kg ,1M =0.220kg ,2M =0.187kg ,1J =0.004962kg m ⋅,2J =0.004822kg m ⋅,1L =0.490m ,1l =0.304m ,2l =0.226m ,'0F =22.947kg/s ,1F =0.00705/kg m s ⋅,2F =0.00264/kg m s ⋅,R =8.550Ω,i R =1.252Ω,d =0.130m ,K =8.000,t K =0.946/N m A ⋅(三)数学模型推导 此处少图3-2(P7)图3-2中,'i i f f =(1,2)i =小车在y 方向上无运动,小车受导轨垂直方向力示标出,推导中iy f ,ir f (1,2)i =分别表示i f 在y ,r 方向的分力。
倒立摆模型数学模型推导

倒立摆模型数学模型推导倒立摆模型是一种经典的数学模型,它可以用来描述倒立摆的运动规律。
倒立摆是一个由一个质点和一个固定在一根杆上的支点组成的系统,其特点是质点可以在杆的竖直方向上自由运动。
倒立摆模型的推导过程可以帮助我们更好地理解倒立摆的运动行为。
我们需要确定倒立摆模型中的各个物理量。
倒立摆模型包括杆的长度l、质点的质量m、杆与竖直方向夹角θ以及杆与竖直方向的角速度ω。
我们假设杆是质量均匀分布的,忽略空气阻力和摩擦力的影响。
根据牛顿第二定律和力的平衡条件,我们可以得到倒立摆的运动方程。
首先考虑沿杆方向的受力平衡,可以得到以下方程:m * l * ω^2 * sinθ = m * g * sinθ进一步考虑垂直于杆方向的受力平衡,可以得到以下方程:m * l * ω * cosθ = m * g * cosθ + T其中,T表示杆对质点的拉力。
由于杆是刚性的,因此可以认为杆上各点的速度相同,即杆的线速度为v = l * ω。
根据牛顿第二定律,可以得到以下方程:m * l * ω * cosθ = m * g * cosθ + T = m * a其中,a表示质点的加速度。
将上述方程带入到沿杆方向的受力平衡方程中,可以得到以下方程:m * l * ω^2 * sinθ = m * g * sinθ + m * a * sinθ进一步化简上述方程,可以得到倒立摆的运动方程:l * ω^2 + g * sinθ = a * sinθ倒立摆的运动方程是一个非线性微分方程,可以通过数值解或近似解的方法求解。
在实际应用中,可以利用控制理论和控制算法来实现倒立摆的控制。
倒立摆模型的推导过程可以帮助我们更好地理解倒立摆的运动规律。
通过倒立摆模型,我们可以研究倒立摆的稳定性、控制方法以及应用领域等问题。
倒立摆模型不仅在物理学和工程学中有广泛的应用,也成为了控制理论和控制工程的经典案例之一。
总结起来,倒立摆模型是一种用数学方法描述倒立摆运动规律的模型。
一级倒立摆数学模型建立

一、直线一级倒立摆系统的数学模型1、倒立摆系统是一种复杂的非线性系统,为了简化对系统的反洗,在建立数学模型的过程中,作以下假设:1.)小车、摆杆在运动过程中都是不变得刚体;2.)皮带轮与传动带之间没有相对滑动,皮带不能拉伸变长,传动带没有抖振以及伸长的现象;3.)交流伺服电机的输入和输出之间是纯线性的关系;而且忽略不计电机的电枢绕组中的电感等动态特性;4.)将整个系统运行中的摩擦、各种阻力及机械传动间隙等不确定性忽略不计。
通过上述假设,则可以将直线一级倒立摆系统抽象成小车和均质敢组成的系统,如图1.1所示。
图1.1倒立摆系统2、各参数符号含义如下:符号含义单位数值M 小车质量kg 1.096m 摆杆质量kg 0,109b 小车摩擦系数N/m/sec 0.1l 摆杆转动轴心到杆质心的长度m 0.25I 摆杆转动惯性Kg*m²0.0034g 重力加速度N/kg 9.8x 小车的水平位置mθ摆角大小radN 小车对摆杆水平方向作用力NP 小车对摆杆竖直方向作用力NF 电动机经传动机构给小车的力Nφ摆杆与垂直向上方向的夹角rad3、采用牛顿--欧拉方法建立直线型一级倒立摆系统的数学模型。
图1.2是系统中小车和摆杆的受力分析图。
(a)小车的受力分析 (b)摆杆受力分析图1.2小车与摆杆的受力分析对小车水平方向所受的力进行受力分析,可以得到方程:N x b F x M --=⋅⋅⋅ 式(1.1)对摆杆水平方向所受的力进行受力分析并化简整理,可以得到等式:θθθθsin cos 2⋅⋅⋅⋅⋅-==ml ml x m N 式(1.2)将式(1.2)带入式(1.1)中,可以得到系统的第一个运动方程:θθθθsin cos )(2⋅⋅⋅⋅⋅⋅-+++=ml ml x b x m M F 式(1.3)对摆杆垂直方向所受的力进行受力分析并化简整理,可以得到下面等式:θθθθcos sin 2⋅⋅⋅--=ml ml mg P 式(1.4)力矩平衡方程如下:⋅⋅=--θθθI Nl Pl cos sin 式(1.5)将有关P 和N 的等式代入式(1.5)中,得到系统的第二个运动方程:θθθcos sin )(2⋅⋅⋅⋅-=++x ml mgl ml I 式(1.6)假设φ与1(单位弧度)相比很小,即φ<<1,并设θ=π+φ(φ是摆杆与垂直向上方向的夹角),可以作近似处理:φθθθ-=-==⎪⎭⎫⎝⎛s i n ,1c o s,02dt d 式(1.7)将被控对象的输入力F 用u 来表示,可以得到两个线性化后运动方程,如下 所示:⎪⎩⎪⎨⎧=-++=-+⋅⋅⋅⋅⋅⋅⋅⋅⋅u m l x b x m M x m l m glm l I φφφ)()(2式(1.8)对方程组式(1.8)进行拉氏变换,得到:⎪⎩⎪⎨⎧=Φ-++=Φ-Φ+)()()()()()()()()(22222s U s s ml s bX s s X m M s s mlX s mgl s s ml I 式(1.9)假设初始条件为零,对上述方程组的第一个方程求解,可得:)()()(22s s g ml ml I s X Φ⎥⎦⎤⎢⎣⎡-+= 式(1.10)将式(1.10)代入方程组式(1.9)中的第二个方程,可得:222222)()()()()()()(s s ml s s s g ml ml I b s s s g ml ml I m M s U Φ-Φ⎥⎦⎤⎢⎣⎡-++Φ⎥⎦⎤⎢⎣⎡-++= 式(1.11)整理,可以得到摆角的传递函数为:sq bm gl s q m gl m M s q m l I b s sqm l s U s -+-++=Φ23242)()()()( 式(1.12)式中:]))([(222l m ml I m M q -++=将倒立摆的实际参数值代入上式,得到摆角的传递函数为:ss s s s s U s 3141.28853.270883.03566.2)()(2342-++=Φ 式(1.13)同理,可以得到小车位置的传递函数:sq bm gl s q m gl m M s q m l I b s qm gls q m l I s U s X -+-++-+=23242)()()()()( 式(1.14)将实际的参数值代入,得到小车位置的传递函数为:s s s s s s U s X 3141.28853.270883.01413.238832.0)()(2342--+-= 式(1.15)在方程组(1.8)中对⋅⋅x 、⋅⋅φ求解代数方程,得到解如下:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧+++++++++-==++++++++++-==⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅u Mm l m M I m l Mm l m M I m M m gl x Mm l m M I m lb u Mm l m M I m l I Mm l m M I gl m x Mm l m M I b m l I x xx 2222222222)()()()()()()()()(φφφφφ 式(1.16)设系统状态空间方程为:⎪⎩⎪⎨⎧+=+=⋅Du Cx y Bu Ax x 式(1.17)整理式(1.16),得到系统状态空间方程:u Mml m M I ml Mml m M I ml I x x Mml m M I m M mgl Mml m M I mlb Mml m M I gl m Mml m M I bml I x x ⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡++++++⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡+++++-+++++-=⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡⋅⋅⋅⋅⋅⋅⋅⋅2222222222)(0)()(00)()()(010000)()()(00010φφφφ 式(1.18)u x x x y ⎥⎦⎤⎢⎣⎡+⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=⋅⋅0001000001φφφ 式(1.19)将已知的M 、m 、b 、g 、l 、I 代入式(1.18)可得状态方程u x x x x ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡⋅⋅⋅⋅⋅⋅⋅⋅3566.208832.0008285.272357.00100006293.00883.000010φφφφ 式(1.20)输出方程u x x x y ⎥⎦⎤⎢⎣⎡+⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=⋅⋅0001000001φφφ 式(1.21)。
倒立摆的动力学模型

倒立摆的动力学模型倒立摆是一个经典的物理实验,同时也是控制系统领域中的一个重要研究对象。
本文将介绍倒立摆的动力学模型以及相关的理论背景。
一、背景介绍倒立摆是由一个杆和一个连接在其上方的质点组成的,它在重力作用下呈现出不稳定的平衡状态。
倒立摆的动力学模型可以通过建立质点与杆之间的力学关系来描述。
二、质点的动力学方程假设质点质量为m,位置用x表示,杆的最低点为平衡位置,根据牛顿第二定律,可以得到质点的动力学方程:m * d^2x / dt^2 = Fg + Fc其中Fg表示质点受到的重力,Fc表示质点受到的摩擦力。
重力可以表示为:Fg = -mg * sinx摩擦力一般可以近似为:Fc = -b * dx / dt其中b为摩擦系数。
将上述方程带入质点的动力学方程中,可以得到:m * d^2x / dt^2 + b * dx / dt + mg * sinx = 0这就是质点的动力学方程。
三、杆的动力学方程杆的运动可以由转动惯量和力矩平衡来描述。
假设杆的质量为M,长度为l,转动惯量为I,杆绕其一端的转动中心转动,可以得到杆的动力学方程:I * d^2θ / dt^2 = -Mgl * sinθ其中θ表示杆的角度。
四、控制方法倒立摆的控制方法可以分为开环和闭环控制。
开环控制是通过输入外部力或力矩来控制摆的位置或角度,而闭环控制是通过测量摆的位置或角度,并根据目标位置或角度来调整输入力或力矩。
闭环控制往往使用PID控制器。
PID控制器是一种经典的控制器,可以根据目标位置与当前位置之间的差异来调整输入力或力矩,从而实现对倒立摆的控制。
五、应用领域倒立摆的研究在控制系统领域具有广泛的应用。
例如,在工业自动化中,倒立摆可以用来模拟和控制各种平衡问题。
此外,倒立摆还可以用于教育和科普领域,帮助人们更好地理解动力学和控制原理。
六、结论倒立摆的动力学模型是控制系统领域中一个重要的研究对象。
通过建立质点与杆之间的力学关系,可以得到质点和杆的动力学方程。
倒立摆的数学模型

倒立系统的数学建模和线性化处理 为使问题简明,数学模型不包括小车内的拖动电机和机械传动系统,只考虑它施于小车的力出发,根据牛顿定律小车在X 方向上``u H M x -= (1)对于摆,在 X 方向上22(sin )d H mx L dtθ=+ (2)在 Y 方向上22(cos )d V m g mL dtθ-= (3)摆绕其中心的转矩为2``sin cos 12m L VL H L θθθ-=(4)假定θ很小,sin θ→θ,cos θ→1``u H M x -=````H m x m L θ=+0V mg -=2``12m L VL H L θθ-=上述四个方程五个变量x ,θ ,V ,H ,u .消去V 和H 后,并写成矩阵的形式,即式(5).系统中小车的质量 M=2.00 kg ,摆的质量m=0.20 kg ,摆长2 L=0.80 m ,重力加速度g=9.80m /s2````````()10001313()()121213/12001313()()1212100000100m M g m L m M Lm L m M L x m g x u m M mm M m x x θθθθ+⎡⎤⎡⎤⎢⎥⎢⎥⎡⎤-+-+⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥+-+-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦ (5)并设向量X =``Tx xθθ⎡⎤⎢⎥⎣⎦和向量 :```````Tx x xθθ⎡⎤=⎢⎥⎣⎦, 系统的输出为摆的偏角0和小车```````TX x x θθ⎡⎤=⎢⎥⎣⎦,系统的输出为摆的偏角θ和小车运动的距离x ,则系统的方程`X AX Bu Y C X=+= (6)0024.6960000.89801000010A -⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦状态矩阵 (7) -1.1450.49600⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦输入矩阵B (8) 001001⎡⎤=⎢⎥⎣⎦输出矩阵C (9) 系统状态可控的条件为:当且仅当向量组B,AB,```` 1n A B -是线性无关的,或n*n 维矩阵1```n B ABAB -⎡⎤⎣⎦的秩为n 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
直线一级倒立摆控制方法
及能观性;4)计算状态反馈矩阵及状态观测矩阵;5)通过离线仿真分析验证上 述控制算法的有效性;6)通过上机实验观察其实际控制效果。 1. 建立直线一级倒立摆的运动方程
对小车和摆杆进行受力分析如图 2,其中,N 和 P 为小车与摆杆相互作用力 的水平和垂方法
直线一级倒立摆控制方法
按照工作原理可将直线一级倒立摆实验装置抽象成小车和摆杆组成的系统, 其中小车可沿固定导轨左右移动,摆杆可绕小车与摆杆之间的铰接点自由转动,
如图1所示。
图1. 直线一级倒立摆原理
控制系统依据读取到的小车位置以及摆杆角度信号,通过控制作用在小车上 的水平力,使其沿固定导轨左右移动,可以使得摆杆始终处于垂直向上这样一个 临界稳定位置,实验装置具体参数如表2所示。
即,
计算可得系统主导极点:
,
非主导极点离虚轴为主导极点的 5 倍以上,则取 则可得期望的闭环特征多项式为:
,则取两个期望的闭环
,
。
设状态反馈矩阵为
,则对应的闭环特征方程为:
比较
和 ,可得
解方程组得系统状态反馈矩阵:
(2) 将以小车加速度作为输入的系统:
6
直线一级倒立摆控制方法
+ 分为两个子系统来分析,即
+ 将表 1 中参数带入上式,则得以外界作用力作为输入的系统的状态空间表达式:
+ 以小车加速度作为输入的系统的状态空间表达式为:
+
4
直线一级倒立摆控制方法
将表 1 中参数带入上式,则得以小车加速度作为输入的系统的状态空间表达式:
+ 3. 系统的能控和能观性分析
对输入为加速度输出为摆杆与竖直方向的角度的夹角时的系统进行 分析,则:
子系统一:
子系统二: 通过能观判别矩阵可以求得两个子系统都是可观的,由于闭环系统主导极点
为:
,
,而通常选择观测器的相应速度比所考虑的
状态反馈闭环系统快 2~5 倍,则可取:
。
则可得到闭环状态观测器系统矩阵的期望特征多项式:
设子系统一观测器反馈矩阵
比较
和
,可得
,则:
设子系统二观测器反馈矩阵
比较
和
,可得
F
M
g
a. 小车的受力分析
b. 摆杆的受力分析
图2. 小车与摆杆的受力分析
小车在水平方向运动,则通过对小车的水平受力分析,可以得到以下方程:
(1) 摆杆作平面运动,可以分解为质心的平动和绕质心转动,由水平方向的受力 分析,可以得到下式:
即,
(2)
带入方程(1)得:
(3) 再由摆杆的垂直方向的受力分析,得到下式:
即, 又由摆杆对质心的力矩平衡方程有:
2
(4) (5)
直线一级倒立摆控制方法
由于
,所以等式左边有负号。最后,整理方程 (4),(5),可得: (6)
由于 ,则有
. 用 u 代表输入,也就是作用在
小车上的作用力,整理方程(3),(6)可以得到一级倒立摆的运动方程
(7) 2. 系统的状态空间方程
为求系统的状态空间方程,对方程(7)进行拉氏变换,得到:
则摆杆角度和小车位移的传递函数为:
将表 1 中参数带入上式,则得到摆杆角度和小车位移的传递函数为: 摆杆角度和小车加速度之间的传递函数为: 将表 1 中参数带入上式,则得: 摆杆角度和小车所受外界作用力的传递函数:
3
直线一级倒立摆控制方法
将表 1 中参数带入上式,则得: 以外界作用力作为输入的系统的状态空间表达式为:
小车质量
M 1.096kg
摆杆质量
m 0.109kg
小车与导轨间的阻力系数
b 0.1N /(m / s)
摆杆/小车铰接点与摆杆质心的距离
l 0.25m
摆杆绕其质心的转动惯量
I 0.0034kg m2
备注:可忽略了空气阻力以及小车与摆杆之间铰接点上的摩擦力矩。
表 1. 实验装置参数
现基于现代控制理论,按照如下步骤实现对研究直线一级倒立摆的控制方 法:1)建立直线一级倒立摆的运动方程;2)推导状态空间方程;3)分析能控
,则:
7
直线一级倒立摆控制方法
综上的系统观测器反馈矩阵
8
,
,
,
AB= , ,
, ,
Rank [B AB
]=
=4
Rank 因此,系统是可控的,同时是可观测的。
5
直线一级倒立摆控制方法
4. 状态反馈矩阵及状态观测矩阵 (1) 若使超调量不超过 17%,则根据公式:
算得 =0.5,设调整时间
,则振幅进入
的误差范围是,根据公式
计算的
。则由
可得反馈系统特征方程为: