第3章动态规划3-4节-0-1背包问题

合集下载

动态规划与回溯法解决0-1背包问题

动态规划与回溯法解决0-1背包问题

0-1背包动态规划解决问题一、问题描述:有n个物品,它们有各自的重量和价值,现有给定容量的背包,如何让背包里装入的物品具有最大的价值总和?二、总体思路:根据动态规划解题步骤(问题抽象化、建立模型、寻找约束条件、判断是否满足最优性原理、找大问题与小问题的递推关系式、填表、寻找解组成)找出01背包问题的最优解以及解组成,然后编写代码实现。

原理:动态规划与分治法类似,都是把大问题拆分成小问题,通过寻找大问题与小问题的递推关系,解决一个个小问题,最终达到解决原问题的效果。

但不同的是,分治法在子问题和子子问题等上被重复计算了很多次,而动态规划则具有记忆性,通过填写表把所有已经解决的子问题答案纪录下来,在新问题里需要用到的子问题可以直接提取,避免了重复计算,从而节约了时间,所以在问题满足最优性原理之后,用动态规划解决问题的核心就在于填表,表填写完毕,最优解也就找到。

过程:a) 把背包问题抽象化(X1,X2,…,Xn,其中 Xi 取0或1,表示第i 个物品选或不选),V i表示第i 个物品的价值,W i表示第i 个物品的体积(重量);b) 建立模型,即求max(V1X1+V2X2+…+VnXn);c) 约束条件,W1X1+W2X2+…+WnXn<capacity;d) 定义V(i,j):当前背包容量j,前i 个物品最佳组合对应的价值;e) 最优性原理是动态规划的基础,最优性原理是指“多阶段决策过程的最优决策序列具有这样的性质:不论初始状态和初始决策如何,对于前面决策所造成的某一状态而言,其后各阶段的决策序列必须构成最优策略”。

判断该问题是否满足最优性原理,采用反证法证明:假设(X1,X2,…,Xn)是01背包问题的最优解,则有(X2,X3,…,Xn)是其子问题的最优解,假设(Y2,Y3,…,Yn)是上述问题的子问题最优解,则理应有(V2Y2+V3Y3+…+V n Yn)+V1X1 > (V2X2+V3X3+…+VnXn)+V1X1;而(V2X2+V3X3+…+VnXn)+V1X1=(V1X1+V2X2+…+VnXn),则有(V2Y2+V3Y3+…+VnYn)+V1X1 > (V1X1+V2X2+…+VnXn);该式子说明(X1,Y2,Y3,…,Yn)才是该01背包问题的最优解,这与最开始的假设(X1,X2,…,Xn)是01背包问题的最优解相矛盾,故01背包问题满足最优性原理;f) 寻找递推关系式,面对当前商品有两种可能性:第一,包的容量比该商品体积小,装不下,此时的价值与前i-1个的价值是一样的,即V(i,j)=V(i-1,j);第二,还有足够的容量可以装该商品,但装了也不一定达到当前最优价值,所以在装与不装之间选择最优的一个,即V(i,j)=max{V(i-1,j),V(i-1,j-w(i))+v(i) }其中V(i-1,j)表示不装,V(i-1,j-w(i))+v(i) 表示装了第i个商品,背包容量减少w(i)但价值增加了v(i);由此可以得出递推关系式:1) j<w(i) V(i,j)=V(i-1,j)2) j>=w(i) V(i,j)=max{ V(i-1,j),V(i-1,j-w(i))+v(i) }number=4,capacity=7四、构造最优解:最优解的构造可根据C列的数据来构造最优解,构造时从第一个物品开始。

理学背包问题详解

理学背包问题详解
9
0 1 2 3 4 5 6 7 8 9 10
000000000000
x1=1
w1=2 v1=6 1 0 0 6 6 6 6 6 6 6 6 6
x2=1
w2=2 v2=3 2 0 0 6 6 9 9 9 9 9 9 9
x3=0
w3=6 v3=5 3 0 0 6 6 9 9 9 9 11 11 14
可用动态规划算法求解。
3
其他类型背包问题
完全背包问题(0/1):
有N种物品和一个容量为V的背包,每种物品都有 无限件可用。第i种物品的费用是c[i],价值是w[i]。 求解将哪些物品装入背包可使这些物品的费用总和 不超过背包容量,且价值总和最大。
多重背包问题
有N种物品和一个容量为V的背包。第i种物品最多 有n[i]件可用,每件费用是c[i],价值是w[i]。求解 将哪些物品装入背包可使这些物品的费用总和不超 过背包容量,且价值总和最大。
{// 计算x
for (int i=1; i<n; i++)
if (m[i][c]==m[i+1][c])
x[i]=0;
else
{
x[i]=1;
c-=w[i];
}
x[n]=(m[n][c])?1:0;
}
11
算法改进
由m(i,j)的递归式容易证明,在一般情况下,对每一个确定的 i(1≤i≤n),函数m(i,j)是关于变量j的阶梯状单调不减函数。跳跃 点是这一类函数的描述特征。在一般情况下,函数m(i,j)由其 全部跳跃点唯一确定。如图所示。
(7,7)
(6,6) (4,5)
(4,5)(6,6)
(0,
0)
(2,
(3,2) 1)

0-1背包问题的多种解法

0-1背包问题的多种解法

问题描述0/1 背包问题 :现有 n 种物品,对 1<=i<=n ,已知第 i 种物品的重量为正整数 W i ,价值为正整数 V i , 背包能承受的最大载重量为正整数 W ,现要求找出这 n 种物品的一个子集,使得子集中物 品的总重量不超过 W 且总价值尽量大。

(注意:这里对每种物品或者全取或者一点都不取, 不允许只取一部分)算法分析根据问题描述,可以将其转化为如下的约束条件和目标函数:nw i x i W i 1 i i(1)x i { 0,1}( 1 i n)nmax v i x i (2) i1于是,问题就归结为寻找一个满足约束条件( 1 ),并使目标函数式( 2 )达到最大的 解向量 X (x 1, x 2 ,x 3, ........... , x n ) 。

首先说明一下 0-1 背包问题拥有最优解。

假设 (x 1,x 2,x 3, ........ ,x n ) 是所给的问题的一个最优解, 则(x 2,x 3, ............... ,x n )是下面问题的n n n个问 题 的 一 个 最 优解 , 则v i y iv i x i , 且 w 1x 1w i y i W 。

因此 ,i 2 i 2 i 2一个最优解:w i x i Wi2w 1x 1nmax v i x i 。

如果不是的话,设(y 2,y 3, , y n ) 是这x i {0,1}( 2 i n)i2n n nv1x1 v i y i v1x1 v i x i v i x i ,这说明(x1,y2,y3, ............. ,y n) 是所给的0-1 背包问i 2 i 2 i 1题比( x1 , x 2 , x3 , ... , x n ) 更优的解,从而与假设矛盾。

穷举法:用穷举法解决0-1 背包问题,需要考虑给定n 个物品集合的所有子集,找出所有可能的子集(总重量不超过背包重量的子集) ,计算每个子集的总重量,然后在他们中找到价值最大的子集。

动态规划——01背包问题

动态规划——01背包问题

动态规划——01背包问题⼀、最基础的动态规划之⼀01背包问题是动态规划中最基础的问题之⼀,它的解法完美地体现了动态规划的思想和性质。

01背包问题最常见的问题形式是:给定n件物品的体积和价值,将他们尽可能地放⼊⼀个体积固定的背包,最⼤的价值可以是多少。

我们可以⽤费⽤c和价值v来描述⼀件物品,再设允许的最⼤花费为w。

只要n稍⼤,我们就不可能通过搜索来遍查所有组合的可能。

运⽤动态规划的思想,我们把原来的问题拆分为⼦问题,⼦问题再进⼀步拆分直⾄不可再分(初始值),随后从初始值开始,尽可能地求取每⼀个⼦问题的最优解,最终就能求得原问题的解。

由于不同的问题可能有相同的⼦问题,⼦问题存在⼤量重叠,我们需要额外的空间来存储已经求得的⼦问题的最优解。

这样,可以⼤幅度地降低时间复杂度。

有了这样的思想,我们来看01背包问题可以怎样拆分成⼦问题:要求解的问题是:在n件物品中最⼤花费为w能得到的最⼤价值。

显然,对于0 <= i <= n,0 <= j <= w,在前i件物品中最⼤花费为j能得到的最⼤价值。

可以使⽤数组dp[n + 1][w + 1]来存储所有的⼦问题,dp[i][j]就代表从前i件物品中选出总花费不超过j时的最⼤价值。

可知dp[0][j]值⼀定为零。

那么,该怎么递推求取所有⼦问题的解呢。

显⽽易见,要考虑在前i件物品中拿取,⾸先要考虑前i - 1件物品中拿取的最优情况。

当我们从第i - 1件物品递推到第i件时,我们就要考虑这件物品是拿,还是不拿,怎样收益最⼤。

①:⾸先,如果j < c[i],那第i件物品是⽆论如何拿不了的,dp[i][j] = dp[i - 1][j];②:如果可以拿,那就要考虑拿了之后收益是否更⼤。

拿这件物品需要花费c[i],除去这c[i]的⼦问题应该是dp[i - 1][j - c[i]],这时,就要⽐较dp[i - 1][j]和dp[i - 1][j - c[i]] + v[i],得出最优⽅案。

分支界限方法01背包问题解题步骤

分支界限方法01背包问题解题步骤

分支界限方法是一种用于解决优化问题的算法。

在动态规划算法中,分支界限方法被广泛应用于解决01背包问题。

01背包问题是一个经典的动态规划问题,其解题步骤如下:1. 确定问题:首先需要明确01背包问题的具体描述,即给定一组物品和一个背包,每个物品有自己的价值和重量,要求在不超过背包容量的情况下,选取尽可能多的物品放入背包,使得背包中物品的总价值最大。

2. 列出状态转移方程:对于01背包问题,可以通过列出状态转移方程来描述问题的求解过程。

假设dp[i][j]表示在前i个物品中,背包容量为j时能够获得的最大价值,则状态转移方程可以表示为:dp[i][j] = max(dp[i-1][j], dp[i-1][j-w[i]]+v[i])3. 初始化边界条件:在动态规划中,需要对状态转移方程进行初始化,一般情况下,dp数组的第一行和第一列需要单独处理。

对于01背包问题,可以初始化dp数组的第一行和第一列为0。

4. 利用分支界限方法优化:针对01背包问题,可以使用分支界限方法来优化动态规划算法的效率。

分支界限方法采用广度优先搜索的思想,在每一步选择最有希望的分支,从而减少搜索空间,提高算法的效率。

5. 实际解题步骤:根据上述步骤,实际解决01背包问题的步骤可以概括为:确定问题,列出状态转移方程,初始化边界条件,利用分支界限方法优化,最终得到问题的最优解。

分支界限方法在解决01背包问题时起到了重要的作用,通过合理的剪枝策略,可以有效地减少动态规划算法的时间复杂度,提高问题的求解效率。

分支界限方法也可以应用于其他优化问题的求解过程中,在算法设计和实现中具有重要的理论和实际意义。

在实际应用中,分支界限方法需要根据具体问题进行灵活选择和调整,结合动态规划和剪枝策略,以便更好地解决各类优化问题。

掌握分支界限方法对于解决复杂问题具有重要的意义,也是算法设计和优化的关键技术之一。

分支界限方法在解决01背包问题的过程中,具有重要的作用。

(完整版)01背包问题

(完整版)01背包问题

01背包问题,是用来介绍动态规划算法最经典的例子,网上关于01背包问题的讲解也很多,我写这篇文章力争做到用最简单的方式,最少的公式把01背包问题讲解透彻。

01背包的状态转换方程f[i,j] = Max{ f[i-1,j-Wi]+Pi( j >= Wi ), f[i-1,j] }只要你能通过找规律手工填写出上面这张表就算理解了01背包的动态规划算法。

首先要明确这张表是至底向上,从左到右生成的。

为了叙述方便,用e2单元格表示e行2列的单元格,这个单元格的意义是用来表示只有物品e时,有个承重为2的背包,那么这个背包的最大价值是0,因为e物品的重量是4,背包装不了。

对于d2单元格,表示只有物品e,d时,承重为2的背包,所能装入的最大价值,仍然是0,因为物品e,d都不是这个背包能装的。

同理,c2=0,b2=3,a2=6。

对于承重为8的背包,a8=15,是怎么得出的呢?根据01背包的状态转换方程,需要考察两个值,一个是f[i-1,j],对于这个例子来说就是b8的值9,另一个是f[i-1,j-Wi]+Pi;在这里,f[i-1,j]表示我有一个承重为8的背包,当只有物品b,c,d,e四件可选时,这个背包能装入的最大价值f[i-1,j-Wi]表示我有一个承重为6的背包(等于当前背包承重减去物品a的重量),当只有物品b,c,d,e四件可选时,这个背包能装入的最大价值f[i-1,j-Wi]就是指单元格b6,值为9,Pi指的是a物品的价值,即6由于f[i-1,j-Wi]+Pi = 9 + 6 = 15 大于f[i-1,j] = 9,所以物品a应该放入承重为8的背包以下是actionscript3 的代码public function get01PackageAnswer(bagItems:Array,bagSize:int):Array{var bagMatrix:Array=[];var i:int;var item:PackageItem;for(i=0;i<bagItems.length;i++){bagMatrix[i] = [0];}for(i=1;i<=bagSize;i++){for(varj:int=0;j<bagItems.length;j++){item = bagItems[j] as PackageItem;if(item.weight > i){//i背包转不下itemif(j==0){bagMatrix[j][i] = 0;}else{bagMatrix[j][i]=bagMatrix[j-1][i];}}else{//将item装入背包后的价值总和var itemInBag:int;if(j==0){bagMatrix[j][i] = item.value;continue;}else{itemInBag = bagMatrix[j-1][i-item.weight]+item.value;}bagMatrix[j][i] = (bagMatrix[j-1][i] > itemInBag ? bagMatrix[j-1][i] : itemInBag)}}}//find answervar answers:Array=[];var curSize:int = bagSize;for(i=bagItems.length-1;i>=0;i--){item = bagItems[i] as PackageItem;if(curSize==0){break;}if(i==0 && curSize > 0){answers.push();break;}if(bagMatrix[i][curSize]-bagMatrix[i-1][curSize-item.weight ]==item.value){answers.push();curSize -= item.weight;}}return answers;}PackageItem类public class PackageItem{public var name:String;public var weight:int;public var value:int;public function PackageItem(name:String,weight:int,value:int){ = name;this.weight = weight;this.value = value;}}测试代码varnameArr:Array=['a','b','c','d','e'];var weightArr:Array=[2,2,6,5,4];var valueArr:Array=[6,3,5,4,6];var bagItems:Array=[];for(vari:int=0;i<nameArr.length;i++){var bagItem:PackageItem = new PackageItem(nameArr[i],weightArr[i],valueArr[i]);bagItems[i]=bagItem;}var arr:Array = ac.get01PackageAnswer(bagItems,10);。

背包问题:0-1背包、完全背包和多重背包

背包问题:0-1背包、完全背包和多重背包背包问题泛指以下这⼀种问题:给定⼀组有固定价值和固定重量的物品,以及⼀个已知最⼤承重量的背包,求在不超过背包最⼤承重量的前提下,能放进背包⾥⾯的物品的最⼤总价值。

这⼀类问题是典型的使⽤动态规划解决的问题,我们可以把背包问题分成3种不同的⼦问题:0-1背包问题、完全背包和多重背包问题。

下⾯对这三种问题分别进⾏讨论。

1.0-1背包问题0-1背包问题是指每⼀种物品都只有⼀件,可以选择放或者不放。

现在假设有n件物品,背包承重为m。

对于这种问题,我们可以采⽤⼀个⼆维数组去解决:f[i][j],其中i代表加⼊背包的是前i件物品,j表⽰背包的承重,f[i][j]表⽰当前状态下能放进背包⾥⾯的物品的最⼤总价值。

那么,f[n][m]就是我们的最终结果了。

采⽤动态规划,必须要知道初始状态和状态转移⽅程。

初始状态很容易就能知道,那么状态转移⽅程如何求呢?对于⼀件物品,我们有放进或者不放进背包两种选择:(1)假如我们放进背包,f[i][j] = f[i - 1][j - weight[i]] + value[i],这⾥的f[i - 1][j - weight[i]] + value[i]应该这么理解:在没放这件物品之前的状态值加上要放进去这件物品的价值。

⽽对于f[i - 1][j - weight[i]]这部分,i - 1很容易理解,关键是 j - weight[i]这⾥,我们要明⽩:要把这件物品放进背包,就得在背包⾥⾯预留这⼀部分空间。

(2)假如我们不放进背包,f[i][j] = f[i - 1][j],这个很容易理解。

因此,我们的状态转移⽅程就是:f[i][j] = max(f[i][j] = f[i - 1][j] , f[i - 1][j - weight[i]] + value[i])当然,还有⼀种特殊的情况,就是背包放不下当前这⼀件物品,这种情况下f[i][j] = f[i - 1][j]。

动态规划方案解决算法背包问题实验报告含源代码

动态规划方案解决算法背包问题实验报告含嘿,大家好!今天我来给大家分享一个相当有趣的编程问题——背包问题。

这可是算法领域里的经典难题,也是体现动态规划思想的好例子。

我会用我10年的方案写作经验,给大家带来一份详细的实验报告,附带哦!让我简单介绍一下背包问题。

假设你是一个盗贼,要盗取一个博物馆里的宝贝。

博物馆里有n个宝贝,每个宝贝都有它的价值v和重量w。

你有一个承重为W的背包,你希望放入背包的宝贝总价值最大,但总重量不能超过背包的承重。

这个问题,就是我们要解决的背包问题。

一、算法思路1.创建一个二维数组dp,dp[i][j]表示前i个宝贝放入一个承重为j的背包中,能达到的最大价值。

2.初始化dp数组,dp[0][j]=0,因为如果没有宝贝,那么无论背包承重多少,价值都是0。

3.遍历每个宝贝,对于每个宝贝,我们有两种选择:放入背包或者不放入背包。

4.如果不放入背包,那么dp[i][j]=dp[i-1][j],即前i-1个宝贝放入一个承重为j的背包中,能达到的最大价值。

5.如果放入背包,那么dp[i][j]=dp[i-1][j-w[i]]+v[i],即前i-1个宝贝放入一个承重为j-w[i]的背包中,加上当前宝贝的价值。

6.dp[i][j]取两种情况的最大值。

二、defknapsack(W,weights,values,n):dp=[[0for_inrange(W+1)]for_inrange(n+1)]foriinrange(1,n+1):forjinrange(1,W+1):ifj>=weights[i-1]:dp[i][j]=max(dp[i-1][j],dp[i-1][j-weights[i-1]]+values[i -1])else:dp[i][j]=dp[i-1][j]returndp[n][W]测试数据W=10weights=[2,3,4,5]values=[3,4,5,6]n=len(values)输出结果max_value=knapsack(W,weights,values,n)print("最大价值为:",max_value)三、实验结果分析通过上面的代码,我们可以得到最大价值为15。

用动态规划法求解0-1背包问题


0 — 1背包 问题 的解 决 方法 多 种 多样 ,常用 的算法 有贪 心算 法 、 回溯法 、 分 枝一限界法 等 。本文 采用 动态
规 划 原理 来 求 解 0 一 l背 包 问题 也不 失 为 一 种 简单 明 了、 清 晰 易懂 的方法 。 参考 文献 :
[ 1 ] 王 晓东. 计算机 算法设计与分析 [ M] . 北京: 电子 工业 出版社
w h i l e( m【 i Ⅱ c 】 = = m[ i 一 1 ] [ c ] ) i - - ; w h i l e( i > 0 ) { j = i 一 1 ; w h i l e( m『 j 1 [ c ] 一 m [ j 】 【 c ] != v i i - 1 ] & &- j > 0 )
[ i ] [ j 】 是 下 面两 个 量 的最 大值 : m[ i + 1 ] [ j ] 和 m【 i + 1 】 【 j — w [ i 】
] + V 嘲


f o r ( j = 0 ; j < = c ; j + + ) p r i n t f ( ” %3 d . t , m f i 1 【 j 】 ) ; p i f n f ( ” \ I 1 ” ) ;}
等于 v 『 n 1 ;
k n a p s a c k ( ) ;d i s p O ; p r i n t f ( ” 最 大价值= %d \ n ” , m 【 n ] [ c 】 ) ;
o f r ( i _ 0 ; i < = n ; i + + )
②当前的背包容量 J 大于等于物品重量 w [ i ] 时, m
2 0 07 .
i n t n , C , w [ M A X ] , v [ MA X ] , m [ MA x】 [ MA x 】 = { 0 } ; v o i d k n a p s a c k 0 {i n t i ;

C语言动态规划之背包问题详解

C语⾔动态规划之背包问题详解01背包问题给定n种物品,和⼀个容量为C的背包,物品i的重量是w[i],其价值为v[i]。

问如何选择装⼊背包的物品,使得装⼊背包中的总价值最⼤?(⾯对每个武平,只能有选择拿取或者不拿两种选择,不能选择装⼊某物品的⼀部分,也不能装⼊物品多次)声明⼀个数组f[n][c]的⼆维数组,f[i][j]表⽰在⾯对第i件物品,且背包容量为j时所能获得的最⼤价值。

根据题⽬要求进⾏打表查找相关的边界和规律根据打表列写相关的状态转移⽅程⽤程序实现状态转移⽅程真题演练:⼀个旅⾏者有⼀个最多能装M公⽄的背包,现在有n件物品,它们的重量分别是W1、W2、W3、W4、…、Wn。

它们的价值分别是C1、C3、C2、…、Cn,求旅⾏者能获得最⼤价值。

输⼊描述:第⼀⾏:两个整数,M(背包容量,M<= 200)和N(物品数量,N<=30);第2…N+1⾏:每⾏两个整数Wi,Ci,表⽰每个物品的质量与价值。

输出描述:仅⼀⾏,⼀个数,表⽰最⼤总价值样例:输⼊:10 42 13 34 57 9输出:12解题步骤定义⼀个数组dp[i][j]表⽰容量为j时,拿第i个物品时所能获取的最⼤价值。

按照题⽬要求进⾏打表,列出对应的dp表。

W[i](质量)V[i](价值)01234567891000000000000210011111111133001334444444500135568899790013556991012对于⼀个动态规划问题设置下标时最好从0开始,因为动态规划经常会和上⼀个状态有关系!从上⾯的dp表可以看出来对于⼀个物品我们拿还是不难需要进⾏两步来判断。

第⼀步:判断背包当前的容量j是否⼤于物品当前的质量,如果物品的质量⼤于背包的容量那么就舍弃。

第⼆步:如果背包可以装下这个物品,就需要判断装下该物品获取的最⼤价值是不是⼤于不装下这个物品所获取的最⼤价值,如果⼤于那么就把东西装下!根据这样的思想我们可以得到状态转移⽅程:如果单签背包的容量可以装下物品:dp[i][j]=max(dp[i-1][j],dp[i-1][j-w[i]]+v[i]);如果当前背包的容量装不下该物品:dp[i][j]=dp[i-1][j];#include <stdio.h>int max(const int a,const int b){return a>b ? a:b;}int main(){int w[35]={0},v[35]={0},dp[35][210]={0};int n,m;scanf("%d %d",&m,&n);int i,j;for(i=1;i<=n;i++){scanf("%d %d",&w[i],&v[i]);}for(i=1;i<=n;i++){for(j=1;j<=m;j++){if(j>=w[i])//如果当前背包的容量⼤于商品的质量{dp[i][j]=max(dp[i-1][j],dp[i-1][j-w[i]]+v[i]);//判断是否应该拿下}else//⼤于背包的当前容量{dp[i][j]=dp[i-1][j];}}}for(int k=0;k<=n;k++){for(int l=0;l<=m;l++){printf("%d ",dp[k][l]);}printf("\n");}printf("%d\n",dp[n][m]);}通过运⾏以上程序可以看到最终的输出dp表和我们的预期是相符合的!但是并没有结束,动态规划有⼀个后⽆效性原则(当前状态只与前⼀个状态有关)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
max ∑ vi xi
i =1 n
n ∑ wi xi ≤ C s.t i =1 xi ∈{0,1},1 ≤ i ≤ n
(3.4.1)
2
1.最优子结构(最优性原理)
最优性原理:设(y1,y2,…,yn)是 (3.4.1)的一个最优解.则 最优性原理 (y2,…,yn)是下面相应子问题的一个最优解: n
第3章 动态规划
(Dynamic Programming).
—3.4 0-1背包问题 0-
1
0-1背包问题
给定n种物品和一背包。物品i的重量是wi,其价值为vi, 背包的容量为C。问:应如何选择装入背包的物品,使得装 入背包中物品的总价值最大? 0-1背包问题描述:给定c >0, wi >0, vi >0 , 1≤i≤n.要求找一n 元向量(x1,x2,…,xn,), xi∈{0,1}, ∋ ∑ wi xi≤c,且∑ vi xi达最 大.即一个特殊的整数规划问题。
x
x
m(2,x) (3,2) (2,1) (5,3)
x
m(2,x-4)+5 (7,7) (6,6) (4,5) (9,8) m(1,x)
x
(7,7) (6,6) (4,5) (3,2) (5,3) (0, 0) (2, 1) (9,8)
(0,0)
x
x
x
11
5.算法改进
•函数m(i,j)是由函数m(i+1,j)与函数m(i+1,j-wi)+vi作max运算得 到的。因此,函数m(i,j)的全部跳跃点包含于函数m(i+1,j)的跳 跃点集p[i+1]与函数m(i+1,j-wi)+vi的跳跃点集q[i+1]的并集中。 易知,(s,t)∈q[i+1]当且仅当wi≤s≤c且(s-wi,t-vi)∈p[i+1]。因此, 容易由p[i+1]确定跳跃点集q[i+1]如下 q[i+1]=p[i+1]⊕(wi,vi)={(j+wi,m(i,j)+vi)|(j,m(i,j))∈p[i+1]} •另一方面,设(a,b)和(c,d)是p[i+1]∪q[i+1]中的2个跳跃点, 则当c≥a且d<b时,(c,d)受控于(a,b),从而(c,d)不是p[i]中 的跳跃点。除受控跳跃点外,p[i+1]∪q[i+1]中的其他跳跃点均 为p[i]中的跳跃点。 •由此可见,在递归地由表p[i+1]计算表p[i]时,可先由p[i+1]计 算出q[i+1],然后合并表p[i+1]和表q[i+1],并清除其中的受控 跳跃点得到表p[i]。
7
5.改进算法 PP.71~PP.72
为克服以上缺点,引入阶梯函数。利用序偶概念,改 进算法的计算时间复杂性为O(2n )。而当所给物品的重量 wi是整数时,其计算时间复杂性为 O(min{nc, 2n }) (略) 。 动态规划的其他应用实例(略) 旅行商问题 矩阵连乘问题 系统可靠性设计 流水线调度问题 设备更新问题 最优二叉搜索树 图像压缩
8
动态规划缺陷: 动态规划缺陷 (1)无一统一标准模型可供应用。利用“最优性原理”得出递归 关系式后,必须结合问题的特点,结合其他数学技巧求解,且无 统一处理方法。 (2)数值求解中,当问题中的状态变量个数太多(如有向图中的 边数),由于计算机存储量及计算速度限制而无法对付“维数障 碍”。 由前述可知,任一多阶段决策过程中的最优化问题,都可以用非 线性规划方法(Nonlinear programming Methods,特殊:linear programming)模型来描述。 动态规划的优越之处: 动态规划的优越之处 (1)易于确定全局解。动态规划方法是一种逐步改善的方法,它 把原问题化成一系列结构相似的最优化子问题,而每个子问题的 变量个数比原问题少的多,约束集合也简单得多,故较易于确定 全局最优。特别当处理离散类型问题时,动态规划是求出全局最 优化解的唯一方法。 (2)能得一族解,有利分析结果是否有用或进行选择(决策), 且大大节省工作量。 (3)能利用经验,提高求解效率。动态规划方法反映过程逐段演 变的前后联系,与实际进程更紧密,因而在计算中能… 9 (4)有广泛应用背景(略)
wx ≤C −w y ∑ i i 1 1 s.t i =2 xi ∈{0,1}, 2 ≤ i ≤ n
3
2.递归关系
设所给0-1背包问题的子问题
max
∑v
k=i
n
k xk
(3.4.2)
n wk xk ≤ j s .t . k =i x ∈ {0,1}, i ≤ k ≤ n k
5.算法改进
由m(i,j)的递归式容易证明,在一般情况下,对每一个确定的 i(1≤i≤n),函数m(i,j)是关于变量j的阶梯状单调不减函数。跳跃 点是这一类函数的描述特征。在一般情况下,函数m(i,j)由其全 部跳跃点惟一确定。如图所示。
对每一个确定的i(1≤i≤n),用一个表p[i]存储函数m(i,j)的全部 跳跃点。表p[i]可依计算m(i,j)的递归式递归地由表p[i+1]计算, 初始时p[n+1]={(0,0)}。
12
典型例子( 典型例子(二)
n=5,c=10,w={2,2,6,5,4},v={6,3,5,4,6}。 初始时p[6]={(0,0)},(w5,v5)=(4,6)。因此, q[6]=p[6]⊕(w5,v5)={(4,6)}。 p[5]={(0,0),(4,6)}。 q[5]=p[5]⊕(w4,v4)={(5,4),(9,10)}。从跳跃点集p[5]与q[5]的并集 p[5]∪q[5]={(0,0),(4,6),(5,4),(9,10)}中看到跳跃点(5,4)受控于跳 跃点(4,6)。将受控跳跃点(5,4)清除后,得到 p[4]={(0,0),(4,6),(9,10)} q[4]=p[4]⊕(6,5)={(6,5),(10,11)} p[3]={(0,0),(4,6),(9,10),(10,11)} q[3]=p[3]⊕(2,3)={(2,3),(6,9)} p[2]={(0,0),(2,3),(4,6),(6,9),(9,10),(10,11)} q[2]=p[2]⊕(2,6)={(2,6),(4,9),(6,12),(8,15)} p[1]={(0,0),(2,6),(4,9),(6,12),(8,15)} p[1]的最后的那个跳跃点(8,15)给出所求的最优值为m(1,c)=15。 13
注:(3-4-3)式 此时背包容量为j,可选择物品为i。此时在对xi作出决策之后,问题 3.算法复杂度分析 算法复杂度分析: 3.算法复杂度分析: 处于两种状态之一: 从m(i,j)的递归式容易看出,算法Knapsack需要 背包剩余容量是j,没产生任何效益; O(nc)计算时间; Traceback需O(n)计算时间 ;算法 剩余容量j-wi,效益值增长了vi . 总体需要O(nc)计算时间。当背包容量c很大时,算 从n推至i+1,i算出最优值m(i,j) ( i=n,…,1)n。 m(1,c)为最优值。 法需要的计算时间较多。例如,当c>2 时,算法需 然后用回溯法Traceback找出最优解xi 其中i,c为整值。 要 (n2n)计算时间。

的最优值为m(i,j),即m(i,j)是背包容量为j,可选择物品为i, i+1,…,n时0-1背包问题的最优值。由0-1背包问题的最优子 结构性质,可以建立计算m(i,j)的递归式:
j ≥ wi max{m( i + 1, j ), m ( i + 1, j − w i ) + v i } m( i , j ) = (3.4.3) 0 ≤ j < wi m ( i + 1, j )
}
6
4.算法描述
m[1][c]=m[2][c]; if(c>=w[1]) m[1][c]=max(m[1][c], m[2][c-w[1]]+v[1]); } Template < class Type >//求最优解 i // 求最优解x void Traceback(Type **m, int w, int c, int n, int x) { Knapsack算法的另一 算法的另一 算法 for(int i=1; i<n; i++) 缺点是要求所给物品 if(m[i][c]==m[i+1][c]) x[i]=0; 的重量w 的重量wi(1 ≤ i ≤ n) else { x[i]=1; 是整数 c= c- w[i]; } x[n]=(m[n][c])?1:0; } 说明:当wi为正整数时,用二维数组m[][]来存储m(i,j)相应的最 说明 优值。
5
4sack如下: 如下: 算法 如下
template< class Type > void Knapsack( Type v, int w, int c, int n, Type **m) { int jMax = min(w[n]-1, c) //背包剩余容量 背包剩余容量// 背包剩余容量 for(int j = 0; j<=jMax; j++) //背包不同剩余容量 ≤ jMax<c// 背包不同剩余容量j 背包不同剩余容量 m[n][j]=0; for(int j=w[n]; j<=c; j++) //背包不同剩余容量 >c// 背包不同剩余容量j 背包不同剩余容量 m[n][j]=v[n]; for(int i=n-1; i>1; i--) { jMax=min(w[i]-1, c); for(int j=0; j<=jMax; j++) //背包不同剩余容量 ≤ jMax<c// 背包不同剩余容量j 背包不同剩余容量 m[i][j]=m[i+1][j]; //没产生任何效益 没产生任何效益// 没产生任何效益 for(int j=w[i]; j<=c; j++) //背包不同剩余容量 背包不同剩余容量j-wi >c// 背包不同剩余容量 m[i][j]=max(m[i+1][j], m[i+1][j-w[i]]+v[i]); //效益值增长 i // 效益值增长v 效益值增长
相关文档
最新文档