石墨烯的表面性质及其分析测试技术
探析石墨烯的表面改性及其在涂层中的应用

探析石墨烯的表面改性及其在涂层中的应用石墨烯是由一层厚度仅为一个原子的碳原子构成的二维材料。
由于其具有极高的导电性、热传导性、机械强度和化学稳定性,石墨烯有着广泛的应用潜力。
石墨烯的应用受到了其本身表面性质的限制。
为了改善石墨烯的表面性质,需要对其进行表面改性。
表面改性后的石墨烯可以用于涂层材料中,提高涂层的性能和功能。
石墨烯的表面改性主要包括化学修饰和物理修饰两种方法。
化学修饰是通过在石墨烯表面引入化学官能团来改变其表面性质。
常见的化学修饰方法包括氧化、硝化、氯化、磺酸化等。
这些化学修饰可以引入不同的官能团,如羟基、羧基、氯基等,从而改变石墨烯的表面化学性质。
经氧化修饰后的石墨烯表面变得亲水性增强,可以提高涂层的附着力和耐腐蚀性。
物理修饰是通过在石墨烯表面引入微纳米结构来改变其表面形貌和结构。
常见的物理修饰方法包括机械剥离、熔炼、电弧放电等。
这些物理修饰可以在石墨烯表面形成纳米结构,如纳米颗粒、纳米孔等,从而增加石墨烯的表面积和吸附性能。
经物理修饰后的石墨烯表面呈现出多孔结构,可以提高涂层对溶剂和颗粒的吸附能力。
将表面改性后的石墨烯应用于涂层中可以提升涂层的性能和功能。
表面改性后的石墨烯可以作为填料添加到涂层中,用于增加涂层的机械强度、导热性和阻隔性能。
其高导电性和高热传导性可以提高涂层的导电性和导热性,使涂层具有耐高温、防静电、阻燃等功能。
石墨烯表面改性后的亲水性增强,可以提高涂层的附着力和耐腐蚀性。
石墨烯的表面改性还可以通过控制其表面化学性质来实现对涂层中活性物质的选择性吸附和释放。
石墨烯表面引入特定的官能团后,可以吸附和释放特定的物质,从而在涂层中实现对有机溶剂、催化剂、药物等的选择性吸附和释放。
探析石墨烯的表面改性及其在涂层中的应用

探析石墨烯的表面改性及其在涂层中的应用【摘要】石墨烯是一种具有优异导电、高强度和超薄结构的二维材料,自其发现以来,一直备受关注。
本文探讨了石墨烯表面改性在涂层中的应用。
通过实现石墨烯表面改性,可以增强其与其他物质的相容性和粘附性,提高涂层的耐久性和性能。
石墨烯在涂层中的应用优势主要包括其高导电性和强度优势,可以应用于防腐涂料和导电涂料中。
石墨烯改性涂层的性能优化也是当前研究重点之一。
结合石墨烯的特性和优势,预计石墨烯在涂层领域有广阔的应用前景,为涂层提供了新的可能性。
石墨烯的发现和表面改性对涂层领域带来了重要的突破,为未来涂料技术的发展开辟了新的研究方向。
【关键词】石墨烯, 表面改性, 涂层, 应用, 优势, 性能优化, 防腐涂料, 导电涂料, 可能性, 应用前景1. 引言1.1 石墨烯的发现与特性石墨烯是由石墨经过化学还原、机械剥离等方法获得的一种二维晶体材料,是由一个原子层组成的二维晶体材料。
石墨烯具有很多优异的特性,比如高导热性、高机械强度、高光学透明度等,是一种具有广泛应用前景的新型材料。
石墨烯的发现可以追溯到2004年,由英国曼彻斯特大学两位科学家安德烈·海姆和康斯坦丁·诺沃肖洛夫首次成功分离出石墨烯,从而引发了全球范围内对石墨烯研究的热潮。
石墨烯具有很高的电子迁移率和热传导率,使其成为理想的导电材料和热导材料。
石墨烯还具有出色的力学性能,比如高弹性模量和强度,使其在纳米材料领域具有广泛的应用前景。
石墨烯的发现为材料科学和技术领域带来了新的突破,为石墨烯在涂层领域的应用提供了强有力的支撑。
1.2 对石墨烯表面改性的重要性石墨烯表面改性的重要性主要体现在以下几个方面:改性可以增加石墨烯与其他物质的相互作用力,提高其在复合材料中的分散性和增强性能;改性可以使石墨烯具有更多的功能化官能团,拓展其在不同领域的应用,如生物医药、传感器等;通过表面改性可以提高石墨烯的稳定性和耐久性,使其更加适合工业化生产和应用。
石墨烯表征方法

石墨烯表征方法石墨烯是一种由碳原子构成的二维材料,具有极高的导电性和热导性,以及出色的机械强度和柔韧性。
由于石墨烯的独特性质,人们对其进行了广泛的研究和应用。
为了更好地理解和表征石墨烯材料,科学家们开发了多种表征方法。
一、原子力显微镜(AFM)原子力显微镜是一种常用的石墨烯表征方法之一。
它通过探测表面的力与距离关系,可以获得石墨烯的拓扑结构和力学性质。
AFM可以实现纳米级的分辨率,可以直接观察到石墨烯的原子级结构。
同时,AFM还可以测量石墨烯的厚度,从而确定其层数。
二、扫描电子显微镜(SEM)扫描电子显微镜是一种常用的表面形貌表征方法。
通过聚焦电子束,扫描样品表面,并测量电子的反射或散射信号,可以获得石墨烯的表面形貌和微观结构。
SEM具有高分辨率和大深度视场的优点,可以对大面积的石墨烯样品进行观察和分析。
三、透射电子显微镜(TEM)透射电子显微镜是一种常用的石墨烯表征方法之一。
它通过透射电子束,并测量透射电子的衍射图样,可以获得石墨烯的晶体结构和晶格参数。
TEM具有极高的分辨率,可以实现原子级的观察和分析。
同时,TEM还可以通过能谱分析等技术,获得石墨烯的化学成分和元素分布信息。
四、拉曼光谱(Raman)拉曼光谱是一种非常重要的石墨烯表征方法。
它通过测量石墨烯材料散射的光子能量差,可以获得石墨烯的振动模式和结构信息。
拉曼光谱可以用来确定石墨烯的层数、缺陷和应变等物理性质。
同时,拉曼光谱还可以用来研究石墨烯与其他材料之间的相互作用。
五、X射线衍射(XRD)X射线衍射是一种常用的晶体结构表征方法。
通过石墨烯材料对X 射线的衍射效应,可以获得石墨烯的晶体结构和晶格参数。
X射线衍射可以用来确定石墨烯的层数、晶胞尺寸以及晶体取向等信息。
同时,X射线衍射还可以用来研究石墨烯的结晶性质和晶格缺陷情况。
六、核磁共振(NMR)核磁共振是一种常用的石墨烯表征方法之一。
通过测量石墨烯材料中核自旋的共振信号,可以获得石墨烯的化学成分和分子结构信息。
分析报告-石墨烯

分析报告-石墨烯石墨烯是一种由碳原子组成的二维晶体结构材料。
它具有极高的导电性、热导性和机械强度,是当今世界上最热门的材料之一。
石墨烯的发现为许多领域带来了革命性的突破,例如电子学、能源存储、生物医学和材料科学等。
本文将对石墨烯的特性和应用进行分析,为读者们展示它的无限潜力。
首先,我们来了解一下石墨烯的特性。
石墨烯由一层厚度仅为一个碳原子的蜂窝状结构组成,呈现出非常独特的性质。
首先,它的导电性极高。
由于石墨烯中的碳原子排列非常紧密,电子可以自由地在其表面上移动,因此使得石墨烯具有比铜更好的导电性能。
其次,石墨烯的热导性也非常优秀。
碳原子之间的距离非常短,因此热量可以很快地在石墨烯上传导,使其成为理想的热导材料。
此外,石墨烯还具有很高的机械强度和柔韧性,即使在非常薄的情况下也能够承受很大的张力。
接下来,我们将详细介绍石墨烯在不同领域的应用。
首先是电子学领域。
由于石墨烯的出色导电性能,它被广泛应用于电子器件中,如晶体管、电容器和传感器等。
石墨烯晶体管具有高电子迁移率和低功耗的特点,能够显著提高电子器件的性能。
此外,石墨烯还可以用作柔性电子材料,可以制备出可弯曲的电子产品,如可穿戴设备和柔性显示屏等。
其次是能源存储领域。
石墨烯被广泛应用于锂离子电池和超级电容器等能源存储设备中。
石墨烯作为电极材料具有高比表面积和良好的导电性,能够提高电池和超级电容器的能量存储密度和充放电速率。
石墨烯的应用使得电池和超级电容器具有更高的能量密度和更长的循环寿命,推动了能源存储技术的发展。
再次是生物医学领域。
石墨烯在生物医学中有着广泛的应用前景。
石墨烯可以用于制备生物传感器,能够检测体内的生物分子并实时监测生理状态。
此外,石墨烯还可以用于药物传递系统,利用其在体内的良好生物相容性,将药物高效地输送到需要治疗的部位。
石墨烯在肿瘤治疗中也有很大的潜力,具有热疗和光疗的特点,可以实现对肿瘤细胞的精确杀灭。
最后是材料科学领域。
石墨烯具有出色的机械强度和柔韧性,可以用来制备高性能的复合材料。
《石墨烯的表征》课件

欢迎来到本次课件主题,今天我们将一起探索石墨烯的表征方法和未来的发 展方向。
石墨烯简介
石墨烯是由石墨层剥离而成的一种特殊形态的碳材料。它具有单原子厚度、 高比表面积、高机械强度、高导电性、高热导率等状态。
传统和特殊表征方法
传统的表征方法包括透射电镜和扫描电子显微镜,用于观察晶体结构和形貌。特殊的表征方法包括原子力显微 镜和拉曼光谱,能够揭示石墨烯的电学、热学、力学等性质。
优缺点和未来发展Βιβλιοθήκη 向各种表征方法的优缺点需要综合考虑,未来石墨烯的表征方法需要更多样化, 更专业化,以更好地服务于石墨烯产业的发展。
参考文献
• Das A, Pisana S, Chakraborty B, et al. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor[J]. Nature nanotechnology, 2008, 3(4): 210-215.
操作流程
使用电子束扫描石墨烯样品表面并记录图像,可以得到石墨烯的形貌和导电性信息。
观察结果
扫描电子显微镜下清晰显示出石墨烯片层的层数以及表面的几何形态。能够量测出石墨烯的 粗糙度和导电性。
原子力显微镜观察石墨烯
样品制备
使用化学气相沉积法在硅晶片上 制备石墨烯样品。
操作流程
观察结果
使用原子力显微镜照射样品表面, 通过控制探针与样品的距离来记 录石墨烯表面的高度变化。
石墨烯表面会有起伏,形成皱褶 结构,原子力显微镜可以清晰地 观察石墨烯表面的这种形态和变 化。
拉曼光谱分析石墨烯
石墨烯的表征方法

石墨烯的表征方法一、本文概述石墨烯,作为一种新兴的二维纳米材料,因其独特的物理、化学和机械性能,在科学研究和工业应用中均展现出巨大的潜力。
然而,要想充分发掘和利用石墨烯的这些特性,对其进行精确、全面的表征是至关重要的。
本文旨在探讨石墨烯的表征方法,包括其结构、电学性质、热学性质、力学性质以及化学性质等方面的表征技术。
我们将首先介绍石墨烯的基本结构和性质,以便读者对其有一个清晰的认识。
随后,我们将逐一分析并比较各种表征方法的优缺点,包括电子显微镜、原子力显微镜、拉曼光谱、电学测量等。
这些方法的介绍将侧重于它们的原理、操作过程以及在石墨烯表征中的应用实例。
我们还将讨论这些表征方法在石墨烯研究中的最新进展,以及它们在未来可能的发展趋势。
我们期望通过本文,读者能够对石墨烯的表征方法有更深入的了解,为石墨烯的基础研究和应用开发提供有益的参考。
二、石墨烯的结构与性质石墨烯,这种由单层碳原子紧密排列构成的二维材料,自其被发现以来,便因其独特的结构和性质在科学界引起了广泛关注。
其结构特点主要表现为碳原子以sp²杂化轨道组成六边形蜂巢状的二维晶体,每个碳原子通过σ键与相邻的三个碳原子相连,剩余的p轨道则垂直于面形成大π键,π电子可在石墨烯层内自由移动。
这种独特的结构赋予了石墨烯许多引人注目的物理性质。
石墨烯在电学性质上展现出极高的电导率,甚至超过了铜和银等金属,是室温下导电性最好的材料。
其热导率也极高,远超其他已知材料,这使得石墨烯在电子器件和散热材料等领域具有巨大的应用潜力。
在力学性能上,石墨烯的强度也极高,是已知强度最高的材料之一,这使得石墨烯在复合材料、航空航天等领域有着广阔的应用前景。
除了以上基础性质,石墨烯还具有一些特殊的性质,如量子霍尔效应、半整数量子霍尔效应等,这些性质使得石墨烯在基础科学研究领域也具有极高的研究价值。
石墨烯还具有很好的透光性,单层石墨烯几乎是完全透明的,这使得石墨烯在透明导电材料、太阳能电池等领域也有潜在的应用价值。
石墨烯表面处理技术

石墨烯表面处理技术石墨烯表面处理技术是一种对石墨烯进行化学修饰和功能化的方法,可以改变石墨烯的特性和应用范围。
石墨烯作为一种二维材料,具有优异的电学、热学和力学性能,因此在能源存储、传感器、电子器件等领域具有广泛的应用前景。
然而,石墨烯的应用受到其本身的特殊结构和化学惰性的限制,需要通过表面处理来改善其性能和功能。
石墨烯表面处理技术主要包括物理和化学两种方法。
物理方法包括机械剥离、离子注入和高温退火等,可以改变石墨烯的形貌和结构。
化学方法则通过在石墨烯表面引入不同的官能团,改变其化学性质和功能。
在物理方法中,机械剥离是一种常用的制备石墨烯的方法。
通过在石墨晶体表面施加机械力,可以使石墨晶体层层剥离,最终得到单层的石墨烯。
这种方法简单易行,但是得到的石墨烯质量和尺寸有限。
离子注入则是通过将离子加速到高能量,使其撞击到石墨烯表面,从而改变石墨烯的性质。
高温退火则是将石墨烯加热到高温,使其分子间的键重新排列,修复石墨烯的结构缺陷。
化学方法中,最常用的是氧化石墨烯(GO)的还原。
氧化石墨烯是一种将石墨烯表面引入氧官能团的方法,可以增加石墨烯的亲水性和分散性。
通过还原氧化石墨烯,可以去除氧官能团,得到还原石墨烯(rGO)。
rGO具有良好的导电性和机械性能,可以用于电子器件和储能材料。
此外,还可以通过在石墨烯表面引入其他官能团,如氨基、羟基等,来赋予石墨烯特定的性质和功能。
石墨烯表面处理技术可以改变石墨烯的物理性质和化学活性,从而扩展其应用领域。
例如,在电子器件方面,通过在石墨烯表面引入氧化物或金属纳米颗粒,可以制备石墨烯场效应晶体管和石墨烯超级电容器。
在储能材料方面,将石墨烯表面进行氮掺杂或磷掺杂,可以提高其储能性能,用于制备超级电池和超级电容器。
此外,石墨烯表面处理技术还可以用于制备石墨烯基传感器,通过在石墨烯表面引入特定的官能团,实现对特定气体或化学物质的高灵敏检测。
石墨烯表面处理技术是一种对石墨烯进行化学修饰和功能化的方法,可以改变石墨烯的性质和功能,扩展其应用领域。
石墨烯检测报告(一)

石墨烯检测报告(一)引言概述:石墨烯作为一种新兴的材料,在科学研究和工业应用领域得到了广泛关注。
本文将就石墨烯的检测方法进行深入探讨,包括石墨烯的制备和表征技术,以及常见的石墨烯探测手段。
正文内容:1. 石墨烯的制备技术- 机械剥离法:通过机械剥离石墨烯原料,如石墨,来获得单层或多层的石墨烯片段。
- 化学气相沉积法:在高温下,通过热解石墨烯前体气体,沉积在衬底上,实现石墨烯的制备。
- 液相剥离法:利用氧化剂或还原剂对石墨进行化学反应,使石墨烯分散在液体中,并通过过滤得到石墨烯材料。
2. 石墨烯的表征技术- 原子力显微镜(AFM):通过扫描样品表面,测量力的变化,获得石墨烯片层的拓扑结构和高度信息。
- 透射电子显微镜(TEM):利用电子束穿透样品,观察和分析石墨烯的晶体结构和缺陷情况。
- X射线光电子能谱(XPS):通过测量材料中的光电子能谱,分析材料的化学成分和电子结构。
- 拉曼光谱:利用激光与样品反射、散射和吸收的变化,分析石墨烯的结构和化学键的振动模式。
- 热重分析(TGA):通过测量材料随温度的质量变化,分析石墨烯的热分解过程和热稳定性。
3. 石墨烯的电学性质检测- 电导率测量:通过测量石墨烯样品的电阻,计算出其电导率,评估石墨烯的导电性能。
- 能带结构分析:利用光电子能谱等技术,研究石墨烯样品的能带结构,探究其导电机制。
- 场效应晶体管测量:利用场效应晶体管(FET)结构,测量石墨烯的电流-电压特性,评估其在电子器件中的应用潜力。
- 导电性显微镜:结合原子力显微镜,对石墨烯样品进行局部电流密度的测量,探究其导电特性的空间分布。
4. 石墨烯的力学性质检测- 纳米压痕测试:利用纳米压痕仪,测量石墨烯的硬度和弹性模量,评估其力学特性。
- 拉伸测试:通过拉伸试验机,对石墨烯进行拉伸破裂实验,获得其拉伸强度和断裂应变。
- 厚度测量:利用原子力显微镜等技术,测量石墨烯的厚度,评估其层间结构和单层特性的存在情况。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Journal of Advances in Physical Chemistry 物理化学进展, 2016, 5(2), 48-57Published Online May 2016 in Hans. /journal/japc/10.12677/japc.2016.52006Progress in Surface Propertiesand the Surface Testing of GrapheneJinfeng Dai1*, Guojian Wang1,2, Chengken Wu11School of Materials Science and Engineering, Tongji University, Shanghai2Key Laboratory of Advanced Civil Engineering Materials, Ministry of Education, ShanghaiReceived: Apr. 22nd, 2016; accepted: May 10th, 2016; published: May 13th, 2016Copyright © 2016 by authors and Hans Publishers Inc.This work is licensed under the Creative Commons Attribution International License (CC BY)./licenses/by/4.0/AbstractGraphene has been paid much attention for its special two-dimensional structure and excellent physicochemical properties. Researchers have done a great number of studies on these fields, and have made lots of outstanding results, while less on the surface properties, relatively. However, the surface properties of graphene usually play an important role in the practical application of graphene-based materials, especially, in the nano-composites, nano-coating and electrical nano- devices. In this review, the recent developments of surface properties and surface modification of graphene are summarized, where the relationship between the structure and surface properties of graphene is highlighted. The method of surface testing is also compared and commented on briefly. We believe that the future prospects of research emphasis on preparation of functiona-lized graphene with special surface properties, and a new comprehensive technique for testing the surface properties of graphene. Finally, the current challenges of research on structural surface and surface properties of graphene are commented based on our own opnion.KeywordsSurface Properties, Structural Surface, Surface Energy, Surface Testing, Graphene石墨烯的表面性质及其分析测试技术戴进峰1*,王国建1,2,吴承恳11同济大学材料科学与工程学院,上海*通讯作者。
戴进峰等2先进土木工程材料教育部重点实验室,上海收稿日期:2016年4月22日;录用日期:2016年5月10日;发布日期:2016年5月13日摘要石墨烯具有特殊的二维结构和完美的物理化学性能,科研人员在这些领域做出了一系列研究成果,但对石墨烯的表面性质研究相对较少。
然而,石墨烯的表面性质对石墨烯在纳米复合材料、纳米涂层以及纳米电子器件等领域的应用起着至关重要的作用。
对此,笔者通过综述石墨烯表面性质以及表面改性的研究进展,着重探讨了石墨烯表面结构与表面性质间的关系;分析和比较了常用的石墨烯表面分析测试技术。
进而指出制备具有特定表面性质的功能化石墨烯和开发能适应石墨烯表面性质更宽测试范围的新技术,将是今后研究的重点。
最后,对石墨烯表面结构与表面性质研究中的挑战以及应用前景进行了展望。
关键词表面性质,表面结构,表面能,分析测试技术,石墨烯1. 引言随着纳米技术的不断发展,各种碳纳米材料逐渐进入我们的视野,从零维富勒烯到一维碳纳米管再到2004年在实验室中制备出的二维石墨烯。
现有的研究表明,各种碳纳米材料在众多应用领域中具有潜在的应用前景,尤其以当前最被研究人员和科学家们注目的石墨烯。
石墨烯,当今世界上最薄的二维材料,被认为是其它碳材料的基本单元[1]。
由于其独特的性能[2],石墨烯的出现迅速激起了科学家们对它在电子、光学、传感器、机械加工以及热传导等应用领域的憧憬,同时,石墨烯也为科学界研究二维材料的特性提供了充满魅力的研究平台。
因此,如何开发和应用石墨烯成为化学、物理和材料学等学科的研究热点。
近几年来,人们已经在石墨烯的制备方面取得了快速的进展,发展了机械剥离法[1]、晶体外延生长法[3]、化学氧化还原法[4]、液相剥离[5]、化学气相沉积法[6]和有机合成[7]多种制备方法,石墨烯制备技术的不断完善[2],为石墨烯和氧化石墨烯的基础研究和应用提供了坚实的保证。
但由于石墨烯层间极大的范德华力,致使其不能良好地分散于众多溶剂中[8],因此,在通往应用的路上,石墨烯还面临着一个比较严峻的问题:如何获得良好分散于溶剂且不影响其性质的石墨烯。
我们知道,分散性的本质原因在于材料的表面性质,因此,研究并准确表征石墨烯的表面性质,进而发展相关的表面功能化方法将为石墨烯的广泛应用奠定基础。
迄今为止,关于石墨烯表面性质的研究报道尚较少涉及。
笔者试图通过总结近年来国内外在石墨烯表面性质与表面改性方面的研究现状,进而探讨了石墨烯表面性质与表面结构的关系,以及石墨烯表面性质的分析测试方法,并对石墨烯在表面性质方面的未来发展进行了展望。
2. 石墨烯的表面结构与表面性质从表面性质的影响因素来看[9],影响石墨烯表面性质的主要因素是石墨烯的表面结构,即表面微观形貌和表面化学组成。
石墨烯是由一层密集的、包裹在蜂巢晶体点阵上呈二维平面排列的碳原子构成,其厚度仅为0.35 nm。
从微观形貌上分析,单层石墨烯并不是完全平整的[10]。
通过Monte Carlo模拟的戴进峰等Figure 1. (a) Schematic diagram of typical configuration of graphene [11]; (b) STM topographic image from asingle layer of graphene [12]图1. (a)单层石墨烯的理论模拟示意图[11];(b)STM扫描电镜照片[12]单层石墨烯示意图[11](图1(a))可知,它具有物质微观状态下的固有粗糙性,表面出现起伏而形成褶皱,这种褶皱自发地产生,起伏高度变化约为±0.5 nm,而边缘部位的变化超过10 nm。
正是这种纳米级别上的扭曲,使得单层石墨烯在实验室被制备出来,有力地推翻了过去几十年来科学家们一直认为严格的二维晶体在热力学上不稳定性、不可能存在的理论。
从化学角度分析[12] [13],石墨烯面上的碳原子以六元环形式周期性排列(如图1b),每个碳原子通过σ键以sp2杂化连接,sp2杂化的C-C键长约为0.142 nm,键角为120˚,而每个碳原子剩余的p电子垂直于石墨烯平面,与周围碳原子上剩余的p电子形成π键,可自由移动的π电子赋予石墨烯良好的导电性[13] [14],但也使得石墨烯在宏观上易于团聚且具有强大的表面能[10] [15]。
Leenaerts等[16]运用密度泛函理论研究了物理吸附于石墨烯表面的水滴对石墨烯电性能的影响,他们发现,由于水滴内部水分子间的结合能远远大于它们与单层石墨烯表面间的吸附能,致使石墨烯表现出强疏水性[17],从而使得表面的水滴对石墨烯的电性能几乎没有影响。
Shin等[18]研究了石墨烯的层数对静态水接触角的影响,并比较了经过表面处理后的石墨烯的静态水接触角的差异。
首先,他们采用外延生长法制备了单层、双层以及多层石墨烯,并测试了水分子在不同层数石墨烯表面的接触角。
实验发现,它们的静态水接触角分别为92.5˚、91.9˚和92.7˚,与高度裂解石墨的接触角(91.0˚)基本相同。
其可能的原因:一方面是因为石墨烯层数的变化并没有改变石墨烯的表面粗糙度;另一方面是因为表面的水分子内部结合能远大于水分子与石墨烯片层间的吸附能,从而使得石墨烯的静态水接触角与高度裂解石墨的接触角相同。
随后,他们对单层石墨烯先采用氧等离子体刻蚀,然后再进行高温退火处理,最后测定了它们的静态水接触角。
结果发现,被氧等离子体刻蚀的石墨烯的静态水接触角由原来未经处理的92.5˚减小为55.1˚,但放置一天后其接触角增大至72.4˚。
将其再经过高温退火处理,则接触角又增加到87.3˚。
Raman光谱的分析结果显示其静态水接触角的变化和其化学结构有直接联系[19]。
当石墨烯受氧等离子体蚀刻后,其表面化学结构发生改变(如形成缺陷,生成C-H、OH等基团,部分sp2结构转变为sp3杂化等),这些结构的转变极大地改变了石墨烯的表面能,使得石墨烯从疏水性向亲水性转变。
当放置一天后,由于石墨烯表面官能团吸附的一些亲水分子的离去导致其接触角有所增大。