光的相干性(1).
光的相干原理

光的相干原理介绍光的相干性是光学中的基本概念,是指两个或多个光波之间存在一定的相干关系。
光的相干性与波的性质密切相关,相干光可以产生干涉和衍射现象,也可应用于干涉测量、光学显微镜、激光技术等领域。
光的相干原理是研究相干性质的理论基础,它描述了光的相干性形成的原因和相干性的特征。
一、相干性的概念•相干性是指两个或多个波在时间和空间上保持一定的相位关系,并以某种规律变化的一种特性。
•相干现象表现为干涉和衍射,干涉是指两个波叠加形成明暗条纹的现象,衍射是指波通过障碍物后产生的弯曲和展宽的现象。
二、相干性的表征1. 相长和相消相干性可分为相长和相消两种情况: - 相长:两个波的相位差固定,波峰和波谷始终在同一位置,形成干涉现象。
- 相消:两个波的相位差发生变化,出现干涉条纹的消失。
2. 光程差光程差是指两个或多个波的传播路径差,光程差的大小会影响波的相干性。
当光程差小于波长的一半时,波的相位差会发生变化,波的相干性会减弱或消失。
3. 相干时间和相干长度相干时间是指波的相干性在时间上保持的长度,相干长度是指波的相干性在空间上保持的长度。
相干时间和相干长度决定了相干现象的大小和范围。
三、相干性的形成原因1. 波的干涉当两个或多个波在空间和时间上保持一定的相位差时,它们会产生干涉现象。
干涉是相干性的一种表现形式,是由波的叠加所引起的。
2. 相干光源相干光源是指同时发出的多个波在时间和空间上保持一定相位关系的光源。
激光就是一种相干光源,由于激光的高相干性,它可以产生强烈而稳定的干涉和衍射现象。
3. 相干性保持机制相干性的保持机制包括相位保持和振幅保持两个方面: - 相位保持:光的相位可以受到外界的干扰而改变,但在相干光源的作用下,相位会以一定的规律进行修正,保持一定的相位关系。
- 振幅保持:相干光源在传播过程中,波的振幅会遭受衰减,但在相干光源的作用下,振幅会以一定的规律进行补偿,保持一定的振幅关系。
四、相干性的应用1. 光学干涉仪器光的相干性可以实现干涉仪器的设计和制造,如干涉测量技术、光学显微镜、干涉过滤器等。
大学物理教程9.1 光的相干性

d
r
2
o
d n2 r2 n1r1
位相差为:
u /
P
2π
0
n2 r2 n1r1
--光程差 --光程
第9章 波动光学
nr2 nr1 nr
(c / n ) / c / / n 0 / n
0 真空中波长
9.1 光的相干性
第9章 波动光学
9.1 光的相干性
(b) 当1 2 , E1 A1 cos 1t , E2 A2 cos 2t I I1 I 2 2 I1 I 2 cos(1 2 )t 观察结果为长时间(与光波的周期比较) 的平均值 I I1 I 2 2 I1 I 2 cos(1 2 )t I12 cos(1 2 )t 0, 亦无干涉。
· ·
第9章 波动光学
9.1 光的相干性
二 光的相干性
E E1 E2 2 2 2 E E1 E2 2E1 E2
E1
E2
p
I I1 I2 I12
I12 2E1 E2 干涉项
S1 S2
(a) 当 E1 E2 , I12 0, 无干涉项;
3 如果两束光在两种不同媒质中传播
则光程差为:
c n1 , u1
c n2 u2
d n2 r2 n1r1
位相差为:
如果两光束经历多种 介质时,相位延迟对应的 相位差则为
2π 2π p ni r2i ni r1i 0 i i 0
P
能
级
图 激发态
E2
E1
基态
v ( E 2 E1) / h
光的相干性

现代 555 nm
该实验对光的波动说的复苏起到关键 作用,在物理学史上占重要地位。
“尽管我仰慕牛顿的大名,但我并不因此非得认为他是 百无一失的。我……遗憾地看到他也会弄错,而他的权 威也许有时甚至阻碍了科学的进步。”
(1) 分波阵面法
将同一波面上两不同部 分作为相干光源
(2)分振幅法(分振幅~分能量)
•装置(原理图):
1 2
波列越长,谱线宽度越窄,光的单色性越好。
不同原子发光、或同一原子各次发光
频率 振动方向 初相
具有随机性 难以满足相干条件
设观察时— 间至 为少为仪器或时 人间 眼反应
1
I I1 I2 2I1 I2 co d st I1 I2
0
均匀分布,
0
非相干叠加
两普通光源或同一光源的不同部分是不相干的
发展状况:
(1) 激光:产生机理不同,具有相干性
普通光源:自发辐射 激光:受激辐射
频率
完
相位
全
偏振态
相
同
传播方向
(2) 快速光电接收器件 ——皮秒技术
接受器时间反0应 1s常 数 μs由 , ns, ps 可以观察到十分短暂的干涉,甚至两个独立光源 的干涉。
3.从普通光源获得相干光
思路:将同一点光源、某一时刻发出的光分成两束, 再引导其相遇叠加
将透明薄膜两个面的反射 (透射)光作为相干光源
s
p
n1
①i
a
②
d
③
c
n2 n1
b
f
⑤
h
e
④
p
原稿中的插图和论述
当同一束光的两部分从不同的路径,精 确地或者非常接近地沿同一方向进入人 眼,则在光线的路程差是某一长度的整 数倍处,光将最强,而在干涉区之间的 中间带则最弱,这一长度对于不同颜色 的光是不同的。
光的相干性

∆ 8. 衡量光的时间相干性可以用三种量: Lmax、 τ c 、 ∆ν (或∆λ ) ,这三 者的关系为单色性好则相干长度愈长,相干时间也愈长。
第一章 上一页 回首页 下一页 回末页 回目录
第 一 章 辐 射 理 论 概 要
§1.7 光的相干性
三、空间相干性
1. 空间相干性:是指在多大的尺度范围内普通光源发出的光在空间某处 合成时会形成干涉;即主要是由于普通光源大小对光的相干性的限制 2. 用激光光源与普通光源做杨氏双缝对比实验,发现用激光光源能观察到 干涉条纹;而用普通光源不能观察到干涉条纹。假定将普通单色光源的大 小加以限制在一定的范围,则在屏上同样可以看到干涉条纹。 3. 如图(1.7.4)所示,在普通光源和双缝之间放置一个平行于双缝的狭缝S来 限制光源的大小。 双缝
∆L 当M1、M2距P中心的距离相等时, = 0 , S中心处干涉加强,形成亮斑。 当M2移动距离 l = λ 4, = λ 2 ,S中 ∆L 心处干涉减弱,形成暗斑。 ∆L 当M2再移动距离 l = λ 4, = λ ,S中心 处干涉加强,形成亮斑。 每当M2沿光传播方向平移λ 2,S中 心处亮暗交替变换一次。
第一章 上一页 回首页 下一页 回末页 回目录
第 一 章 辐 射 理 论 概 要
§1.7 光的相干性 因此得出结论: 只有当 ∆1 − ∆ 0 < 时,屏上才有干涉条纹出现。取 ∆1 − ∆ 0 ≈ 作为存 2 2 在空间相干性的估计;通常用d来估计空间相干长度。
λ λ
∆1 − ∆ 0 =
d ⋅r λ λl λl ≈ ⇒d ≈ = 0. 5 l 2 2r r
第一章 上一页 回首页 下一页 回末页 回目录
第 一 章 辐 射 理 论 概 要
光源的相干性一

二、空间相干性
3 综合空间相干性 为了综合描述纵向空间相干性和横向空间相干性,将相
干长度和相干面积的乘积定义为一个新的物理量—相干
体积。
V =LA
c c
c
3 c c 2 c ( ) ( )2 2 ( ) 2
c
物理意义:如果要求传播方向上 角之内并具有频带宽
Δθ
二、空间相干性
2 横向空间相干性 在杨氏双缝干涉实验中,宽度为Δx 的光源(A)照 射两对称小孔 S1 、 S2 后,光波场具有明显相干
性的条件为:
x
该式称为空间相干性反比公式,即光源的线度与相
干孔径角的乘积为常数。
二、空间相干性
2 横向空间相干性 得出
2 Ac (x) ( )
根据相干时间tc的定义:在光传播方向上,两个光 波场之间能够相遇的最大时间间隔也就是每列光波 经过P点的持续时间。
P t
一、时间相干性
P ∆t t
P
t ∆t
P
t
∆t
∆t>t,两列光波在传播方向上没有交叠区域; ∆t=t,两列光波在传播方向上首尾相连;
∆t<t,两列光波在传播方向上有交叠区域;
相干时间tc=每列光波经过P点的持续时间
1 纵向空间相干性 根据光谱学中光源单色性参数R的定义:
R
0
1 tc 0
0
得到
R
0
Lc
该式进一步说明了相干时间 t c 和相干长度 Lc 是反映光源单色性物理量。
二、空间相干性
2 横向空间相干性 定义:在与光传播方向垂直的平面上,任意两个 不同点 S1 、 S2 处光波可具有相干性的最大面积, 常用相干面积Ac来进行描述。
光的相干性与相干长度 → 电磁波的相干性与相干长度

光的相干性与相干长度→ 电磁波的相干
性与相干长度
光的相干性与相干长度
介绍
光的相干性是指光的波峰和波谷之间的关系,在一定时间范围内是否呈现出一定的规律性。
相干长度是指在这一时间范围内,光保持相干性所能传播的最远距离。
光的相干性
光的相干性与波的相位一致性有关。
当两个光波的相位相对稳定且一致时,它们是相干的。
相干性可以通过干涉实验来检测,如杨氏双缝干涉实验和迈克尔逊干涉仪。
相干长度
相干长度是指在光传播过程中,保持相干性所能传播的最远距离。
相干长度与光的频率有关,频率越高,相干长度越短。
影响相干性和相干长度的因素
1. 光源的相位稳定性:如果光源的相位不稳定,光的相干性会降低。
2. 光波的频率:频率越高,相干长度越短。
3. 光波的波长:波长越长,相干长度越长。
4. 光的传播介质:光在不同介质中传播时,相干性和相干长度会发生变化。
应用
1. 光学干涉:光的相干性使得光波可以干涉并形成干涉条纹,用于测量物体的形状、厚度等参数。
2. 光学相干层析成像:利用光的相干性,可以通过透明物体的光的干涉来实现高分辨率成像。
3. 光学通信:光的相干性保证了光信号在传输过程中的稳定性和可靠性。
结论
光的相干性和相干长度是光学中重要的概念。
了解光的相干性和相干长度有助于深入理解光的特性,并在各种应用中发挥作用。
光的干涉知识点

光的干涉是光学中的一个重要现象,它描述了两个或多个光波在空间中相遇时相互叠加,形成新的光强分布的现象。
以下是一些关于光的干涉的基本知识点:
1. 相干性:要产生光的干涉现象,入射到同一区域的光波必须满足相干条件,即它们的振动方向一致、频率相同(或频率差恒定),且相位差稳定或可预测。
2. 分波前干涉与分振幅干涉:
- 分波前干涉:如杨氏双缝干涉实验,光源通过两个非常接近的小缝隙后,产生的两个子波源发出的光波在空间某点相遇,由于路程差引起相位差,从而形成明暗相间的干涉条纹。
- 分振幅干涉:例如薄膜干涉,光在通过厚度不均匀的薄膜前后两次反射形成的两束相干光相遇干涉,也会形成明暗相间的干涉条纹。
3. 相长干涉与相消干涉:
- 相长干涉:当两束相干光波在同一点的相位差为整数倍的波长时,它们的振幅相加,合振幅最大,对应的地方会出现亮纹(强度最大)。
- 相消干涉:当两束相干光波在同一点的相位差为半整数
倍的波长时,它们的振幅互相抵消,合振幅最小,对应的地方会出现暗纹(强度几乎为零)。
4. 迈克尔逊干涉仪:是一种精密测量光程差和进行精密干涉测量的重要仪器,可以观察到极其微小的变化所引起的干涉条纹移动。
5. 等厚干涉与等倾干涉:菲涅耳双棱镜干涉属于等倾干涉,而牛顿环实验则属于等厚干涉。
6. 全息照相:利用光的干涉原理记录物体光波的全部信息,包括振幅和相位,能够再现立体图像,是干涉技术的重要应用之一。
以上只是光的干涉部分基础知识,其理论和应用广泛深入于物理学、光学工程、计量学、激光技术等领域。
12.1 光源 光的相干性

I=0
I
4I 1 两相干光束 2I 1 两非相干光束 I1
一个光源
− 5π
− 3π
−π
O π
3π
5π
Δϕ
频率相同, 相干条件: 振动方向相同, 相位差恒定。
普通光源获得相干光的途径(方法)
p
分波阵面法
S*
S *
·
p
分振幅法
薄膜
I0
I0 2
Δλ
O
λ−
Δλ
2
λ λ+
Δλ
2
光强 光波中参与与物质相互作用(感光作用、视觉效应 )的是 E 矢量,称为光矢量。 E 矢量的振动代表光振动。 光强:在光学中,通常把平均能流密度称为光强, 用 I 表示。
I ∝ E 02
在波动光学中,主要讨论的是相对光强,因此在 同一介质中直接把光强定义为:
12.1 光源 光的相干性
一、光源
发射光波的物体称为光源。 激光光源 光源的最基本发光单元是分子、原子。 普通光源
普通光源:自发辐射
能级跃迁辐射 E2 波列
ν = (E2-E1)/h
E1 波列长 L = τ c τ是波列持续时间。
· ·
独立
(不同原子同一时刻发的光)
独立(同一原子不同时刻发的光)
激光光源:受激辐射
2 I = E0
二、光的相干性 两频率相同,光矢量方向相同的 光源在p点相遇
v r1
S1 S2
v E1
v E2
p
E = E + E + 2 E10 E 20 cos Δϕ
2 2 10 2 20
I = I1 + I 2 + 2 I1 I 2 cos Δϕ
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
具有随机性
难以满足相干条件
设观察时间为 — 至少为仪器或人眼反应 时间
I I1 I 2 2 I1 I 2
1
cosdt I
0
1
I2
0
均匀分布, 非相干叠加
两普通光源或同一光源的不同部分是不相干的
第17章 光的干涉
大学 物理
发展状况:
(1) 激光:产生机理不同,具有相干性 普通光源:自发辐射 激光:受激辐射
将同一波面上两不同部 分作为相干光源
(2)分振幅法(分振幅~分能量)
将透明薄膜两个面的反射 (透射)光作为相干光源
s
①
p
n1 n2 n1
i d a
②
c
h
③
b
f
④
e
⑤
p
第17章 光的干涉
大学 物理
在分别讨论两种方法以前,先建立一个重要概念
4.光程、光程差 相干光在相遇点 P 叠加的合振动强度取决于两分振动的 相位差
相长
2
k 0 , 1, 2
相消
第17章 光的干涉
大学 物理
不同:
机械波源与光波波源特征不同
难以满足相干条件
容易满足相干条件
一般光源的发光机制:被激发到较高能级的原子跃迁 到低能级时,辐射出能量。
例:氢原子光谱巴耳末系(可见光)
… 5 4 3 2
一个原子,一次跃迁,发出 一个光波波列
思路:设法将光在介质中传播的距离折合成光在真空中 的距离,统一使用λ 真 空计算。
折合原则:在引起光波相位改变上等效。
真空
c
介质 u
x 介质中 x 距离内波数:
真空中同样波数占据的距离
4
?
2
4
2
x x c xn u u
x c
第17章 光的干涉
大学 物理
§17-1
相干光
一、光的相干性 广义:电磁波 1. 光 狭义: 可见光,电磁波中的狭窄波段
: :
颜色:
7600A
~
3900A
3.95 1014 Hz ~ 7.69 1014 Hz
红 ~ 紫
第17章 光的干涉
大学 物理
常用的单色光源及波长
氦氖激光 钠 灯
第17章 光的干涉
大学 物理
到了1900年,德国的普朗克、爱因斯坦分别在
解释黑体幅射、光电效应等实验时发现,光同时具 有波动性与粒子性――波粒二象性。这是我们目前 对光的本质的认识。 本篇关于光的波动规律的讲解,基本上还是近 200年前托马斯· 杨和菲涅耳的理论,当然还有许多 应用实例是现代化的。现代的许多高新技术中的精 密测量与控制就应用了光的干涉和衍射的原理,激 光的发明更使“古老的”光学焕发了青春。
汞 灯
氢 灯 第17章 光的干涉
大学 物理
光波: 交变电磁场在空间传播
光矢量: E : 引起视觉和感光作用 t周期性变化 光振动: E(t) : 大小、方向随
E E0 cos( t )
光强:
2 I E0
相对光强:
2 I E0
第17章 光的干涉
大学 物理
2.光波与机械波相干性比较 相同: (1) 相干条件 (2) 光强分布:
E E1 n2
E h hc
频率一定
E1 13.6 eV
E h
振动方向一定 初相一定
E h
第17章 光的干涉
大学 物理
持续时间有限:
波列长度有限:
t ~ 108 s l c t
断续、脉冲式
非严格单色波
单色光的波列
不同原子发出的波列
波列的叠加
单色光波:频率恒定的一列无限长正弦(或余弦)光波。
x
介质折射率
结论:光在折射率为 n 的介质中前进 x 距离引起的相位 改变与在真空中前进 nx 距离引起的相位改变相同. 第17章 光的干涉
大学 物理
定义:光程 几何路程 介质折射率
等效真空程 光程差:等效真空程之差
S1 S2 r1 n1 P n2
r2
n1r1 n2r2
光程差引起的相位差:
2 ( n1r1 n2 r2 2
1
r1
2
r2
) 2
真空
真空
统一为: 2 1 2
2 k
光程差 真空中波长
当
相长 ~ 明
( 2k 1)
相消 ~ 暗
k 0,1,2
第17章 光的干涉
大学 物理
若
1 2
2
u
相 O1 干 光 源
r1
r2
P
2 1 2
当 2 1时
2 r1 r2
r2 r1
u u
O2
r1
r2
P
相 O1 干 光 源
n
u
2
r1
2 (
r2 d
d )
O2
d
如何简化? 第17章 光的干涉
大学 物理
第17章 光的干涉
大学 物理
所以原子发射的光,其波列长度是有限的,光谱 线都有一定宽度,通常说的单色钠光灯发出的黄色光 不是严格的单色光。氦-氖激光器发出的光也不是严格 的单色光。
波列越长,谱线宽度越窄,光的单色性越好。
第17章 光的干涉
大学 物理
不同原子发光、或同一原子各次发光
频率
振动方向 初相
频率
相位 偏振态 完 全 相 同
传播方向
(2) 快速光电接收器件 ——皮秒技术
接受器时间反应常数由0 1 s μs, ns, ps
可以观察到十分短暂的干涉,甚至两个独立光源 的干涉。 第17章 光的干涉
大学 物理
3.从普通光源获得相干光
思路:将同一点光源、某一时刻发出的光分成两束, 再引导其相遇叠加 (1) 分波阵面法
振动方向相同 频率相同
相位差恒定
I I1 I 2 2 I1 I 2 cos
干涉项
2 1 2
r2 r1
(3)
2k
( 2k 1)
相长
相消
k 0 , 1, 2
若1 2
r1 r2
k
( 2k 1)
大学 物理
光的干涉
第17章 光的干涉
大学 物理
光学的发展
可见光是一种可被人眼所感觉的电磁波(波长 390nm--760nm),是人类以及各种生物生存不可缺少 的最普通的要素,但对它的规律和本性的认识经历了 漫长的过程。 牛顿根据日常生活中光的直线特点,提出了光 是一种粒子的观点;但是,在一百来年后的1801年, 英国的托马斯-杨等人通过实验发现了光具有波的特 点――能产生干涉、衍射等现象。于是,人们又慢慢 接收了光是一种波的观点。