大连理工大学切削力学大作业

大连理工大学切削力学大作业
大连理工大学切削力学大作业

材料力学上机大作业(哈工大)

H a r b i n I n s t i t u t e o f T e c h n o l o g y 材料力学上机报告 课程名称:材料力学 设计题目:二向应力状态分析 院系:XXXXXX 班级:XXXXXX 设计者:XXXXXX 学号:XXXXXX 设计时间:2013.06.18 哈尔滨工业大学

二向应力状态分析 一:课题要求 1.输入:任意一点的应力状态:(σx、σy、τxy);某截面方位角α 2.输出:输入点的主应力(σ1、σ2、σ3),方位角α斜截面上的应力σ α、τα。 及主方向角α 3.画出应力圆示意图。 4.程序运行时为界面显示形式。 二:程序框图 三:所编程序 x=str2double(get(handles.edit1,'string')); y=str2double(get(handles.edit2,'string')); xy=str2double(get(handles.edit3,'string'));

M=str2double(get(handles.edit4,'string')); %将窗口输入值分别赋给x,y,xy,M b=sqrt((x/2-y/2)^2+xy^2);x1=(x+y)/2+b;x3=(x+y)/2-b; x2=0; if x1<0 x2=x1; x1=0; end t=(x1-x3)/2; M=M*pi/180; b1=(x+y)/2+(x-y)*cos(2*M)/2-xy*sin(2*M); b2=(x-y)*sin(2*M)/2+xy*cos(2*M); b3=90*atan((-2*xy)/(x+y))/pi;%计算输出的主切应力大小、方向和截面上的应力并赋值set(handles.edit5,'string',x1); set(handles.edit6,'string',x2); set(handles.edit7,'string',x3); set(handles.edit9,'string',t); set(handles.edit10,'string',b3); set(handles.edit11,'string',b1); set(handles.edit12,'string',b2);%在输出窗口显示主切应力大小、方向和截面上应力 b4=sqrt(b.^2+t.^2); v1=(x+y)/2-b4:0.001:(x+y)/2+b4; b11=sqrt(b4.^2-(v1-(x+y)/2).^2);b12=-sqrt(b4.^2-(v1-(x+y)/2).^2); %绘制应力圆上的点 axes(handles.axes1); %选择应力圆的输出地址 plot(v1,b11,v1,b12);grid on%绘制应力圆 以上程序为在matlab中使用GUI编程时的主代码,界面代码请见m文件。四:运行过程、结果和应力圆 在matlab中打开m文件,按F5使程序运行,显示窗口如下: 左侧为输入窗口,中间为相应的主切应力和斜截面应力的输出窗口,右侧为二向

复合材料大作业

先进复合材料制造技术复合材料表面的金属化 姓名丁志兵

班级05021104 学号2011301263 复合材料表面的金属化 材料作为社会进步的物质基础和先导,在人类历史发展的过程中一直都是人类进步的里程碑。每一种新材料的发现和利用都会为社会生产力的提高以及人类生活品质的提升带来巨大的变化。同时,材料制造的水平也是衡量一个国家科学技术和经济发展的重要因素之一。 复合材料是由两种或两种以上不同性质的材料,通过物理或化学的方法,在宏观上组成具有新性能的材料。各种材料在性能上互相取长补短,产生协同效应,使复合材料的综合性能优于原组成材料而满足各种不同的要求。复合材料的发展具有悠久的历史,自20 世界40 年代因航空工业发展的需要而发展出的玻璃纤维增强复合材料(也称玻璃钢),复合材料这一新材料的名称因此而进入人们的视线。复合材料的出现,使得材料科学的内容产生了极大的丰富,并且因其自身的广泛而优异的性能而得到快速的发展,人们将复合材料的出现视为人类进步发展的里程碑。科学家预言:“复合材料在21 世纪中将支撑着科学技术的进步和挑起经济实力的脊梁”,“21 世纪将是复合材料的时代”,“先进复合材料在21世纪中将在航空航天技术领域中发挥越来越重要的作用”。随着时代的进步和科技的发展,复合材料结构已经广泛应用于航空航天、船舶、车辆、建筑工程等多个领域,的确,21 世纪将是复合材料的时代,复合材料必将肩负着重要的责任。 树脂基复合材料以其质轻、高比强度、高比模量、热膨胀系数小、性能可设计性等一系列优点,已经成为国内外航天器结构部件的首选材料,广泛应用于各类卫星天线、相机结构组件、裕架、太阳能电池板等。在航天器中,用复合材料代替金属材料,在保持原有力学性能,甚至更高的同时,可有效减轻航天器的重量,节约发射成本。但是,由于特殊的空间使用环境和航天技术新的发展需求,树脂基复合材料面临以下的问题,严重影响了该类材料的进一步应用。 1)空间防护能力不足,制约航天器向长寿命方向发展。 航天器在空间运行过程中要经受严酷的空间环境考验。近地轨道以大量的原子氧、紫外环境为主。原子氧是一种很强的氧化剂,对树脂基体具有很强的腐蚀作用,当航天器以极高的速度在其中运行时,相当于将航天器浸泡于高温的氧原子气体中,裸露在外的树脂基复合材料结构件表面与其作用形成挥发性的氧化物;在地球同步轨道,空间辐射环境以带电高能粒子如电子,质子和紫外线等为主,带电粒子对卫星结构件的辐射损伤主要是通过以下两个作用方式:一是电离作用,即入射粒子的能量通过被照物质的原子电离而被吸收,另外一种是原子的位移作用,即被高能粒子中的原子位置移动而脱离原来所处的晶格位置,造成晶格缺陷。高能的质子和重粒子既能产生电离作用,又能产生位移作用。所有这些作用都会导致树脂基

大连理工大学(工程抗震)大作业

大连理工大学《工程抗震》大作业

题目1:底部剪力法。 钢筋混凝土5层框架经质量集中后计算简图如下图所示,各层高均为3m , 集中于各楼层的重力荷载代表值分别为: 1500kN G =,2550kN G =,3580kN G =,4600kN G =,5450kN G =。结构阻尼比0.05ξ=,自振周期为10.55s T =,Ⅰ1类 场地类别,设计地震分组为第一组,抗震设防烈度为8度(设计基本地震加速度为0.30g )。按底部剪力法计算结构在多遇地震时的水平地震作用及地震剪力。 3580kN =2550kN =1500kN =(a )计算简图 4600kN =5450kN = 解:查《建筑设计抗震规范》表5.1.4知,8度多遇地震,αmax=设计地震分组为第一组, Ι类场地,取Tg= Tg=<T1=<5Tg= α1=(Tg/T1)r η2αmax =()××=≈ 查《建筑设计抗震规范》表5.2.1知,T 1=>=×= 取δn=T1+=×+= 总水平地震作用标准值: F EK =α1Geq=×(500+550+580+600+450)×85%=

各楼层水平地震作用标准值: Fi=G i H i F EK (1-δn)/∑G j H j (i=1,2,3n) ∑G j H j =500×3 +550×6+580×9+600×12+450×15=23970KN ·m F 1=[500×3××]/23970= F 2=[550×6××]/23970= F 3=[580×9××]/23970= F 4=[600×12××]/23970= F 5=[450×15××]/23970= 计算各楼层的层间地震剪力 V 1= F 1+ F 2+ F 3+ F 4+ F 5=++++= V 2= F 2+ F 3+ F 4+ F 5=+++=152KN V 3= F 3+ F 4+ F 5=++= V 4= F 4+ F 5=+= V 5=F 5= 题目3:怎样判断土的液化如何确定土的液化严重程度,并简述抗液化措施。 答:饱和松散的砂土或粉土(不含黄土),地震时易发生液化现象,使地基承载力丧失或减弱,甚至喷水冒砂,这种现象一般称为砂土液化或地基土液化。其产生的机理为:地下水位以下的饱和砂土和粉土颗粒在地震作用下,土颗粒之间有变密的趋势。因空隙水不能及时排出,土颗粒就处于悬浮状态,形成如同液体一样的现象,即所谓的土的液化现象。地基土液化判别过程可以分为初步判断和标准贯入试验判别两大步骤。下面分别予以介绍。 1、初步判断 饱和的砂土或粉土(不含黄土)当符合下列条件之一时,可初步判别为不液化或不考虑液化影响: (1)地质年代为第四纪晚更新世(Q3)及其以前时且处于烈度7度或者8度地区时可判为不液化土。 (2)粉土的粘粒(粒径<0.005mm )含量百分率当烈度为7度时大于10%、当烈度为8度时大于13%、当烈度为9度时大于16%,可判为不液化土。 (3)浅埋天然地基,当地下水位深度和覆盖非液化土层厚度满足下式之一时,可不考虑液化影响。 03w b d d d >+- 02 u b d d d >+-

复合材料力学设计作业1

1、为什么结构复合材料中增强材料的形态主要为纤维? 2、简述树脂基复合材料的优点和缺点? 3、为什么新一代客机中复合材料用量会大幅提高?其复合材料零部件主要用到复合材料的哪些优点? 4、为什么卫星中采用了较多的复合材料? 答:1、利用复合材料的各种良好的力学性能用于制造结构的材料,称为结构复合材料, 它主要有基体材料和增强材料两种组分组成。其中增强材料承受主要载荷,提供复合 材料的刚度和强度,基本控制其力学性能;基体材料固定和保护增强纤维,传递纤维 间剪力和防止纤维屈曲,并改善复合材料的某些性能。用以加强制品力学性能或其他 性能的材料,在橡胶工业中又称补强剂。分纤维状和粒状材料两种。增强材料的增强 效应取决于与被增强材料的相容性,为增进相容能力,有些增强材料在使用前需要进 行表面处理。对粒状增强材料,尚需考虑其表面积(决定于粒径、形状和孔隙度)。 据报道,平均粒径在0.2μm以下的增强材料,随粒径的减小,制品的模量、抗张强度、 屈服强度和伸长率均有所增加。平均粒径较大的增强材料,由于粒径分布的不同其结 果不一致。所以,结构力学复合材料力学性能难以控制。增强材料就象树木中的纤维, 混凝土中的钢筋一样,是复合材料的重要组成部分,并起到非常重要的作用。例如在 纤维增强复合材料中,纤维是承受载荷的组元,纤维的力学性能决定了复合材料的性 能。所以说结构复合材料中增强材料的形态主要为纤维。 2、树脂基复合材料的优点:1)比强度高、比模量大2)耐疲劳性能好3)阻尼减震性 能好4)破损安全性好5)耐化学腐蚀性好6)树脂基复合材料是一种优良的电气绝缘 材料,电性能好7)树脂基复合材料热导率低、线膨胀系数小,优良的绝热材料,热 性能良好。树脂基复合材料的缺点:1)树脂基复合材料的耐热性较低2)材料的性能 分散性大。 3、用复合材料设计的飞机结构,可以推进隐身和智能结构设计的发展,有效地减少了 机体结构重量,提高了飞机运载能力,降低了发动机油耗,减少了污染排放,提高了 经济效益;复合材料优异的抗疲劳和耐介质腐蚀性能,提高了飞机结构的使用寿命和 安全性,减少了飞机的维修成本,从而提高了飞机结构的全寿命期(是指结构从论证 立项开始,有设计研制、生产研制、销售服务、使用运行、维护修理,一直到报废处 理的整个寿命期)经济性;复合材料结构有利于整个设计与整体制造技术的应用,可以 减少结构零部件的数量,提高结构的效率与可靠性,降低制造和运营成本,并可明显 改善飞机气动弹性特性,提高飞机性能。 4、正火箭导弹与航天器均要求结构重量轻,强度高。复合材料不仅兼备这两种优点,而 且还具有一些金属材料无法比拟的优良性能。卫星结构用复合材料具有重量轻、比刚 度、比强度高等特点。其碳纤维复合材料构件还具有弹性模量、热膨胀系数可设计等 特点,对卫星结构件的应用具有材料可设计的特色。

材料力学重修课大作业

一、概念性题型 1.据均匀性假设,可认为构件的下列各量中的某个量在各点处都相同: (A ) 应力; (B )应变; (C ) 材料的弹性常数; (D )位移; 正确答案是 。 2.根据各向同性假设,可认为构件的下列各量中的某一种量在各方向都相同: (A) 应力; (B ) 应变; (C )材料的弹性常数; (D ) 位移; 正确答案是 。 3.关于确定截面内力的截面法的适用范围,有下列四种说法: (A) 仅适用于等截面直杆; (B) 仅适用于直杆承受基本变形; (C) 适用于不论基本变形还是组合变形,但限于直杆的横截面; (D) 适用于不论等截面或变截面、直杆或曲杆、基本变形或组合变形、横截面或任意截面的普遍情况; 正确答案是 。 4.判断下列结论的正确性: (A ) 杆件某截面上的内力是该截面上应力的代数和; (B ) 杆件某截面上的应力是该截面上内力的平均值; (C ) 应力是内力的集度; (D ) 内力必大于应力; 正确答案是 。 5.甲、乙两杆,几何尺寸相同,轴向拉力P 相同,材料不同,它们的应力和变形有四种可能: (A ) 应力σ和变形l ?相同; (B ) 应力σ不同和变形l ?相同; (C ) 应力σ相同和变形l ?不同; (D ) 应力σ不同和变形l ?不同; 正确答案是 。 6.关于下列结论: 1) 应变分为线应变和角应变 ; 2) 应变为无量纲量; 3) 若物体的各部分均无变形,则物体内各点的应变均为零; 4) 若物体内各点的应变均为零,则物体无位移; 现有四种答案:(A )1、2对;(B )3、4对; (C )1、2、3对; (D )全对; 正确答案是 。 7.等截面直杆受轴向拉力P 作用而产生弹性伸长,已知杆长为l ,截面积为A ,材料弹性模量为E ,泊松比为ν,拉 伸理论告诉我们,影响该杆横截面上应力的因素是: (A )E 、ν、P ; (B )l 、A 、P ; (C )l 、A 、E 、ν、P ; (D ) A 、P ; 正确答案是 。 8.低碳钢试件拉伸时,其横截面上的应力公式 A N =σ; (A ) 只适用于σp σ≤;(B) 只适用于θσσ≤;(C ) 只适用于s σσ≤; (D ) 在试件拉断前都适用; 正确答案是 。 9.当低碳钢试件的试验应力s σσ=时,试件将: (A ) 完全失去承载能力;(B ) 破断; (C ) 发生局部颈缩现象;(D ) 产生很大的塑性变形;正确答案是 。 10.伸长率(延伸率)公式 ()?-=l l 1δ100% 中 1l 指的是什么? (A ) 断裂时试件的长度; (B ) 断裂后试件的长度; (C ) 断裂时试验段的长度; (D ) 断裂后试验段的长度; 正确答案是 。 11.低碳钢拉伸经过冷作硬化后,以下四种指标中哪种得到提高: (A ) 强度极限; (B ) 比例极限; (C ) 断面收缩率; (D ) 伸长率; 正确答案是 。 12.脆性材料具有以下哪种力学性质: (A ) 试件拉伸过程中出现屈服现象; (B ) 压缩强度极限比拉伸强度极限大得多; (C ) 抗冲击性能比塑性材料好; (D ) 若构件因开孔造成应力集中现象,对强度无明显影响; 正确答案是 。

大工13秋《水力学》辅导资料七

水力学辅导资料七 主题:第五章有压管道恒定流1-3节 学习时间:2013年11月11日-11月17日 内容: 我们这周主要学习水力学的第五章的1-3节。希望通过下面的内容能使同学们加深对短管和长管的水力计算等相关知识的理解。 一、学习要求 1. 掌握短管的水力计算; 2. 掌握短管的水力计算实例; 3. 掌握长管的水力计算。 二、主要内容 重要知识点: 短管和长管的水力计算。 第五章有压管道恒定流 水流充满整个管道横断面,且管道中的动水压强大于或小于大气压强的管道中的流动称为有压管流。作用水头不随时间变化的有压管流称有压管道恒定流。 出流在大气中的有压管流称为有压管道自由出流。(熟记两个出流) 出流在水面下的有压管流称为有压管道淹没出流。 在水力计算中常将管道分为短管和长管。短管是指管道中的流速水头、局部水头损失和沿程水头损失具有同样的量级,在水力计算中均需计入的管路。长管

是指管道中的流速水头与局部水头损失之和远小于沿程水头损失,在水力计算中忽略流速水头和局部水头损失,只计沿程水头损失或者将流速水头与局部水头损失之和折算成沿程水头损失的百分数,然后加在沿程水头损失上的管路。 第一节 短管的水力计算 (一)自由出流 f Q μ=式中f μ为管道自由出流时的流量系数。 f =μ (二)淹没出流 s Q μ= 式中s μ为管道淹没出流时的流量系数。 s =μ 第二节 短管的水力计算实例 (一)短管水力计算的类型(下列常见类型应着重练习) 1. 已知作用水头H 或上下游水位差z ,管道布置及管道材料,求流量Q 。 由于流量未知,流速就未知,从而雷诺数未知,最终导致沿程水头损失系数λ未知。因此解此类问题需采用试算逐次逼近法。即根据经验假设1λ,然后去计算流量1Q ,用此1Q 计算流速υ和雷诺数Re ,从莫迪图中查得沿程水头损失系数2λ。如果2λ和1λ相差无几,就认为假设的1λ和计算出的流量1Q 是正确的。否则需用2λ重复上面的计算,直到两次的λ值之差小于5~10%为止。 2. 已知流量Q ,作用水头H 或上下游水位差z ,管道布置及管道材料,求管径d 。 由于管径未知,流速和雷诺数就未知,从而沿程水头损失系数λ就无法求得。

复合材料力学大作业

复合材料力学上机作业 (2013年秋季) 班级力学C102 学生姓名赵玉鹰 学号105634 成绩 河北工业大学机械学院 2013年12月30日

作业1 单向板刚度及柔度的计算 一、要 求 (1)选用FORTRAN 、VB 、MAPLE 或MATLAB 编程计算下列各题; (2)上机报告内容:源程序、题目内容及计算结果; (3)材料工程常数的数值参考教材自己选择; (4)上机学时:2学时。 二、题 目 1、已知单层板材料工程常数1E ,2E ,12G ,计算柔度矩阵[S ]和刚度矩阵[Q ]。(玻璃/环氧树脂单层板材料的MPa 1090.341?=E ,MPa 1030.142?=E ,MPa 1042.0412?=G ,25.021=μ,MPa 1001=σ,MPa 302-=σ,MPa 1012=τ) ●Maple 程序 > restart: > with(linalg): > E[1]:=3.9e10: > E[2]:=1.3e10: > G[12]:=0.42e10: > mu[21]:=0.25: > mu[12]:=E[1]*mu[21]/E[2]: > Q[11]:=E[1]/(1-mu[12]*mu[21]): > Q[12]:=mu[12]*E[2]/(1-mu[12]*mu[21]): > Q[13]:=0: > Q[21]:=Q[12]: > Q[22]:=E[2]/(1-mu[12]*mu[21]): > Q[23]:=0: > Q[31]:=Q[13]: > Q[32]:=Q[23]: > Q[33]:=G[12]: >Q:=evalf(matrix(3,3,[[Q[11],Q[12],Q[13]],[Q[21],Q[22], Q[23]],[Q[31],Q[32],Q[33]]]),4);

材料力学大作业-组合截面几何性质计算

Harbin Institute of Technology 材料力学电算大作业 课程名称:材料力学 设计题目:组合截面几何性质计算 作者院系: 作者班级: 作者姓名: 作者学号: 指导教师: 完成时间:

一、软件主要功能 X4,X5,X6分别是n1个圆形截面,n2个圆环形截面,n3个矩形截面的形心位置X与面积的乘积 Y4,Y5,Y6分别是n1个圆形截面,n2个圆环形截面,n3个矩形截面的形心位置Y与面积的乘积 Xc,Yc是总截面的形心坐标 Ix1,Ix2,Ix3分别是n1个圆形截面,n2个圆环形截面,n3个矩形截面对通过形心且与x轴平行的轴的惯性矩 Iy1,Iy2,Iy3分别是n1个圆形截面,n2个圆环形截面,n3个矩形截面对通过形心且与y轴平行的轴的惯性矩 Ixy1,Ixy2,Ixy3分别是n1个圆形截面,n2个圆环形截面,n3个矩形截面对通过形心且与x,y轴平行的两轴的惯性积 a是通过形心的主轴与x轴的夹角 Imax,Imin分别是截面对形心主轴的主惯性矩 软件截图: 二、程序源代码 Dim n1 As Double Dim d1(10) As Double Dim X1(10) As Double Dim Y1(10) As Double Dim n2 As Double Dim d2(10) As Double

Dim d3(10) As Double Dim X2(10) As Double Dim Y2(10) As Double Dim n3 As Double Dim h(10) As Double Dim d(10) As Double Dim X3(10) As Double Dim Y3(10) As Double Dim S1 As Double, S2 As Double, S3 As Double Dim X4 As Double, Y4 As Double, X5 As Double, Y5 As Double, X6 As Double, Y6 As Double Dim Xc As Double, Yc As Double Dim Ix1 As Double, Iy1 As Double, Ix2 As Double, Iy2 As Double, Ix3 As Double, Iy3 As Double, Imax As Double, Imin As Double Dim Ixy1 As Double, Ixy2 As Double, Ixy3 As Double Dim a As Double Private Sub Text1_Change() n1 = Val(Text1.Text) For i = 1 To n1 d1(i) = Val(InputBox("输入第" & (i) & "个圆的直径")) X1(i) = Val(InputBox("输入第" & (i) & "个圆的圆心的x坐标值")) Y1(i) = Val(InputBox("输入第" & (i) & "个圆的圆心的y坐标值")) Next i For i = 1 To n1 S1 = S1 + 3.14159 * d1(i) * d1(i) / 4 X4 = X4 + X1(i) * 3.14159 * d1(i) * d1(i) / 4 Y4 = Y4 + Y1(i) * 3.14159 * d1(i) * d1(i) / 4 Next i End Sub Private Sub Text2_Change() n2 = Val(Text2.Text) For i = 1 To n2 d2(i) = Val(InputBox("输入第" & (i) & "个圆环的外径")) d3(i) = Val(InputBox("输入第" & (i) & "个圆环的内径")) X2(i) = Val(InputBox("输入第" & (i) & "个圆的圆心的x坐标值")) Y2(i) = Val(InputBox("输入第" & (i) & "个圆的圆心的y坐标值")) Next i For i = 1 To n2 S2 = S2 + 3.14159 * (d2(i) * d2(i) - d3(i) * d3(i)) / 4 X5 = X5 + X2(i) * 3.14159 * (d2(i) * d2(i) - d3(i) * d3(i)) / 4 Y5 = Y5 + Y2(i) * 3.14159 * (d2(i) * d2(i) - d3(i) * d3(i)) / 4 Next i End Sub Private Sub Text3_Change()

大连理工大学2013量子力学真题

大连理工大学2013量子力学真题(完整版) 一.简答题 1已知[A,B]=iC,问AB可否同时有确定值?为什么 2已知[A,B]=C,C为常数,问AB可否同时有确定值,为什么 3 0xxx 位置,动量的不确定度 4写出泡利矩阵及其对易关系 5在量子力学中问什么说静止的粒子不存在? 6写出坐标,动量的不确定度并解释其物理意义 7试估算一维谐振子的零点能 8举例说明,AB同时与C対易,但AB可能不対易(ABC都是算符) 9为什么幺正变换不改变力学量的本征值? 10AB均为厄米算符,证C=-i[A,B]也是厄米算符 11用全同性原理解释泡利不相容原理 12一个混态能否幺正演化为一个纯态?为什么?二.计算题 1一电子处于自旋态|Ψ〉= 2 1 ﹛|↑x〉+|↓x〉﹜求在自旋态下,XS的可能测值及相应几率在自旋态下,ZS的可能测值及几率 2设一个质量为m的粒子束缚在势场V(x)中做一维运动,其能量本征值和本证函数分别为nE ,n ,n=1,2……,求证n)0(mx dnm 3证明,两个厄米算符满足关系 iBA , 算符A、B将满足Heisenberg不确定关系 4磁矩为 =的电子置于方向为)cos,sinsin,cos(sin n的均匀磁场 nBB0中求该系统的能量本征值和本征态 设t=0时刻,电子的自旋处于 01态,求任意时刻粒子处于xS=2 的几率 5在阱宽为a的一维无限深方势阱内放入两个质量均为m的无自旋粒子,两个粒子之间相互作用势)(),(202xxvxxv (1)写出不考虑两个粒子的相互作用时,体系的H,能量本征值和本证函数。 (2)试求在微扰 210XXVH 的作用下基态能量的一级修正值

复合材料力学讲义

复合材料力学讲义 第一部分简单层板宏观力学性能 1.1各向异性材料的应力—应变关系 应力—应变的广义虎克定律可以用简写符号写成为: (1—1) 其中σi为应力分量,C ij为刚度矩阵εj为应变分量.对于应力和应变张量对称的情形(即不存在体积力的情况),上述简写符号和常用的三维应力—应变张量符号的对照列于表1—1。 按表1—l,用简写符号表示的应变定义为: 表1—1 应力——应变的张量符号与简写符号的对照 注:γij(i≠j)代表工程剪应变,而εij(i≠j)代表张量剪应变 (1—2)

其中u,v,w是在x,y,z方向的位移。 在方程(1—2)中,刚度矩阵C ij有30个常数.但是当考虑应变能时可以证明弹性材料的实际独立常数是少于36个的.存在有弹性位能或应变能密度函数的弹性材料当应力σi作用于应变dεj时,单位体积的功的增量为: (1—3) 由应力—应变关系式(1—1),功的增量为: (1—4) 沿整个应变积分,单位体积的功为: (1—5) 虎克定律关系式(1—1)可由方程(1—5)导出: (1—6) 于是 (1—7) 同样 (1—8) 因W的微分与次序无,所以: (1—9) 这样刚度矩阵是对称的且只有21个常数是独立的。 用同样的方法我们可以证明: (1—10)

其中S ij是柔度矩阵,可由反演应力—变关系式来确定应变应力关系式为 (1—11) 同理 (1—12)即柔度矩阵是对称的,也只有21个独立常数.刚度和柔度分量可认为是弹性常数。 在线性弹性范围内,应力—应变关系的一般表达式为: (1—13)实际上,关系式(1—13)是表征各向异性材料的,因为材料性能没有对称平面.这种各向异性材料的别名是全不对称材料.比各向异性材料有更多的性能对称性的材料将在下面几段中叙述.各种材料性能对称的应力—应变关系式的证明由蔡(Tais)等给出。 如果材料有一个性能对称平面应力—应变关系式可简化为 (1—14)

大连理工大学无机化学教研室《无机化学》(第5版)(复习笔记 原子结构)

8.1 复习笔记 一、氢原子光谱与Bohr 理论 1.氢原子光谱 氢原子光谱是人们认识原子结构的实验基础,原子光谱是线状光谱。 每种元素的原子辐射都具有由一定频率成分构成的特征光谱,是一条条离散的谱线,称为线状光谱。 每一种元素都有各自不同的原子光谱。氢原子光谱的频率的经验公式:,n=3,4,5,615122113.28910()s 2v n -=?-2.Bohr 理论 Bohr 理论(三点假设): (1)核外电子只能在有确定半径和能量的轨道上运动,且不辐射能量; (2)通常,电子处在离核最近的轨道上,能量最低——基态;原子获得能量后,电子被激发到高能量轨道上,原子处于激发态; (3)从激发态回到基态释放光能,光的频率取决于轨道间的能量差。 氢原子光谱中各能级间的能量关系式为: 21 h E E ν=-氢原子能级图如图8-1所示。

图8-1 能级间能量差为 H 2212 11 (E R n n ?=-式中,R H 为Rydberg 常数,其值为2.179×10-18 J 。 当时,,即氢原子的电离能。 121n n ==∞或182.17910J E -?=?二、微观粒子运动的基本特征 1.波粒二象性 微观粒子具有粒子和光的特性,即具有波粒二象性。 微观粒子的波长为: h h mv p λ==式中,m 为实物粒子的质量;v 为粒子的运动速度;p 为动量。

2.不确定原理 Heisenberg 不确定原理: 2h x p π ???≥ 式中,Δx 为微观粒子位置的测量偏差;Δp 为微观粒子的动量偏差。 微观粒子的运动不遵循经典力学的规律。 微观粒子的波动性是大量微粒运动表现出来的性质,即具有统计意义的概率波。 三、氢原子结构的量子力学描述 1.薛定谔方程与波函数 式中,ψ为量子力学中描述核外电子在空间运动的数学函数式,即原子轨道;E 为轨道能量(动能与势能总和);V 为势能;m 为微粒质量;h 为普朗克常数;x ,y ,z 为微粒的空间坐标。 2.量子数 主量子数n :n =1,2,3…正整数,它决定电子离核的远近和能级。 角量子数l :l =0,1,2,3…,(n -1),以s ,p ,d ,f 对应的能级表示亚层,它决定原子轨道或电子云的形状。n 确定后,l 可取n 个数值。 磁量子数m :原子轨道在空间的不同取向。在给定角量子数l 的条件下, m =0,±1,±2,±3…,±l ,一种取向相当于一个轨道,共可取2l +1个数值。m 值反映

大连理工大学-环境化学-所有作业答案

绪论部分: 2、简述环境问题的分类?(10分) 答:环境问题是多方面的,但大致可分为两类:原生环境问题和次生环境问题。由自然力引起的为原生环境问题,也称为第一环境问题。由于人类生产和生活引起生态系统破坏和环境污染,反过来又危及人类自身和生存和发展的现象,为次生环境问题,也叫第二环境问题。原生环境问题和次生环境问题很难截然分开,它们之间常常存在着某种程度的因果关系和相互作用。 4、什么是环境化学,学习环境化学有什么意义?(10分) 答:环境化学是一门研究有害化学物质在环境介质中的存在、化学特性、行为和效应及其控制的化学原理和方法的科学。 意义:用来掌握污染来源,消除和控制污染,确定环境保护决策,以及提供科学依据诸方面都起着重要的作用。 5、简述环境化学的分支学科。(10分) 答:主要包括6类。 ①环境分析化学:是研究化学品的形态、价态、结构、样品前处理和痕量分析的学科。 ②环境污染化学:大气、水体和土壤环境化学,元素循环的化学过程。 ③污染控制化学:主要研究与污染控制有关的化学机制及工艺技术中化学基础性问题。 ④污染生态化学:是研究化学污染物在生态系统中产生生态效应的化学过程的学科。 ⑤环境计算化学:主要利用有效的数学近似以及电脑程序计算分子的性质。 ⑥环境生物化学:是研究环境化学品对生命影响的学科。 第一章: 1、地球环境主要由哪些圈层构成?英文单词?各之间有什么联系?各有哪些性 质?(10分) 答:地球环境主要由大气圈(atmosphere)、水圈(hydrosphere)、土壤圈(pedosphere)、岩石圈(lithosphere)和生物圈(biosphere)构成。 联系:大气圈、水圈、土壤圈和生物圈共同组成了地球环境系统,每个圈层都离不开

2011真题 大连理工量子力学 数学物理方法...

2011年 数理 第一大题:10个小题 б函数的定义和用法,格林函数法求解步骤,极坐标系下柯西黎曼条件证明,简单的洛朗展开的计算,勒让德函数自然边界条件以及本征值本证函数,用拉普拉斯变换把一个数学物理方程变换式变换出来(含边界和初始条件) 二:写出贝塞尔函数的母函数,并由此推导出贝塞尔函数的递推公式(这个公式就是书上的一个公式,我暂时想不出来了) 三:两道计算题: 第一是用留数定理计算积分(好像是第二种情况);第二是用柯西积分公式计算积分。 四:稳定场方程在指定条件下的求解(边界是其次的)。 五:球函数的应用题,很常规的,跟ΘΦ有关。 六:利用傅里叶变换求解半无界区域的数理方程。 量子 一.空间自由粒子t=0时候波函数为ψ(0)=coskx 1、求任意时间的波函数表达式 2、求任意时刻的动量可能值和相应的概率 二.设一维无限深势阱中运动粒子的波函数为ψ(x)=4/√a sin(πx/a)cos2(πx/a),求在此任意态下,粒子能量的可能值和相应的概率练习册p40 三.

四.求证:P×L+L×P=2ihP p50 五.求氢原子1s电子的动能,势能的平均值。(1s的波函数给出)练习册p87 六.求在Sz的本征态I↑z>=﹙10)下,求σ?n的可能值及相应几率p110 七.有一量子态体系,其hamilton量为Ho,并已知Ho的本征值和本证函数分别为En和ψn,(n=1,2,3…..).在初始时刻t=0,体系处于ψo态,当t>0时体系开始受到一微扰H′=F(x)exp(-βt)的作用。在一级近似下求 1、经过充分长的时间后,体系跃迁到ψn的几率 2、如果该体系为一维谐振子,且F(x)=x,结果将如何?P164

复合材料试题B卷及答案

2014学年度第一学期课程考试 《复合材料》本科试卷(B卷) 注意事项:1. 本试卷共六大题,满分100分,考试时间90分钟,闭卷; 2. 考前请将密封线内各项信息填写清楚; 3. 所有答案必须写在试卷上,做在草稿纸上无效; 4.考试结束,试卷、草稿纸一并交回。 一、选择题(30分,每题2分)【得 分:】 1.复合材料中的“碳钢”是() A、玻璃纤维增强Al基复合材料。 B、玻璃纤维增强塑料。 C、碳纤维增强塑料。 D、氧化铝纤维增强塑料。 2.材料的比模量和比强度越高() A、制作同一零件时自重越小、刚度越大。 B、制作同一零件时自重越大、刚度越大。 C、制作同一零件时自重越小、刚度越小。 D、制作同一零件时自重越大、刚度越小。 3.在体积含量相同情况下,纳米颗粒与普通颗粒增强塑料复合材料() A、前者成本低 B、前者的拉伸强度好 C、前者原料来源广泛 D、前者加工更容易 4、Kevlar纤维() A、由干喷湿纺法制成。 B、轴向强度较径向强度低。 C、强度性能可保持到1000℃以上。 D、由化学沉积方法制成。 5、碳纤维() A、由化学沉积方法制成。 B、轴向强度较径向强度低。 C、强度性能可保持到3000℃以上。 D、由先纺丝后碳化工艺制成。 6、聚丙烯增强塑料的使用温度一般在:() A、120℃以下 B、180℃以下 C、250℃以下 D、250℃以上

7、碳纤维增强环氧复合材料力学性能受吸湿影响,原因之一是() A、环氧树脂吸湿变脆。 B、水起增塑剂作用,降低树脂玻璃化温度。 C、环氧树脂发生交联反应。 D、环氧树脂发生水解反应。 8、玻璃纤维() A、由SiO 玻璃制成。 B、在所有纤维中具有最高的比弹性模量。 2 C、其强度比整块玻璃差。 D、价格贵、应用少。 9、生产锦纶纤维的主要原料有() A、聚碳酸酯。 B、聚丙烯腈。 C、尼龙。 D、聚丙烯。 10、晶须() A、其强度高于相应的本体材料。 B、长径比一般小于5。 C、直径为数十微米。 D、含有很少缺陷的长纤维。 11、对玻璃纤维和聚酰胺树脂构成的复合材料命名不正确的是()。 A.玻璃纤维聚酰胺树脂复合材料 B.玻璃纤维/聚酰胺树脂复合材料 C.聚酰胺材料 D.聚酰胺基玻璃纤维复合材料 12、目前,复合材料使用量最大的增强纤维是()。 A.碳纤维 B.氧化铝纤维 C.玻璃纤维 D.碳化硅纤维 13、目前,复合材料使用量最大的民用热固性树脂是()。 A.环氧树脂 B.不饱和聚酯 C.酚醛树脂 D.尼龙14.聚合物基复合材料制备的大体过程不包括() A.预浸料制造 B.制件的铺层 C.固化及后处理加工 D.干燥 15、有关环氧树脂,说法正确的是() A、含有大量的双键 B、使用引发剂固化 C、使用胺类固化剂固化 D、属于热塑性塑料 二、判断题(20分,每题2分)【得分:】 1、复合材料是由两个组元以上的材料化合而成的。() 2、混杂复合总是指两种以上的纤维增强基体。() 3、层板复合材料主要是指由颗料增强的复合材料。() 4、最广泛应用的复合材料是金属基复合材料。() 5、复合材料具有可设计性。()

大连理工大学物理(下)期末考试2009A-试卷

大 连 理 工 大 学 课程名称:大学物理 (二) 试卷: A 考试形式:闭 卷 授课院系:物光学院 考试日期:2009年1月12日 试卷页数:共6页 (物理常数:s J 10 63.634 ?×=?h ,m /H 10470?×=πμ,C 106.119?×=e ) 一、填空题 [每空2分,共3 0分] 1.真空中一根无限长直导线中通有电流I ,则距导线垂直距离为a 的某点的磁能密度为 m w =________________。 2.电流元Idl G 是圆电流线圈自身的一部分,则电流元________磁场力作用(受/不受)。 3.真空中传播的平面电磁波的磁场强度的表达式为0cos (/)H H t y c ω=+,某时刻磁场强度方向沿x 轴正向,则该时刻电场强度方向沿 。 4.矫顽力c H 的大小可作为对铁磁质分类的主要依据,c H 大的铁磁质为硬磁材料,c H 小的铁磁质为软磁材料。适合于制成永久磁铁所用的铁磁材料是 _________ 材料(硬磁/软磁)。 5.光强均为0I 的两束相干光相遇而发生干涉时,在相遇区域内有可能出现的最大光强是____________。 6.地球上看到天空的颜色是蓝色的,原因是大气层的 ___________ 散射。 7.在单缝夫琅禾费衍射实验中,波长为λ 的单色平行光垂直入射到宽度5a λ=的单缝上,对应于衍射角为D 30=θ的方向,则单缝处波面可分成的半波带数目为 。 8.若一个电子与一个质子具有同样的动能,则电子的德布罗意波长 质子的德布罗意波长(大于/等于/小于)。 9.根据量子力学理论,原子内电子的量子态由 (,,,l s n l m m ) 四个量子数表征,那么,处于基态的氦原子内两个电子的量子态可由 (_______________________) (_____________________)两组量子数表征。 10.在主量子数2=n ,自旋磁量子数2 1 = s m 的原子系统中,最多允许填充 个电子。 二 一 1 2 3 4 5 6 三 总 分 标准分 30 10 10 10 10 5 5 20 100 得 分

《水力学》

大工15春《水力学》开卷考试期末复习题 (一)选择题 1、实验室内采用内径为4mm 的测压管测得某一点的压力水柱高为240mm ,则实际的压强水柱高度为( )。 A .240mm B .233mm C .245mm D .261mm 答案:B 解析:取水与玻璃的接触角 w θ=,所 c o s 1w θ= ,由公式计算毛细管的升高: 440.073 0.00745m 7mm 98000.004h d σγ?= ==≈? 所以实际的压强水柱高度为240-7=233mm 。 2、液体中某点的绝对压强为1292kN/m ,则该点的相对压强为( )。 A .202kN/m B .272kN/m C .312kN/m D .352kN/m 答案:C 解析:相对压强:以当地的大气压强 a p 作为零压强表示液体中某点的压强,记为p ,它与绝对压强和大气压强的关系为: - 因此,该点的相对压强=1292kN/m -982kN/m =312kN/m 3、实压力体与液体在曲面的( )侧,压力体内( )液体。 A .同,实有 B .同,无 C .异,实有 D .异,无 答案:A 4、能量方程中,水头p 的物理意义是( )。 A .单位重量液体的压能 B .单位重量液体的势能 C .单位体积液体的压能 D .单位体积液体的势能

答案:A 5、对于不可压缩液体恒定总流,断面平均流速与过水断面积()。 A.成反比B.成正比 C.之和为常数D.之差为常数 答案:A 6、有关恒定总流能量方程的应用条件,下列说法正确的是()。 A.要求液体可压缩B.过水断面在均匀流或渐变流的区段上C.所有受力只有重力D.非恒定流 答案:B 解析知识点:恒定总流能量方程的应用条件:(1)恒定流;(2)不可压缩液体;(3)质量力只有重力;(4)过水断面在均匀流或渐变流的区段上。 7、渐变流过水断面上的静水压强()分布,动水压强()规律分布。 A.按直线,也按直线B.按直线,按曲线 C.按曲线,也按曲线D.按曲线,按直线 答案:A 8、当流动的雷诺数小于下临界雷诺数时液体流态为( )。 A.急流B.层流 C.紊流D.缓流 答案:B 9、圆管层流中,管中心处的切应力( )。 A.等于零B.最大

浅水立波-森弗罗理论 大连理工大学水力学必考内容

12.5 浅水立波 在海洋、水库等广阔水面上所发生的波浪,波高常达数米甚至更大,波陡L H /一般约为1/10~1/30。因此水质点波动的振幅是有限值,这种波浪称有限振幅波。 当波浪向前传播遇到各种类型的建筑物时,将受到这些建筑物的反作用,并发生反射、破碎、绕流等复杂现象而改变原来波浪的运动性质。当水深大于临界水深,行进的波浪遇到直墙式建筑物时将发生反射现象。波浪的反射和一般横波的反射原理相同。反射波以与原始推进波和建筑物的交角相等的反射角从建筑物的直墙面上反射出来。在建筑物前反射波系与原始推进波系叠加而成的波系称为干涉波。波浪与较陡的斜墙相遇或波浪越过直墙顶时墙前也要产生局部反射现象。如果推进波属于二向自由规则波,波浪行进的方向又和建筑物直墙面相垂直,则原始推进波系和反射波系叠加形成完整的立波,见图12.5.1所示。因此,立波是干涉波的一种特殊典型情况,但又是设计计算时必须加以考虑的重要情况之一。 本节将介绍有限振幅立波的基本运动规律和作用在直墙上的波压力。 图12.5.1 原始推进波和反射波叠加形成立波 两个具有完全相同的波高、波长和波周期的原始有限振幅推进波与其在直墙前产生的反射波互相叠加形成了立波。叠加后立波的最大振幅为原始推进波的二倍,而波长和波周期则不变。在直墙面上和离直墙2 L n (n 为正整数)处,波面反复升降交替出现波峰和波谷,这些点称为波腹;在离直墙4 2L L n 处,波面几乎没有升降,只是波面的倾斜度发生周期性的

变化,这些点称为波节。立波的波形不再向前移动,而是在波节之间的波面呈周期性的上下升降运动,所以称为立波或驻波。 立波的水质点运动轨迹不再是封闭曲线而是一段抛物线,抛物线的主轴铅直向下,线形弯曲向上,每个水质点只在抛物线的一段距离上往复摆动。 图12.5.2 浅水立波水质点的运动轨迹,为一抛物线 立波水质点的运动情况如图12.5.2所示。设墙前波面通过静水面时某水质点位于O 点,当墙前波面上升出现最大波峰时,该水质点上升至最高位置O '点;当墙前波面下降出现最大波谷时,该水质点下降至最低位置O ''点。图12.5.3表示在一个波动周期内水质点的速度dt du u 加速度 ,及波面波动之间的关系。由图可知,当波面通过静水面,水质点在平衡位置O 点时,其速度最大,加速度为零;当墙前出现最大波峰和波谷,水质点相应在最高或最低位置时,其速度为零而加速度达最大值。 图12.5.3 一个波动周期内水质点的速度dt du u 加速度,及波面波动之间的关系 和有限振幅推进波相对应,有限振幅立波也可分为深水立波和浅水立波两种。由深水推进波形成的立波称为深水立波;由浅水推进波形成的立波称为浅水立波。本节只介绍《海港水文规范》里所涉及的直墙式建筑物如防波堤前形成的浅水立波,着重介绍其波压强的分布

相关文档
最新文档