数据仓库与数据库

合集下载

数据库与数据仓库:信息的黄金宝藏

数据库与数据仓库:信息的黄金宝藏
• 相关数据的有序集合。
具有对数据的安全性、完整性、并发操作 的控制功能
关系型数据库模型
• 关系型数据库模型利用一系列的二维表 存储信息
• 实体Entity与二维表对应,代表客观事物 • 属性Attribute是用来描述实体的特征 • 关键字(主键) Primary Key是可以唯一标
识一个实例的属性 • 实例Instance是实体的具体描述,实例的集
(2)参数查询
利用系统对话框,接受用户输入查询 条件(准则)参数,完成指定形式的查 询。
准则:查询或高级筛选中用来识别所 需特定记录的限制条件。
参数查询的条件输入
可以对相同的字段或不同的字段输入 多个准则。在多个“准则”单元格中输 入表达式时,Microsoft Access 将使用 And 或 Or 运算符进行组合。 运算规律为: 同行And ,异行Or。
ACCESS提供多种查询方式。
查询设计
(1)简单查询(选择查询)
(2)参数查询
(3)交叉表查询 A 生成表查询
(4)操作查询——
B C
追加查询 更新查询
(5)SQL语句查询 D 删除查询
(1)选择查询
可以从一个或多个表中选择记录, 组成数据的动态集合,还完成以下 功能:
分组、汇总、计算及生成新的计算 字段
表的创建与使用
(1)表的创建 (2)修改表的结构 (3)表的使用与编辑 (4)表及字段的属性 (5)建立关系
(1)表的创建
• 创建空数据库 在空表的基础上添加需 要的其它对象
• 利用系统提供的导入及链接功能
利用设计视图创建表
– 打开设计视图 – 确定字段及类型 – 定义主关键字 – 保存
–文本 –备注 –数字 –日期和时间 –货币 –自动编号 –是/否 –OLE对象 –超级链接 –查阅向导

大数据分析知识:数据存储与管理——数据仓库、云计算和数据库

大数据分析知识:数据存储与管理——数据仓库、云计算和数据库

大数据分析知识:数据存储与管理——数据仓库、云计算和数据库随着技术的不断发展,越来越多的数据产生并蓄积,如何进行有效管理和利用已成为人们关注的焦点之一。

本文将从数据存储和管理的角度出发,分别介绍数据仓库、云计算和数据库的概念、特点及其在大数据领域的应用。

一、数据仓库数据仓库(Data Warehouse)是指从各个数据源中提取数据并经过处理后存储到一个统一且独立的数据集合中,以方便用户进行分析和决策的系统。

数据仓库通过将数据分析和查询分离,实现了数据决策支持系统的高效运行,从而提高数据的利用率。

数据仓库的特点:1.面向主题:数据仓库是面向主题的,即数据集中一般针对某个主体领域或数据分析任务。

例如,销售数据仓库、人力资源数据仓库等。

2.集成性:数据仓库具有集成性,可以将不同类型的数据源通过ETL(Extract-Transform-Load)的方式进行标准化、转换和加载,并保证数据之间的一致性和完整性。

3.时间性:数据仓库关注历史数据的存储和分析,并提供不同时间维度的数据展示方式,为决策者提供多样化的选择。

数据仓库在大数据领域的应用:1.数据分析和挖掘:通过数据仓库中的数据进行多维分析和数据挖掘,为决策者提供全面的数据支持。

2.企业级统一视图:数据仓库可以实现企业级统一视图,使决策者可以获得一份全面的数据报告。

3.交互式查询:数据仓库提供交互式的查询功能,用户可以根据需要自定义查询条件和维度,获得满足自己需求的数据结果。

二、云计算云计算(Cloud Computing)是指通过网络以服务方式提供计算资源的一种模式。

云计算基于分布式计算、虚拟化技术和自动化管理,通过网络实现数据处理和存储,通过服务模式进行资源使用和计费。

云计算的特点:1.弹性伸缩:云计算可以根据需求进行弹性伸缩,为企业和个人提供更加灵活的资源使用方式,从而降低IT成本、提高效率。

2.服务化:云计算基于服务的方式提供资源,用户可以根据需要选择提供商和服务类型,并根据实际使用量进行计费,降低了技术和资金门槛。

什么是数据仓库

什么是数据仓库

数据仓库基本概念对数据仓库最大的误解是把它当作一个现成的可以直接买来使用的产品。

数据仓库和数据库不同,它不是现成的软件或者硬件产品。

确切说,数据仓库是一种解决方案,是对原始的操作数据进行各种处理并转换成有用信息的处理过程,用户可以通过分析这些信息从而作出策略性的决策。

随着计算机技术的迅速发展,信息处理技术也得到了长足的发展,从70年代中期的MIS系统发展到现代的数据仓库(Data Warehouse)技术。

许多厂商都在开发自已的数据仓库解决方案,并通过各种渠道大力推广。

但就数据仓库技术而言,目前仍存在着许多认识上的误区,本文将着重介绍一些数据仓库的基本概念以及建立数据仓库时应该注意的一些情况。

数据仓库不是现成软件或硬件产品对数据仓库最大的误解可能是把它当作一个现成的可以直接买来使用的产品。

事实上,数据仓库和数据库不同,它不是现成的软件或者硬件产品。

比较确切地说,数据仓库是一种解决方案,是对原始的操作数据进行各种处理并转换成有用信息的处理过程,用户可以通过分析这些信息从而作出策略性的决策。

因此,在很多场合,我们也把数据仓库系统称为决策支持系统。

由于这个原因,数据仓库的用户不是类似银行柜员的终端操作人员,而是针对各个业务部门的用户和有关决策人员。

因此,数据仓库的用户比传统的OLTP(联机事务处理:On-line Transaction Processing)用户少得多。

OLTP与OLAPOLTP系统也称为生产系统,它是事件驱动、面向应用的,比如银行的储蓄系统就是一个典型的OLTP系统。

OLTP的基本特点是:·对响应时间要求非常高;·用户数量非常庞大,主要是操作人员;·数据库的各种操作基于索引进行。

OLAP(联机分析处理:On-line Analytical Processing)是基于数据仓库的信息分析处理过程,是数据仓库的用户接口部分。

OLAP系统是跨部门、面向主题的,其基本特点是:·基础数据来源于生产系统中的操作数据(Operational Data);·响应时间合理;·用户数量相对较小,其用户主要是业务决策与管理人员;·数据库的各种操作不能完全基于索引进行。

数据库与数据仓库

数据库与数据仓库

经济法
3101
3116
1143 陈晨
020204
金融学
2401
2402
7142 沈俊
120202 企业管理
8301
8311
8402
课程名称 现代企业管理
营销管理 公司财务 经济法基础理论 商法专题 货币银行理论 金融工程学 现代企业管理 营销策划 公司财务
学分 3 2 3 3 2 3 2 3 1.5 3
个实体或实体之间的联系。 图5-4、11(P93、99) 二维表使描述信息间的关系十分便利,
容易处理二维表所包含的信息。
关系数据库模型
可以灵活地查询数据库和建立报表。
查询单个表和多个表。 演示 ACCESS 订单ID、客户、订购日期、产品
在建立关系数据库时,不必事先确定实体之间的 所有联系,可以随时建立实体之间的联系。
数据库管理系统组成
数据字典(Data Dictionary)
自动生成或者手工生成的文件,用来存储数据元 素的定义和特性。
数据字典包含着数据库中所含信息(字段)的逻 辑结构,如名称、类型、格式、缺省值、有效范 围等。
演示 ACCESS。
数据库管理系统组成
数据操作语言(Data Manipulation Language, DML) 提供了一组从数据库中提取数据的命令。
职员文件
900811刘汉云 2000-9-4
包含:职员编号、姓名、 聘用日期
刘汉云
(名字字段)
01001010 (字母J的ASCII码)
0,1
实体、属性和关键字
实体(Entity)
与所收集的数据相关的一类事物。 实体是指人、或者其它具体的事物。

浅析数据库(DB)、操作数据存储(ODS)和数据仓库(DW)的区别与联系

浅析数据库(DB)、操作数据存储(ODS)和数据仓库(DW)的区别与联系

浅析数据库(DB)、操作数据存储(ODS)和数据仓库(D W)的区别与联系文章背景:相信大部分刚接触上面三个概念的同学,都多多少少会有些迷惑,现在我就给大家简单分析下这三者的关系,希望大家对这三者的概念理解有所帮助吧。

本文主要从下面两类关系来叙述上面三者的关系:1. 数据库(DB)和数据仓库(DW)的区别与联系2. 操作数据存储(ODS)和数据仓库(DW)的区别与联系数据库与数据仓库的区别与联系数据库与数据仓库基础概念:数据库:传统的关系型数据库的主要应用,主要是基本的、日常的事务处理,例如银行交易。

数据仓库:数据仓库系统的主要应用主要是OLAP(On-Line Analytical Proces sing),支持复杂的分析操作,侧重决策支持,并且提供直观易懂的查询结果。

OLTP和OLAP概念补充:数据处理大致可以分成两大类:联机事务处理OLTP(on-line transaction proc essing)、联机分析处理OLAP(On-Line Analytical Processing)。

OLTP是传统的关系型数据库的主要应用,主要是基本的、日常的事务处理,例如银行交易。

OLAP是数据仓库系统的主要应用,支持复杂的分析操作,侧重决策支持,并且提供直观易懂的查询结果。

OLTP 系统强调数据库内存效率,强调内存各种指标的命令率,强调绑定变量,强调并发操作;OLAP 系统则强调数据分析,强调SQL执行市场,强调磁盘I/O,强调分区等。

举一个具体的例子:(转自知乎作者:陈诚),个人觉得例子描述的很清晰举个最常见的例子,拿电商行业来说好了。

基本每家电商公司都会经历,从只需要业务数据库到要数据仓库的阶段。

第一阶段,电商早期启动非常容易,入行门槛低。

找个外包团队,做了一个可以下单的网页前端+ 几台服务器+ 一个MySQL,就能开门迎客了。

这好比手工作坊时期。

第二阶段,流量来了,客户和订单都多起来了,普通查询已经有压力了,这个时候就需要升级架构变成多台服务器和多个业务数据库(量大+分库分表),这个阶段的业务数字和指标还可以勉强从业务数据库里查询。

数据仓库基础知识

数据仓库基础知识

数据仓库基础知识1、什么是数据仓库?权威定义:数据仓库是一个面向主题的、集成的、相对稳定的、反映历史变化的数据集合,用于支持管理决策。

1)数据仓库是用于支持决策、面向分析型数据处理;2)对多个异构的数据源有效集成,集成后按照主题进行重组,并包含历史数据,而且存放在数据仓库中的数据一般不再修改。

面对大数据的多样性,在存储和处理这些大数据时,我们就必须要知道两个重要的技术。

分别是:数据仓库技术、Hadoop。

当数据为结构化数据,来自传统的数据源,则采用数据仓库技术来存储和处理这些数据,如下图:2、数据仓库和数据库的区别?从目标、用途、设计来说。

1)数据库是面向事务处理的,数据是由日常的业务产生的,并且是频繁更新的;数据仓库是面向主题的,数据来源多样化,经过一定的规则转换得到的,用于分析和决策;2)数据库一般用来存储当前事务性数据,如交易数据;数据仓库一般存储的是历史数据;3)数据库设计一般符合三范式,有最大的精确度和最小的冗余度,有利于数据的插入;数据仓库设计一般不符合三范式,有利于查询。

3、如何构建数据仓库?数据仓库模型的选择是灵活的,不局限与某种模型方法;数据仓库数据是灵活的,以实际需求场景为导向;数仓设计要兼顾灵活性、可扩展性、要考虑技术可靠性和实现成本。

1)调研:业务调研、需求调研、数据调研2)划分主题域:通过业务调研、需求调研、数据调研最终确定主题域3)构建总线矩阵、维度建模总线矩阵:把总线架构列表形成矩阵形式,行表示业务处理过程,即事实,列表示一致性的维度,在交叉点上打上标记表示该业务处理过程与该维度相关(交叉探查)4)设计数仓分层架构5)模型落地6)数据治理4、什么是数据中台?数据中台是通过数据技术,对海量数据进行采集、计算、存储、加工,同时统一标准和口径。

数据中台把数据统一之后,会形成标准数据,再进行存储,形成大数据资产层,进而为客户提供高效服务。

这些服务和企业的业务有较强关联性,是企业所独有且能复用的,他是企业业务和数据的积淀,其不仅能降低重复建设,减少烟囱式协助的成本,也是差异化竞争的优势所在。

数据库与数据仓库的区别与联系

数据库与数据仓库的区别与联系

数据库与数据仓库的区别与联系在信息时代的背景下,数据处理已经成为各行各业的核心工作。

数据库和数据仓库作为两个常见的数据管理工具,在实践中有着不同的应用场景和特点。

本文将对数据库和数据仓库的区别与联系进行探讨,以帮助读者更好地理解它们的不同之处和相互关系。

一、数据库的概念和特点数据库是指为了满足用户需求而设计、构建和维护的一系列数据集合。

数据库通过数据结构与数据管理系统,实现对数据的存储、查询、更新和删除等基本操作。

其特点主要包括以下几个方面:1. 数据持久化:数据库中的数据可以长期保留,并在需要时进行读取和修改。

2. 数据共享:数据库可以实现多个用户对数据进行共享和协作,提高数据利用效率。

3. 数据一致性:数据库通过事务机制保证数据的一致性和完整性,避免数据冗余和不一致的问题。

4. 高效查询:数据库通过索引等技术快速定位和获取用户需要的数据,提高查询效率。

二、数据仓库的概念和特点数据仓库是指按照时间顺序、面向主题和集成的方式,将多个异构的数据源进行统一整合和管理的大型数据存储库。

它主要用于支持决策分析和业务智能,具有以下特点:1. 面向主题:数据仓库基于企业的业务需求,以主题为中心组织和存储数据,方便用户进行专题分析和决策支持。

2. 集成统一:数据仓库通过数据抽取、转换和加载等技术整合来自不同来源的数据,保证数据的一致性和可信度。

3. 历史存储:数据仓库会长期保留历史数据,以支持用户对过去事务和趋势的分析和判断。

4. 复杂分析:数据仓库提供了复杂的分析功能,如数据切片、切块、钻取等,为决策提供更全面和深入的支持。

三、数据库与数据仓库的区别1. 定义和目的:数据库是为了满足用户的日常业务操作需求而设计的,而数据仓库则是为了支持决策分析和业务智能而构建的。

2. 数据类型和时效性:数据库主要存储操作性数据,如订单、库存等,具有实时性要求;数据仓库存储分析型数据,如销售趋势、市场调研等,具有较长的历史时效性。

数据仓库的数据模型设计和数据库系统的数据模型设计有什么不同

数据仓库的数据模型设计和数据库系统的数据模型设计有什么不同

数据仓库的数据模型设计和数据库系统的数据模型设计
有什么不同
1.目的和应用:
数据仓库的数据模型设计主要用于支持分析和决策支持系统。

它的目标是将来自多个操作性数据库的数据集成在一个统一的存储中,以便于查询和分析。

数据库系统的数据模型设计主要用于支持业务应用系统的操作和事务处理。

2.数据结构:
3.数据粒度:
4.数据复杂性:
5.数据访问模式:
数据仓库的数据模型设计支持复杂的查询操作,如多维分析和数据挖掘等。

因此,数据仓库的数据模型设计通常需要进行优化,以提高查询性能和响应时间。

数据库系统的数据模型设计则更注重事务处理和并发控制等方面的性能优化。

总结起来,数据仓库的数据模型设计和数据库系统的数据模型设计主要在目的、数据结构、数据粒度、数据复杂性和数据访问模式等方面有所不同。

数据仓库的数据模型设计更注重于支持分析和决策支持系统,采用星型或雪花型的数据结构,关注大量和高层次的数据,需要复杂的数据转换和清洗过程,并进行查询性能优化。

数据库系统的数据模型设计更注重于支持业务应用系统的操作和事务处理,采用关系模型的结构,关注细节
和实时的操作数据,不需要涉及复杂的数据处理过程,并进行事务和并发性能的优化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数据仓库与数据库的区别
简而言之,数据库是面向事务的设计,数据仓库是面向主题设计的。

数据库一般存储在线交易数据,数据仓库存储的一般是历史数据。

数据库设计是尽量避免冗余,一般采用符合范式的规则来设计,数据仓库在设计是有意引入冗余,采用反范式的方式来设计。

数据库是为捕获数据而设计,数据仓库是为分析数据而设计,它的两个基本的元素是维表和事实表。

维是看问题的角度,比如时间,部门,维表放的就是这些东西的定义,事实表里放着要查询的数据,同时有维的ID。

单从概念上讲,有些晦涩。

任何技术都是为应用服务的,结合应用可以很容易地理解。

以银行业务为例。

数据库是事务系统的数据平台,客户在银行做的每笔交易都会写入数据库,被记录下来,这里,可以简单地理解为用数据库记帐。

数据仓库是分析系统的数据平台,它从事务系统获取数据,并做汇总、加工,为决策者提供决策的依据。

比如,某银行某分行一个月发生多少交易,该分行当前存款余额是多少。

如果存款又多,消费交易又多,那么该地区就有必要设立ATM 了。

显然,银行的交易量是巨大的,通常以百万甚至千万次来计算。

事务系统是实时的,这就要求时效性,客户存一笔钱需要几十秒是无法忍受的,这就要求数据库只能存储很短一段时间的数据。

而分析系统是事后的,它要提供关注时间段内所有的有效数据。

这些数据是海量的,汇总计算起来也要慢一些,但是,只要能够提供有效的分析数据就达到目的了。

数据仓库,是在数据库已经大量存在的情况下,为了进一步挖掘数据资源、为了决策需要而产生的,它决不是所谓的“大型数据库”。

那么,数据仓库与传统数据库比较,有哪些不同呢?让我们先看看W.H.Inmon关于数据仓库的定义:面向主题的、集成的、与时间相关且不可修改的数据集合。

“面向主题的”:传统数据库主要是为应用程序进行数据处理,未必按照同一主题存储数据;数据仓库侧重于数据分析工作,是按照主题存储的。

这一点,类似于传统农贸市场与超市的区别—市场里面,白菜、萝卜、香菜会在一个摊位上,
如果它们是一个小贩卖的;而超市里,白菜、萝卜、香菜则各自一块。

也就是说,市场里的菜(数据)是按照小贩(应用程序)归堆(存储)的,超市里面则是按照菜的类型(同主题)归堆的。

“与时间相关”:数据库保存信息的时候,并不强调一定有时间信息。

数据仓库则不同,出于决策的需要,数据仓库中的数据都要标明时间属性。

决策中,时间属性很重要。

同样都是累计购买过九车产品的顾客,一位是最近三个月购买九车,一位是最近一年从未买过,这对于决策者意义是不同的。

“不可修改”:数据仓库中的数据并不是最新的,而是来源于其它数据源。

数据仓库反映的是历史信息,并不是很多数据库处理的那种日常事务数据(有的数据库例如电信计费数据库甚至处理实时信息)。

因此,数据仓库中的数据是极少或根本不修改的;当然,向数据仓库添加数据是允许的。

数据仓库的出现,并不是要取代数据库。

目前,大部分数据仓库还是用关系数据库管理系统来管理的。

可以说,数据库、数据仓库相辅相成、各有千秋。

补充一下,数据仓库的方案建设的目的,是为前端查询和分析作为基础,由于有较大的冗余,所以需要的存储也较大。

为了更好地为前端应用服务,数据仓库必须有如下几点优点,否则是失败的数据仓库方案。

1.效率足够高。

客户要求的分析数据一般分为日、周、月、季、年等,可以看出,日为周期的数据要求的效率最高,要求24小时甚至12小时内,客户能看到昨天的数据分析。

由于有的企业每日的数据量很大,设计不好的数据仓库经常会出问题,延迟1-3日才能给出数据,显然不行的。

2.数据质量。

客户要看各种信息,肯定要准确的数据,但由于数据仓库流程至少分为3步,2次ETL,复杂的架构会更多层次,那么由于数据源有脏数据或者代码不严谨,都可以导致数据失真,客户看到错误的信息就可能导致分析出错误的决策,造成损失,而不是效益。

3.扩展性。

之所以有的大型数据仓库系统架构设计复杂,是因为考虑到了未来3-5年的扩展性,这样的话,客户不用太快花钱去重建数据仓库系统,就能很稳定运行。

主要体现在数据建模的合理性,数据仓库方案中多出一些中间层,使海量数据流有足够的缓冲,不至于数据量大很多,就运行不起来了。

相关文档
最新文档