叶绿体色素的提取分离理化性质和叶绿素含量的测定
叶绿体色素的提取、分离、理化性质和叶绿素含量的测定

过滤入三角瓶中
观察荧光现象 透射光 色,反射 光 光。
定性实验 无需移液管量 皂化反应(约1ml)
加KOH数片剧烈摇均, 加石油醚1ml和H2O 1ml 分层后观察 上层呈 吸收 下层呈 吸收 色,为 光。 色,为 光。 , ,
取代反应(约1mL)
在400-700nm处扫描光谱,分别测定类胡萝 卜素和叶绿素的吸收峰
• 3.叶绿素定量分析:
称取鲜叶0.1g,加1.9mlH2O,磨成匀浆,取2份 0.2ml 分别加95%酒精4.8ml,摇匀,8000转离心 5min, 上清液在 649 , 652 , 665 测定 OD ,计算 Chla,Chlb 和Chl总量的值。
5、定量分析:叶绿素吸收红光和兰紫光,红
光区可用于定量分析,其中665 和649用于定量 叶绿素a,b及总量,而652可直接用于总量测定
180 160 140 120 100 80 60 40 20 0 400 500 Waverlength(nm) 600 700
a
b
• 实验步骤 1.定性分析:
加醋酸约1ml,变褐 为_________叶绿素 , 取1/2加醋酸铜粉,加热变 色,为 叶绿素。
2、叶绿素和类胡萝ຫໍສະໝຸດ 素的吸收光谱测定:皂化反应的上层 黄色石油醚溶液 弃上层,反复用石油醚萃取,直 到无类胡萝卜素, 得叶绿素(盐)
(稀释470nm OD 0.5-1) (稀释,665nm OD 0.5-1)
• 五、实验数据记录和处理
• Ca(mg/L)=13.95A665-6.88 A649 • Cb (mg/L) =24.96A649-7.32 A665 • CT (mg/L) = Ca+ Cb 或A6521000/34.5
实验3 叶绿体色素的理化性质 叶绿素的定量测定 希尔反应

叶绿素a、b在 652 nm 处有相同的比吸收系数 (34.5),也可在此波长下测定一次光密度D652, 求出叶绿素a、b的总量。
D652X 1000 CT = 34.5
实验步骤
1. 提取: 称0.5 g菠菜叶片,剪碎置研钵中, 加少量碳酸 钙和石英砂,加入80% 2-3mL于研钵中, 研成匀浆,再加 入2-3 mL 80%丙酮,研磨充分,用丙酮湿润的滤纸过 滤(在漏斗上完成,注意石英砂尽量不要倒入漏斗中, 以免堵塞滤纸,影响过滤),并用少量丙酮将滤纸和研钵 冲洗干净,定容至25 mL试管中。 2. 稀释: 取5ml提取液于另一刻度试管中,加5 mL 80% 丙酮稀释(可根据具体情况调整稀释倍数,使OD值在 0.2-0.8范围内)。
四 思考题:
1.叶绿素a、b在蓝光区也有吸收峰,能否用这一吸 收峰波长进行叶绿素a、b进行定量分析?为什么?
苯倒入废液瓶中!
四 吸收光谱的观察
叶绿素吸收红光和兰紫光; 类胡萝卜素吸收兰紫光;
类胡萝卜素的吸收光谱
叶绿素的吸收光谱
画图并说明原因
五 氢和铜代叶绿素反应
叶绿素在弱 酸作用下,叶绿 素中镁可被H+取 代而成为褐色的 去镁叶绿素,后 者遇铜则成为绿 色的铜代叶绿素。
取叶绿体色素5ml,加浓 盐酸1滴摇匀,观察溶液 颜色的变化。
当溶液变褐色后,取 一半去镁叶绿素提取液, 投入少许醋酸铜粉末, 微微加热,观察溶液颜 色的变化。
不要盖试管盖!
色素提取
方法与步骤
荧光 皂化
代替
吸收
叶绿素的定量测定
叶绿素提取实验

实验二、叶绿体色素的提取、分离与性质分析一、实验目的•掌握叶绿体色素的提取方法;掌握板层析法分离叶绿体色素的原理和步骤;掌握叶绿体色素的部分理化性质。
二、实验原理(一)叶绿体色素:1.叶绿素叶绿素a:叶绿素b=3:12.类胡萝卜素胡萝卜素:叶黄素=2:1叶绿素:类胡萝卜素=3:1(二)叶绿素的光学性质叶绿素a在663nm有吸收峰;叶绿素b 在645nm有吸收峰。
但在蓝光区也有一个吸收峰。
胡萝卜素和叶黄素的吸收峰是在蓝光区(440nm)。
三、叶绿素含量测定:1.取新鲜叶片,擦净组织表面污物,剪碎(去掉中脉)混匀。
2.称取剪碎的新鲜样品1.0g ,放入研钵中,加少量石英砂及2-3ml (或80%丙酮)研成匀浆,继续研磨至组织变白,静置3-5分。
3.取滤纸1张,置漏斗中,用80%丙酮湿润,沿玻棒把提取液倒人漏斗中,过滤到25ml。
4.用滴管吸取80%丙酮,将滤纸上的叶绿体色素全部洗入容量瓶中。
直至滤纸和残渣中无绿色为止。
最后用80%丙酮定容至25ml,摇匀。
5.把叶绿体色素提取液倒入比色杯内。
以80%丙酮为空白,在波长663nm、645nm下测定吸光度。
6 计算:按下列公式:Ca(mg/L)=12.7OD663-2.69 OD645Cb (mg/L) =22.9OD645-4.68 OD663C总(mg/L) = Ca+ Cb分别计算叶绿素a、b的浓度。
四、光合色素鉴定(板层析)•支持物:硅胶层析板•流动相:石油醚:丙酮:(v:v=65:35)•步骤:1、取板划线2、点样3、配展开剂4、展开5、前沿到达2/3处时停止,取出凉干并观察各色素带计算Rf值叶绿素a:蓝绿色;叶绿素b:黄绿色;胡萝卜素:桔黄色叶黄素:黄色六:叶绿素前驱物的荧光观察七、作业1、计算你的实验中植物叶片中叶绿素的含量。
2.研磨提取叶绿素时,为何要加入CaCO3?3.画图说明叶绿体色素板层析结果,并解释原因。
实验四叶绿体色素的提取、分离及叶绿素a、b含量的测定

实验四:叶绿体色素的提取、分离及叶绿素a、b含量的测定实验目的1、了解叶绿素分离与提取的原理和方法2、了解它们的光学特性和理化性质3、了解叶绿素a、b含量测定的方法。
实验原理1.脂溶性叶绿体色素提取:可用乙醇、丙酮等有机溶剂提取。
2.分离:(1)叶绿体色素的分离<纸层析法>因吸附剂对不同物质的吸附力不同,当用适当的溶剂推动时,混合物中各种成分在两相(固定相和流动相)间具有不同的分配系数,所以移动速度不同,经过一定时间后,可将各种色素分开。
纸层析是以滤纸纤维为固定相,而以有机溶剂作为流动相。
由于样品中各物质有不同的分配系数,移动速度因此而不同,从而达到分离的目的。
(2)叶绿素与类胡萝卜素的分离<皂化反应>叶绿素是一种二羧酸——叶绿酸与甲醇和叶绿醇形成的复杂酯,故可与碱起皂化反应而生成醇与叶绿酸的盐,产生的盐能溶于水中,可用此法将叶绿素与类胡萝卜素分开。
3.叶绿素a、b含量的测定:根据朗伯—比尔定律,某有色溶液的吸光度A与其溶液浓度c和液层厚度L成正比,即:A=φCL(φ为吸光系数) 因此,根据叶绿体色素提取液对可见光谱的吸收,利用分光光度计在某一特定波长下测定其吸光度,用公式即可计算出提取液中各色素含量。
测定663nm 和645nm两个特定波长下的吸光度A,并根据叶绿素a、b在对应波长下的吸光系数即可求出叶绿素a、b含量。
其校正过的公式为:Ca=12.7A663-2.69A645 Ca:叶绿素a浓度,mg/LCb=22.9A645-4.68A663 Cb:叶绿素b浓度,mg/LCT=Ca + Cb CT:叶绿素总浓度,mg/L实验器材:1、仪器:剪刀、漏斗、烧杯、分光光度计、分液漏斗、铁架台、移液管、吸耳球、试管、毛细管、平底大试管、天平、研钵、滤纸2、试剂:石英砂、碳酸钙、丙酮、乙醚、四氯化碳、无水硫酸钠、30%KOH-甲醇溶液3、材料:菠菜实验步骤:1、叶绿素的提取称取去中脉叶片2g左右,剪碎放入研钵中加丙酮5ml,少许碳酸钙和石英砂,研磨成浆,再加入丙酮10ml,用漏斗过滤即为色素提取液,暗处备用。
实验三叶绿体色素提取分离与理化性质及含量测定.ppt

×100%
样品重量(mg)×1000
▪ 稀释倍数:若提取液未经稀释,则取1
2021/3/4
18
实验报告
▪ 1.试述叶绿体色素的吸收光谱特点及生理意 义。
▪ 2.在皂化反应中加入乙醚有什么作用?
2021/3/4
19
2021/3/4
11
理化性质测定
▪ 将上一个实验中提取的 叶绿体色素溶液适当稀 释后,进行以下实验:
▪ 1.荧光现象的观察。 ▪ 取l支试管加入浓的叶
绿体色素提取液,在直 射光下观察溶液的透射 光与反射光颜色有何不 同,可观察到反射出暗 红色的荧光。
▪ 2.氢和铜对叶绿素分子中镁 的取代作用
▪ 方法一;取两支试管。第 一支试管加叶绿体色素提取 液2mL,作为对照。第二支 试管加叶绿体色素提取液2 mL,再加入稀盐酸1滴,摇 匀,观察溶液颜色变化。当 溶液变竭后,再加入少量醋 酸铜粉末,微微加热,观察 记录溶液颜色变化情况,并 与对照试管相比较。解释其 颜色变化原因。
▪ 叶绿素中的镁可以被氢 离子所取代而成褐色的 去镁叶绿素。去镁叶绿 素遇铜则成为铜代叶绿 素,铜代叶绿素很稳定, 在光下不易破坏,故常 用此法制作绿色多汁植 物的浸渍标本。
2021/3/4
8
实验步骤(1)
▪ 根据朗伯一比尔定律,某有 ▪ 今欲测定叶绿体色素混合
色溶液的吸光度D与其中溶 液浓度C和液层厚度L成正 比,即:
的水分)和流动相(有 的盐,产生的盐能溶
机推动剂)间具有不同 的分配系数,所以移动 速度不同,经过一定时 2021间/3/4后,可将各种色素分 开。
于水中,可用此法将 叶绿素与类胡萝卜素 分开。
7
实验原理
▪ 叶绿素与类胡萝卜素都具有 光学活性,表现出一定的吸 收光谱,可用分光光度计精 确测定。叶绿素吸收光量子 而转变成激发态,激发态的 叶绿素分子很不稳定,当它 变回到基态时可发射出红光 量子,因而产生荧光。叶绿 素的化学性质很不稳定,容 易受强光的破坏,特别是当 叶绿素与蛋白质分离以后, 破坏更快,而类胡萝卜素则 较稳定。
叶绿体色素的提取、分离及含量测定

叶绿体色素的提取、分离及含量测定实验目的叶绿素是植物吸收太阳光能进行光合作用的重要物质,主要有叶绿素a、叶绿素b、胡萝卜素和叶黄素组成。
叶绿素a与叶绿素b是高等植物叶绿体色素的重要组分,约占到叶绿体色素总量的75%左右。
叶绿素在光合作用中起到吸收光能、传递光能的作用(少量的叶绿素a还具有光能转换的作用),因此叶绿素的含量与植物的光合速率密切相关,在一定范围内,光合速率随叶绿素含量的增加而升高。
另外,叶绿素的含量是植物生长状态的一个反映,一些环境因素如干旱、盐渍、低温、大气污染、元素缺乏都可以影响叶绿素的含量与组成,并因之影响植物的光合速率。
因此叶绿素含量a与叶绿素b含量的测定对植物的光合生理与逆境生理具有重要意义。
实验原理从植物叶片中提取和分离叶绿体色素是对其认识和了解的前提。
利用叶绿体色素能溶于有机溶剂的特性,可用95%乙醇提取。
分离色素的方法有多种,如纸层析、柱层析等。
纸层析是其中最简单的一种。
当溶剂不断地从层析滤纸上流过时,由于混合色素中各种成分在两相(即流动相和固定相)间具有不同的分配系数,它们的移动速度不同,使样品中的各种成分得到分离。
强光可以破坏离体的叶绿素,因为植物体内本来有还原酶,可以破坏光产生的强氧化物质。
而离体的叶绿素提取液中不含有还原酶,光产生的强氧化物质会破坏叶绿素。
叶绿素提取液中同时含有叶绿素a和叶绿素b,二者的吸收光谱虽有不同,但又存在着明显的重叠,在不分离叶绿素a和叶绿素b的情况下同时测定叶绿素a和叶绿素b的浓度,可分别测定在663nm和645nm(分别是叶绿素a和叶绿素b在红光区的吸收峰)的光吸收,然后根据Lambert-Beer定律,计算出提取液中叶绿素a和叶绿素b的浓度。
A663=82.04Ca+9.27Cb(1)A645=16.75Ca+45.60Cb(2)公式中Ca为叶绿素a的浓度,Cb为叶绿素b浓度(单位为g/L),82.04和9.27分别是叶绿素a和叶绿素b在663nm下的比吸收系数(浓度为1g/L,光路宽度为1cm时的吸光度值);16.75和45.60分别是叶绿素a和叶绿素b在645nm下的比吸收系数。
植物生理学实验报告叶绿体色素的提取分离理化性质和叶绿素含量的测定

植物生理学实验报告叶绿体色素的提取分离理化性质和叶绿素含量的测定引言:叶绿体是植物细胞中的一个重要细胞器,其中主要存在着叶绿素等色素,它们在光合作用中起着重要的作用。
研究叶绿体色素的提取、分离、理化性质和叶绿素含量的测定,对于了解光合作用的机理以及研究植物生理生化过程具有重要意义。
本实验旨在通过实验手段提取叶绿体色素,进行色素的分离、理化性质的研究和叶绿素含量的测定。
材料与方法:材料:菠菜叶片、研钵、磨杵、丙酮、乙醇、石油醚、叶绿素提取液、测色皿、高锰酸钾溶液、浓硫酸。
方法:1.取适量菠菜叶片放入研钵中,加入适量丙酮,用磨杵捣碎成糊状。
2.将捣碎的菠菜糊状物转移到玻璃漏斗中,用石油醚冲洗3次,使叶绿体附着物进一步析出。
3.将漏斗中的上清液收集,并加入适量乙醇,振摇混合,使叶绿素慢慢析出。
4.将释放出的叶绿体颗粒通过离心机离心沉淀10分钟,收集沉淀。
5.取收集到的叶绿体沉淀,加入适量叶绿素提取液,用乳钙酸钠解离剂进行叶绿素含量的测定。
6.将其中一部分叶绿体溶液加入高锰酸钾溶液,观察颜色变化。
7.将其余叶绿体溶液与浓硫酸混合,观察颜色变化。
结果与讨论:通过上述方法,我们成功地提取并分离出菠菜叶片中的叶绿体色素。
加入石油醚可以去除一部分杂质,使叶绿体进一步纯化。
加入乙醇可以使叶绿素从叶绿体中溶出。
通过离心沉淀,我们收集到了叶绿体的沉淀物。
叶绿体的提取液与高锰酸钾溶液反应后呈现蓝色或紫色,这是由于高锰酸钾通过氧化反应将一些具有现菌酮结构的物质氧化为合成叶绿素的前体物质所引起的。
这种反应也证实了叶绿体的存在。
叶绿体溶液与浓硫酸混合后呈现蓝绿色,这是由于浓硫酸通过剥离叶绿体周围的蛋白质和其他有机物质,将叶绿素分子释放出来,产生颜色变化。
叶绿素的含量测定是通过与乳钙酸钠解离剂反应来进行的。
乳钙酸钠解离剂能够与叶绿体中的叶绿素结合,并形成稳定的叶绿素-乳钙酸钠络合物。
这种络合物通过光密度的测定,可以根据比色法来测量叶绿素的含量。
叶绿体色素的提取分离、理化性质和含量测定

叶绿体色素的提取分离、理化性质和含量测定1 实验目的(1)学习用薄层色谱法分离叶绿体色素的实验方法;(2)验证叶绿体素的理化性质。
2 实验原理2.1 叶绿素的提取叶绿体是进行光合作用的细胞器。
叶绿体中的叶绿素a、叶绿素b、胡萝卜素和叶黄素与类囊体膜结合称为色素蛋白复合体。
这些色素都不溶于水,而溶于有机溶剂,故可用乙醇等有机溶剂提取。
提取液可用薄层色谱法加一分离和鉴别。
2.2 叶绿素的分离薄层层析色谱法是将吸附剂均匀的涂在玻璃板上称一薄层,将此吸附剂薄层作为固定相,把待分离的样品溶液点在薄层板的下端,然后用一定量的溶剂做流动相,将薄层板的下端浸入到展开剂当中。
流动相通过毛细血管作用由下而上浸润薄层板,并带动样品在板上也向上移动,样品中各组分在吸附剂和展开剂之间发生连续不断地吸附、脱吸附、再吸附、再脱附……的过程。
由于吸附剂对不同物质的吸附能力大小不同,吸附力强的物质相对移动慢一点,而吸附力弱的物质则相对移动快一些,从而使各组分有不同的移动速度而彼此分开。
2.3 叶绿素理化性质测定叶绿素是一种由叶绿酸与甲醇和叶绿醇形成的复杂酯,故可与碱起皂化反应而生成甲醇和叶绿醇及叶绿酸盐,产生的盐能溶于水中,可用此法将叶绿素与类胡萝卜素分开。
叶绿素吸收光量子而转变成激发态,激发态的叶绿素分子很不稳定,当它变回到基态时可发射出红光量子,因而产生荧光。
叶绿素的化学性质很不稳定,容易受强光的破坏,特别是当叶绿素与蛋白质分离以后,破坏更快,而类胡萝卜素则较为稳定。
叶绿素中的镁可以被H+所取代而成褐色的去镁叶绿素。
去镁叶绿素遇铜则成为铜代叶绿素,铜带叶绿素很稳定,在光下不易被破坏,故常用此法制作绿色多只植物的浸渍标本。
2.4 叶绿素含量的测定根据叶绿体色素提取液对可见光谱的吸收,利用分光光度计在某一特定波长测定其吸光度,即可用公式计算出提取液中各色素的含量。
根据朗伯—比尔定律,某有色溶液的吸光度A与其中溶质浓度C和液层厚度L成正比,即A=αCL式中:α比例常数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
叶绿体色素的提取分离理化性质和叶绿素含量的测
定
The latest revision on November 22, 2020
实验报告
课程名称: 植物生理学及实验(甲) 实验类型: 实验名称: 叶绿体色素的提取、分离、理化性质和叶绿素含量的测定 姓名: 专业: 学号:
同组学生姓名: 指导老师:
实验地点: 实验日期:
一、实验目的和要求 二、实验内容和原理
三、主要仪器设备 四、操作方法与实验步骤
五、实验数据记录和处理 六、实验结果与分析
七、讨论、心得
一、实验目的和要求
1、掌握植物中叶绿体色素的分离和性质鉴定、定量分析的原理和方法。
2、熟悉在未经分离的叶绿体色素溶液中测定叶绿素a 和b 的方法及其计算。
二、实验内容和原理
以青菜为材料,提取和分离叶绿体色素并进行理化性质测定和叶绿素含量分析。
原理如下:
1、叶绿素和类胡萝卜素均不溶于水而溶于有机溶剂,常用95%的乙醇或80%的丙酮提取。
2、皂化反应。
叶绿素是二羧酸酯,与强碱反应,形成绿色的可溶性叶绿素盐,就可与有机溶剂中的类胡萝卜素分开。
COOCH 3 COO -
C 32H 30ON 4Mg + 2KOH C32H30ON4Mg + 2KOH +CH3OH +C20H39OH
COOC 20H 39 COO -
3、取代反应。
在酸性或加温条件下,叶绿素卟啉环中的Mg++可依次被H+和Cu++取代形成褐色的去镁叶绿素和绿色的铜代叶绿素。
(H+取代Mg2+, Cu2+ (Zn2+)取代H+ ) 褐色 绿色
4、叶绿素受光激发,可发出红色荧光,反射光下可见红色荧光。
5、定量分析。
叶绿素吸收红光和兰紫光,红光区可用于定量分析,其中645和663用于定量叶绿素a,b 及总量,而652可直接用于总量分析。
根据朗伯-比尔定律,最大吸收光谱不同的两个组分的混合液,它们的浓度C 与吸光值之间有如下的关系: OD 1=Ca*k a1+C b *k b1 OD 2=Ca*k a2+C b *k b2
查阅文献得,叶绿素a 和b 的80%丙酮溶液,当浓度为1g/L 时,比吸收系数k 值如下。
波长/nm
比吸收系数k 叶绿素a 叶绿素b
663
645
将数值代入式子得:OD663=*Ca+*Cb OD645=*Ca+*Cb
经整理后,得到式子:Ca= OD663 - OD645 Cb= OD645 - OD663
三、主要仪器设备 装 订 线
天平(万分之一)、可扫描分光光度计、离心机、研具、各种容(量)器、洒精灯等
四、操作方法与实验步骤
1、定性分析:
鲜叶5g+95%30ml (逐步加入),磨成匀浆,过滤入三角瓶中,观察荧光现象。
皂化反应(3ml) :加KOH 数片剧烈摇均,加石油醚5ml 和H2O 1ml 分层后观察 取代反应(1):加醋酸约2ml ,取1/2加醋酸铜粉加热。
观察颜色变化。
取代反应(2):鲜叶2-3cm2,加Ac-AcCu 20ml 加热。
2、叶绿素和类胡萝卜素的吸收光谱测定:
皂化反应的上层黄色石油醚溶液→稀释(470nm OD )
反复用石油醚粹取,直到无类胡萝卜素,离心得叶绿素(盐)→稀释(663nm OD ) 两者在400-700nm 处扫描光谱,分别测定类胡萝卜素和叶绿素的吸收峰
3、叶绿素定量分析:
鲜叶,加,磨成匀浆,各取加80%丙酮,摇匀,4000转离心3min,上清液在645,652,663测定OD ,计算Chla,Chlb 和Chl 总量的值。
五、实验数据记录和处理
1、定性分析:
观察荧光现象,透射光为绿色,反射光为红褐色光。
皂化反应(3ml) :上层呈黄色,为类胡萝卜素,吸收蓝紫光。
下层呈绿色,为叶绿素,吸收红光和蓝紫光。
取代反应(1):加醋酸约2ml ,变褐(去镁叶绿素),取1/2加醋酸铜粉加热变绿色,为铜代叶绿素。
2、叶绿素和类胡萝卜素的吸收光谱测定:
图 1 图 2
图一在420nm 左右及690nm 左右波长处吸收光谱出现峰值,两者分别位于蓝紫光和红光的波长范围内,根据叶绿素吸收蓝紫光和红光的特性,可以推测图一是叶绿素的吸收光谱。
图二在450nm 以及475nm 波长处吸收光谱出现峰值,都位于蓝紫光的波长范围内,根据类胡萝卜素吸收蓝紫光的特性,可以推测图二是类胡萝卜素的吸收光谱。
3、叶绿素定量分析:
将数值代入式子,计算得:
Ca(mg/L)= OD645=*
mg/L Cb (mg/L) = OD663=*
mg/L CT (mg/L) = Ca+ Cb = mg/L Chla 含量(mg/= (Ca(mg/L)/1000)*2/ *5/ = mg/
Chlb 含量(mg/ = (Cb(mg/L)/1000)*2/ *5/ = mg/
Chl 总含量(mg/ = (CT(mg/L)/1000)*2/ *5/ =
六、实验结果与分析
1、定性实验中,各组实验观测是颜色变化基本相同,区别只是颜色的深浅,与研磨时加入的叶片量、研磨的程度等因素有关。
2、从定量实验所得数据的计算结果来看,实验所用的叶片中,叶绿素a 的含量大 波长/nm
645 652 663 OD 第一组
第二组
平均
约是叶绿素b的三倍左右。
3、邻组所得实验数据与我们的数据有一定差距,分析可能是以下几个原因造成的:1.研磨的充分程度不同 2.所取叶片位置不同,导致叶绿素含量有所区别
七、讨论、心得
1、为什么叶绿素吸收红光和兰紫光
叶绿素有基态(G),第一单线激发态(E1)和第二单线激发态(E2)及第三线态(E3),光子吸收必须遵守普朗克定律。
被吸收光子能量必须等于激发态和基态的能量差。
蓝紫光能量大,可使叶绿素分子中的电子跃迁到E2,而红光能量小,只能使其跃迁到E1,故叶绿素只能吸收蓝紫光和红光。
2、为什么可用皂化后的叶绿素盐来测定叶绿素的吸收光谱
因为由于叶绿素皂化反应后的叶绿素盐并不影响叶绿素分子的骨架结构,叶绿素对光的吸收规律与叶绿素盐对光的吸收规律几乎是相同的,而且皂化反应可以从叶绿体色素中只筛选出叶绿素,排除了其他色素的干扰,所以可用皂化后的叶绿素盐来测定叶绿素的吸收光谱。